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[bookmark: _lazkgycwto6x]Abstract: 
[bookmark: _gjdgxs]Performance-based seismic design (PBD) procedures for bridge design were introduced in CAN/CSA S6-14 Code, either as mandatory or as alternative to force-based procedures (FBD), depending on defined criteria. Although one could instinctively be inclined to think that PBD approach shall yield economic bridge designs, the impact remains to be verified for a variety of bridge geometries and localities. This paper presents PBD and FBD results for two case studies. The first one is a three span, skewed lifeline bridge supported on two single-column bents. The second one is a curved two span major-route bridge supported on a three columns concrete bent. Bridges foundations were designed twice (following FBD and then PBD procedures) and construction cost using both approaches were compared. In order to carry out FBD and PBD, multi-modal response spectrum analyses (MMRSA) were performed to characterize the bridge response. For PBD, fragility curves (FC) for selected bridge components were developed from inelastic static push-over analysis (ISPA) along with sectional stress-strain analysis. ISPA were used to capture structural components inelastic behaviour and evaluate bridge aftershocks capacity, while FC allowed the assessment of associated seismic damage probabilities at given seismic demand levels. A thorough analysis of displacements and their impact on bridge components at different ground motion levels (return periods) was performed, in alignment with Code prescriptions. The results of this assessment indicated that significant cost savings, up to 2.60 %, could be expected even in the case of regular bridge structures characterized by moderate seismic hazards and favorable site location.
1 [bookmark: _giujec6moh4g]INTRODUCTION
Material quantities and construction costs for bridge foundations are primarily driven by seismic forces in areas of moderate seismic activity such as several Eastern Canadian localities when using FBD. Therefore, applying a PBD methodology to the design of bridge foundations could potentially allows for the optimization of many bridge structures costs and material quantities, which is an approach in accordance with sustainable development strategies. Moreover, several studies have shown that the indirect costs of closing a bridge following such event in a densely populated area can have major financial impacts, emphasizing the interest of better characterizing bridge seismic behaviour by the use of PBD. 
The PBD methodology incorporates global structure priority along with structural components relative importance in order to meet established performance levels. It should be noted that each performance level is related to an earthquake demand characterized with a probability of occurrence. The prescribed performance levels are associated with acceptable damage levels sustained by the structural components. A key concept of seismic PBD is the identification of each critical structural component vulnerability to reach various levels of damage and the approach retained in this study is the development of FC. The case studies featured hereafter presents the design of two bridges using a PBD methodology based on ISPA and the use of bridge structural components FC. The bridges designed with PBD are then compared with the bridges designed following the FBD approach. 
2 METHODOLOGY
The FBD methodology specified in the Canadian Highway Bridge Design Code, CAN/CSA S6-14 (CSA 2014) was employed to design the bridges using MMRSA. The response spectrums were selected and modified for the site characteristics following S6-14 prescriptions. The inelastic behaviour of structural elements under seismic loads was accounted for through the use of a combined ductility and overstrength response modification factor (R). Displacements, bending moments and base shears were derived from the MMRSA and used for sectional stress-strain analysis of structural components. Then, the same bridges were designed using a PBD methodology based on the development of structural components FC using the results of ISPA (Shinozuka et al. 2000 and Nielson and DesRoches 2007). The methodology was adapted to use spectral acceleration at the natural vibration period as the FC intensity measure, instead of the peak ground acceleration. ISPA were preferred to nonlinear time history analyses (NTHA) as the less time-consuming method complying with the S6-14 seismic analysis requirements as case study 1 seismic performance category was 2. Thus, even if case study 1 was designed at a lifeline seismic importance category, NTHA were not required. This is due to the bridge location and natural vibration period. Fragility curves enabled the assessment of the probability of meeting a damage state for a given seismic demand and were developed to study each critical structural component. Thus, FC of critical structural components can be a powerful tool for quickly assessing their behaviour and compliance with each performance criteria established by S6-14 Code (Daneshvar et al. 2015). The performance criteria were established using S6-14 Code and associated with damage levels evaluated using numerical relations based on previous studies (Berry and Eberhard 2007 and Mackie et al. 2007). These damage criteria are based on bridges drift ratios. In this study, the earthquake demand (ED) was evaluated using bridges response to appropriate MMRSA and ISPA. Damage criteria (DC) are then used to evaluate the seismic capacity (SC) of structural components. The relation between the earthquake demand (ED) and response spectrum intensity (RSI) can then be established using linear regression in logarithmic scale (see equation 1) as demand was assumed to follow lognormal distribution using the following form :


