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Abstract: Manual defect identification and classification for sewer pipes using footage from closed-
circuit television (CCTV) monitoring is generally time-consuming and can have varying degrees of 
accuracy depending on the expertise of the technologist conducting the analysis. In order to address this 
issue, automation is proposed as an alternative to human visual inspection and consists of extracting still 
frames from collected videos, examining whether these frames include defects, and finally classifying 
these defects into different types (e.g., cracks or fractures). A classifier based on a new convolutional 
neural network, called You only look once (YOLO), is proposed in this paper which consists of four parts: 
(1) extracting the colour frames including defects from the video; (2) transferring information in the 
selected frames in order to highlight the part of the image containing the defect; (3) using the training 
images with the corresponding information as inputs to generate a classifier by means of the YOLO 
network; and (4) testing performance of the automatic classifier based on the images for validation. The 
proposed framework is then applied to a case study of the City of Edmonton in order to automatically 
detect the number and location of defects in sewer pipes to facilitate improved productivity for human 
visual defect identification and human resource allocation. The results show that the YOLO-based 
classifier performs accurately: up to 96% accuracy in automated defect detection, although some 
mistakes occurred such as mix-up other type of defect.  

1 INTRODUCTION 

The deterioration of urban infrastructure is commonly regarded as a critical problem that all countries 
worldwide are currently facing, a challenge which is compounded by the reality of limited budgets and 
finite resources. Sewer pipes represent one of the most important components of the municipal 
infrastructure, essential to public health and quality of life in urban environments. To curb the potentially 
dire consequences of an aging infrastructure, substantial budgets and resources are needed to carry out 
preventive maintenance activities for sewer pipes. For instance, it is estimated that $47 billion will be 
spent on restoring the condition of sewers in Canada to an acceptable level (Sinha and Knight 2004). In 
North America, current procedures often use closed circuit television (CCTV) monitoring to inspect the 
structural integrity of sewer pipes due to the wide commercial availability and practical advantages of 
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CCTV monitoring (Iseley et al. 1997, Madryas and Przybyla 1998, Makar 1999). After recording the video 
in the field, the footage is examined by technologists (i.e., trained individuals) in the analysis facility. The 
defects in a video are detected, classified into different types and labelled according to a standardized 
nomenclature. For instance, four primary categories of pipe defects are listed based on pipeline 
assessment and certification program (PACP) (NASSCO 2015): structural defects, operation and 
maintenance defects, construction defects, and miscellaneous defects. In addition, each type of defect 
can have several subclasses. The traditional approach to conducting the video-based assessment is to 
employ human visual identification, but this process is labour-intensive, time-consuming, and is likely to 
be error-prone since the accuracy of the analysis is impacted by the experience of the technologist. 
Furthermore, in many instances, such as in recently developed neighborhoods, large portions of the video 
footage will not show any defects and thus the time spent on watching these portions is essentially 
wasted. To improve the productivity of analysing video footage, some innovative approaches and other 
artificial intelligence techniques have been developed for CCTV data. Moselhi and Shehab-Eldeen (1999) 
employed a neural network-based approach to realize image processing, segmentation, and feature 
extraction. Moselhi and Shehab-Eldeen (2000) used a three-layer neural network with a back-propagation 
algorithm to classify four types of defects in sewer pipes (i.e., cracks, joints, spalling, and cross-sectional 
areas). Sinha and Fieguth (2006) integrated neural networks with fuzzy logic to build a classifier to 
classify defects in segmented buried pipe images and compared the performance of the proposed 
approach with traditional classification methods such as the k-nearest neighbours (K-NN) and 
conventional back-propagation network. Yang and Su (2008) applied image processing techniques to 
describe pipe textures and used machine learning methods including back-propagation neural network, 
radial basis network, and support vector machine to classify defects in pipes and compare the 
performance of each method. Yang and Su (2009) developed a diagnostic system based on radial basis 
network for automated detection of pipe defects on CCTV images; the critical step of which is to define 
ideal morphologies of pipe defects. Based on the current literature review, four relevant points emerged 
and are summarized as follows: (1) different types of defects are detected and classified in the existing 
research, some of which focus on only one special type while others are able to identify multiple types at 
the same time; (2) the studied pipes are diverse in their production materials, such as concrete, clay, and 
PVC (i.e., poly vinyl chloride); (3) there exists diversity in the methods that are used for automated defect 
identification, while neural network is the more widely-used approach; and (4) image pre-processing is the 
essential first step before defect detection. Most of the current methods depend on black and white 
videos or the processed images created using grey scale conversion. With respect to the aforementioned 
findings in the literature review, this paper introduces a neural network-based method to detect multiple 
types of defects automatically, which is performed using the colour images of defects in sewer pipes 
captured using CCTV monitoring. The proposed method in the present study could prove to be beneficial 
in replacing the traditional method for defect identification, improving detection productivity, and helping 
manage labour resources. The following sections present a more detailed explanation of the methodology 
and its application to a real case study.  

2 METHODLOGY 
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Figure 1: The framework of methodology 
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The proposed method for automatic defect detection is composed of three parts: image collection, image 
pre-processing, and automated defect detection. An overview of the framework is provided in Figure 1, 
where Python and a supercomputer are used as the primary tools to achieve the research objective. 

2. 1 Image Collection 

The original files used for analysis are videos recorded by CCTV monitoring. Therefore, the first step is to 
collect all video frames that contain defects in the observed sewer pipes. In general, 30 frames per 
second can be extracted from the video, by means of the Pinnacle system, which are saved as images in 
jpeg format. Considering several consecutive frames where defects may be identical, an assumption is 
made for selecting these frames to make sure that the selected frames for training and validation are 
individually distinct. For instance, if the time threshold is set to 1 second, several frames with the same 
defect(s) during that time period are regarded as one frame. The task of image collection is implemented 
by programs encoded in Python. 

2. 2 Image Pre-processing 

Defects in the selected images can be visually identified by technologists, but the information should be 
transferred into a file format that the computer is able to read. Therefore, image pre-processing is an 
imperative in this step. We label each image and save its corresponding file in xml format, which 
describes the location of a specific type of defect in this image. Meanwhile, the format conversion and 
save path creation for the needed files are completed. To test the automatic classifier in the next step, all 
the selected images are divided into two groups for training and validation, respectively. The above tasks 
are implemented by programs encoded in Python. 

2. 3 Automated Defect Detection 

Similar to previous studies, the main method selected for this study is neural networks. According to the 
function principle, different neural network approaches are generated for pattern recognition and 
classification, such as the back-propagation neural network (Buscema 1998, Nolan 2002) and radial basis 
network (Yang and Su 2008, 2009). This study selects a comparably new neural network approach called 
You only look once (YOLO) to build a defect classifier for sewer pipes in order to achieve automated 
detection. This approach currently has been applied to visual object tracking (Ning et al. 2017), soil 
hydraulic function predicting (Minasny et al. 2004), autonomous driving (Wu et al. 2017), and text 
localization in natural images (Gupta et al. 2016). The principle underlying YOLO is that it uses a single 
convolutional neural network to predict multiple bounding boxes and their class probabilities at the same 
time; meanwhile, full images act as the train objects in YOLO and this approach can realize optimization