[1] 



where  and  are linear regression constants. The probability to meet a particular damage level pf  was estimated with equation 2:
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Fragility curves allowed for the estimation of the probability that the earthquake demand (ED) is greater than the seismic capacity (SC) of a given structural component. Since the capacity as well as the demand are assumed to follow lognormal distributions, the fragility may be written as shown 
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whereis the median of the demand,is the median of the capacity,is the dispersion of the logarithmic standard deviation of the demand related with the intensity measure andis the dispersion of the capacity. Then, FC of each structural components are developed using equation 3 and the probability to meet a given seismic state of damage is compared to the notional probability of rupture of 1:11 000 proposed by S6-14 Code at design target reliability index= 3.75 (CSA 2014). 
As an example, for case study 1 the S6-14 Code required that at a seismic ground motion probability of exceedance of 2% in 50 years (1:2475 years), the service level of the bridge shall perform up to a limited service and that the damage associated is at a repairable level. A limited service corresponds to a bridge that shall be usable for emergency traffic. Repairable damage level shall not induce any bridge closure and normal service shall be restored within a month. Repairable damage level for reinforced concrete components is associated with some inelastic behaviour, reinforcing steel tensile strains limit of 0.015 and residual capacity to support dead load plus live load. With the spectral acceleration at the natural period of vibration of the bridge (Tn = 1.53 s) for a probability of exceedance of 2% in 50 years (1:2475 years), the probability to meet repairable damage level was evaluated at 1:11 900 which is lower than the notional probability of rupture of 1:11 000 proposed by S6-14 Code at design target reliability. Thus, this performance criteria was deemed acceptable for the concrete column at the demand level analyzed. This procedure was used to analyze each performance criteria associated with each demand level for every critical structural components for both case studies. Sectional stress-strain analyses were performed to verify compliance with S6-14 Code performance criteria and evaluate aftershocks capacity. An iterative process was put forward in order to optimize the design. The construction costs of the bridges designed using both methods were then compared.
3 BRIDGES CHARACTERISTICS AND MODELLING
3.1 Case study 1 characteristics
The first case study is a three span skewed mixed steel-concrete deck bridge designed for lifeline seismic importance category (see figure 1 and 2). Each of the two 7 metre single column bents are composed of a circular concrete column supported by a caisson pile. The caisson pile at pier 2 is 14 metre long while the caisson pile at pier 3 is 5 metre long before reaching the rock surface. Both caisson pile are embedded in the rock using rock sockets. The bridge first and third spans are 51.2 metre long while the bridge second span is 48.1 metre long. The bridge presents a 20 degree skew. The bridge deck consisted of a 225 mm thick reinforced concrete slab supported on 4 steel girders of a depth of approximately 2 000 mm. The bridge also supported steel barriers and a reinforced concrete sidewalk. In the longitudinal direction, the bridge bearings were fixed at the two piers and allowed translation at the abutments, while in the transversal direction, the bridge bearings were fixed at both the piers and abutments.
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Figure 1: Case study 1 - Bridge elevation plan (adapted from drawing)
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Figure 2: Case study 1 - Bridge deck cross section (adapted from drawing)



3.2 Case study 2 characteristics
The second case study is a two spans curved mixed steel-concrete deck bridge designed at major-route seismic importance category and supported on three concrete rectangular columns with variable heights (6.5, 7.0 and 7.5 metre) as illustrated in figures 3 and 4. Each of the three columns are supported on a concrete slab foundation resting on rock. The bridge has one 33.8 metre long span, and one 23.2 metre long span, with a radius of curvature of 227 metre. The bridge deck consisted of a 225 mm thick reinforced concrete slab supported on 4 steel girders of a depth of approximately 1 400 mm. The bridge also supported reinforced concrete barriers and architectural cladding. In the longitudinal direction, the bridge bearings were fixed at the pier and allowed translation at the abutments, while in the transversal direction, the bridge bearings were fixed at both the piers and abutments.
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Figure 3: Case study 2 - Bridge elevation plan (adapted from drawing)
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Figure 4: Case study 2 - Bridge deck cross section (adapted from drawing)



3.3 Modelling
The CSi Bridge v20.0.0 (CSi 2016) package was selected for the analysis and design of the bridges using grillage models as illustrated in figure 5 a) and b). Bridges columns were constituted of elastic beam elements and their cracked properties were included in the analysis through modified inertia. As noted previously, the inelastic behaviour under seismic loads was captured using the R factor for FBD. For PBD, plastic hinges were introduced in the concrete columns and their inelastic behaviour was captured by discretization of the columns with fiber finite elements, using the Mander confined and unconfined concrete stress-strain curve model and steel reinforcement materials properties (Aviram et al. 2008). Rock sockets of caisson pile foundations for case study 1 were included in the model using an equivalent fixity model (Priestley et al. 1996) while abutments footings were modelled with fixed supports. The foundations (abutments and bent) of case study 2 are resting on rock and were therefore modelled with fixed supports. Bridge deck components consisted of either elastic beam elements or elastic shell elements. It should be noted that both bridges are considered regular under S6-14 Code requirements. 
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Figure 5: a) Case study 1 - Three span skewed mixed steel-concrete deck lifeline bridge,
b) Case study 2 - Two span curved mixed steel-concrete deck major-route bridge



4 SEISMIC DESIGN BASED ON FORCE-BASED AND PERFORMANCE BASED METHODS
To estimate the design forces and displacements for FBD, MMRSA were conducted using CSi Bridge models. Then, ISPA were performed to assess the global inelastic behaviour and build the FC of the structural components to be used for PBD. It should be noted that the FC were derived for different structural elements (columns, joints, bearings and abutment wall) in order to assess the compliance to the performance criteria. However, only the bridge critical columns FC are presented in this paper. The construction cost of the bridges was assessed using comparable projects and listed prices.



4.1 Case study 1
Table 1 presents summary results for both FBD and PBD of the first bridge studied and figure 6 represents associated columns cross sections using both methodology. It should be noted that according to S6-14 Code requirements, all lifeline bridges shall be designed using PBD. For the purposes of this study, FBD of the bridge was performed using the lifeline seismic importance factor (Ie = 3.0) from the previous CAN/CSA S6-06 Code (CSA 2006) in order to compare the two design methods. Figures 7a), 8a) and 9a) respectively presents associated bridge critical column inelastic static pushover, moment-curvature and fragility curves from PBD. It should be noted that the required length of the caisson’s rock sockets of both piers was reduced from 5.75 to 4.75 metre using PBD. The total construction cost for this bridge, designed using FBD, is estimated at $7,513,000.00, whereas the total construction cost using PBD is estimated at $7,416,000.00, which represents a 1.30 % cost reduction.

Table 1 : Summary results for FBD and PBD for case study 1
	
	Diameter
(mm)
	Total area of longitudinal reinforcing bars
(mm2)
	Maximum displacement
(mm)

	
	FBD
	PBD
	FBD
	PBD
	FBD
	PBD

	Columns
	1 800
	1600
	30 000
	22 000
	121.5
	139.2

	Caisson piles
	2 500
	2100
	60 000
	44 000
	4.2
	6.0
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Figure 6: Case study 1 – Comparison between columns cross section designed with FBD (left) and PBD (right)





4.2 Case study 2
Table 2 presents summary results for both FBD and PBD of the bridge, while figure 7 represents associated columns cross sections using both methodology. Figures 7b), 8b) and 9b) respectively presents the inelastic static pushover, moment-curvature, and fragility curves (from PBD) for the critical column. The total construction cost for this bridge, using FBD, is estimated at $3,383,000.00, whereas the total construction cost, using PBD, is estimated at $3,295,000.00, which represents a 2.60 % cost reduction.

Table 2 : Summary results for FBD and PBD for case study 2
	
	Depth
(mm)
	Total area of longitudinal reinforcing bars
(mm2)
	Maximum displacement
(mm)

	
	FBD
	PBD
	FBD
	PBD
	FBD
	PBD

	Columns
	1 460
	1 000
	11 000
	8000
	35.0
	42.5

	Footing
	3 900
	2 500
	46 900
	32 500
	N/A
	N/A



[image: ]                [image: ]Figure 7: Case study 2 – Comparison between columns cross section designed with FBD (left) and PBD (right)





4.3 IMPACT ASSESSMENT OF SEISMIC DESIGN METHODOLOGY
For the two case studied, PBD enabled reductions in the bridge’s columns and foundations sizes along with their total reinforcing steel quantity. Total savings for case study 1 are estimated at $97,000.00, which represents 1.30 % of the total estimated construction cost, while total savings for case study 2 are estimated at $88,000.00, which represents 2.60 % of the total construction cost. In addition, ISPA conducted while performing PBD enabled for the characterization of the structural inelasticity of the bridges structural components, ensured ductile behaviour and limited stresses and strains to Code limits. In both case studies, probabilities of reaching given damage states were expressed with FC and deemed acceptable for compliance with Code S6-14 requirements. It should be noted that in both case studies further reduction in bridge structural components sizes and reinforcing steel quantity was prevented by requirements unrelated with seismic design such as concrete cracking limits, wind forces and dynamic ice forces. Better reductions could be expected in further bridge projects as both case studies presented in this paper are characterized by moderate seismic hazards, favorable site characteristics and were considered regulars bridges.
5 DISCUSSION
This paper examines results from a performance-based seismic methodology used for the seismic design of two bridge’s case studies and compares them with force-based design results. Overall, PBD carried out with ISPA and a probabilistic approach was found to be an interesting procedure in order to optimize structural components of regular bridges located in areas of moderate seismic activity. The procedure aimed at better characterizing bridge seismic behaviour in the inelastic range and the probabilistic approach ensured compliance with the Code S6-14 requirements and confidence in the reliability of the structure. The results of this impact assessment indicated that significant cost savings of the total construction cost could be expected using PBD as alternative to FBD, as a reduction of up to 2.60 % of the total construction cost was estimated for the bridges studied. In a further research, the analysis results obtained in both case studies should be compared with NTHA to investigate structural components inelastic behaviour characterization and bridge compliance with S6-14 Code performance criteria at every time steps.
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                             Figure 8: a) Figure 5: a) Case study 1 - Critical column ISPA curve,
b) Case study 2 - Critical column ISPA curve


b)









                    Figure 9: a) Case study 1 - Critical column moment-curvature curve,
b) Case study 2 - Critical column moment-curvature curve



b)
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Figure 10: a) Figure 5: a) Case study 1 - Critical column fragility curve,
b) Case study 2 - Critical column fragility curve
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Repairable damage	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	1.1000000000000001	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2	2.1	2.2000000000000002	2.2999999999999998	2.4	2.5	2.6	2.7	2.8	2.9	3	7.83284974983622E-13	1.8088437450481885E-7	4.2547602620771485E-5	9.4296961496784584E-4	6.7541766450642292E-3	2.5638144619280545E-2	6.5683840701138127E-2	0.12982626200055528	0.21456234922323539	0.31218697169974285	0.41396918528654414	0.51246774907391779	0.60254890120790605	0.68142486029255178	0.74819136604260561	0.80322706528192489	0.84765258352037565	0.88292314379171377	0.91055887009253311	0.9319872894918112	0.9484658197417275	0.96105573575586423	0.97062608556665764	0.97787286780607918	0.98334424499664896	0.98746646435843877	0.99056772665675985	0.99289882504290949	0.99465028219281459	0.99596618728856112	Extensive damage	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	1.1000000000000001	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2	2.1	2.2000000000000002	2.2999999999999998	2.4	2.5	2.6	2.7	2.8	2.9	3	9.6249228720653501E-17	2.1021571785703245E-10	1.8114214962728455E-7	9.9580239765879916E-6	1.4265901809024591E-4	9.438318224363624E-4	3.8273784193163865E-3	1.114432465429558E-2	2.5654274183453573E-2	4.9690644818189626E-2	8.4481088292351875E-2	0.12988336469846612	0.18452625744374199	0.2461948858209041	0.3122825729342909	0.38018491126816562	0.44757826254001393	0.51257546642963936	0.57377948993403294	0.63026557386219206	0.68152127853904876	0.72736770060294642	0.76787787379939731	0.80330194695575607	0.83400386718845121	0.86041101248687846	0.88297624064114266	0.90215079893826422	0.91836614955743123	0.93202275726679107	Probable replacement	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	1.1000000000000001	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2	2.1	2.2000000000000002	2.2999999999999998	2.4	2.5	2.6	2.7	2.8	2.9	3	1.5508278106640779E-53	1.2602106786541524E-36	2.8409118391514347E-28	4.9271653235927463E-23	2.313073999977012E-19	1.2889668965257443E-16	1.7957606376452977E-14	9.5523483866992331E-13	2.5202177037373446E-11	3.9159929932502626E-10	4.0334055914041457E-9	2.9964668594310646E-8	1.7086878224821633E-7	7.8383220024751164E-7	2.9992745077317189E-6	9.848981666360489E-6	2.8392241249296519E-5	7.3182692751335373E-5	1.7121401784839517E-4	3.6811969173829569E-4	7.3496435555203362E-4	1.3745823667145173E-3	2.4262197388977389E-3	4.0672951733650015E-3	6.5114152925329081E-3	1.0002289467321368E-2	1.4803778570232863E-2	2.1186859445305965E-2	2.9414695379290506E-2	3.9727215773630989E-2	Minimal damage	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	1.1000000000000001	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2	2.1	2.2000000000000002	2.2999999999999998	2.4	2.5	2.6	2.7	2.8	2.9	3	1.4550489727992787E-9	1.438640877179205E-4	1.146623593245184E-2	9.415087450174392E-2	0.28372555982615849	0.5143300440382742	0.70875879235518446	0.84009927539463491	0.91735155360237686	0.95895413335791224	0.98012686179594799	0.99052246507149821	0.99551534715562151	0.99788345016201185	0.99899997081073377	0.99952571334749107	0.99977377404082657	0.99989133079712877	0.99994738055765986	0.99997429929996384	0.99998733254757199	0.99999369777626224	0.99999683466854461	0.99999839496090392	0.9999991783572626	0.99999957540119311	0.99999977852562028	0.99999988341153878	0.99999993806950549	0.99999996681102898	Sa(Tn) (g)



Repairable damage	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	1.1000000000000001	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2	2.1	2.2000000000000002	2.2999999999999998	2.4	2.5	2.6	2.7	2.8	2.9	3	8.3416173735328088E-5	3.7199253454862871E-2	0.26576140672737825	0.57779888413016178	0.79780841402663694	0.9122493821005202	0.9636865249523211	0.98524800507810817	0.99401808071400843	0.99755535828804831	0.99898754413835866	0.99957374514891595	0.99981727353284133	0.99992018481201284	0.99996447036724556	0.99998388482590705	0.99999255535617515	0.99999649903220744	0.99999832502782804	0.99999918524397602	0.99999959731194965	0.99999979790580129	0.99999989707711279	0.99999994684048088	0.99999997217024028	0.99999998524100653	0.99999999207509793	0.99999999569370901	0.9999999976331061	0.99999999868470069	Extensive damage	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	1.1000000000000001	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2	2.1	2.2000000000000002	2.2999999999999998	2.4	2.5	2.6	2.7	2.8	2.9	3	4.3834728193148146E-16	6.8061344131883487E-8	1.3186481696221935E-4	6.2480379320114781E-3	5.4220214889772918E-2	0.19052688066660742	0.39768119983803285	0.60825426952757711	0.77213731912585115	0.87846469383658854	0.93925946662642501	0.97106176221232399	0.98668172856342407	0.99401852064402729	0.99735813242371385	0.99884569733215467	0.99949881226718584	0.999782997203705	0.99990605348594586	0.99995924813203707	0.99998225964868648	0.99999223999447961	0.99999658602825381	0.99999848828067694	0.99999932588515583	0.99999969715174686	0.99999986288877374	0.99999993742985127	0.99999997121501483	0.99999998664933043	Probable replacement	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	1.1000000000000001	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2	2.1	2.2000000000000002	2.2999999999999998	2.4	2.5	2.6	2.7	2.8	2.9	3	1.3787257750673214E-30	2.2855450535671617E-18	9.4929562839201314E-13	1.9192367129785824E-9	2.8898946046837978E-7	9.8110782659864988E-6	1.2982719570912363E-4	9.0912020071783734E-4	4.0570231769472527E-3	1.3012285667689397E-2	3.2547568325075257E-2	6.7254063607001285E-2	0.11971996152276036	0.18944158235942277	0.27292698045656405	0.36473509051799424	0.45884977621019291	0.54985766564548499	0.63366297948225991	0.70772262437377453	0.77092739038249924	0.8232922026870948	0.86559162980056958	0.89902754942133001	0.92496977958023041	0.944778023065726	0.95969539500066503	0.97079663777747582	0.97897363928475511	0.98494362859922902	Minimal damage	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	1.1000000000000001	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2	2.1	2.2000000000000002	2.2999999999999998	2.4	2.5	2.6	2.7	2.8	2.9	3	1.4025449256401973E-2	0.545348123575077	0.92860324628981383	0.99233330329538894	0.99923312092935279	0.99992030299699342	0.99999105802784005	0.99999890417352411	0.99999985319883655	0.99999997857808554	0.99999999661253303	0.99999999942278561	0.99999999989459876	0.99999999997948141	0.99999999999576195	0.9999999999990753	0.99999999999978773	0.99999999999994893	0.99999999999998712	0.99999999999999667	0.99999999999999911	0.99999999999999978	0.99999999999999989	1	1	1	1	1	1	1	Sa(Tn) (g)
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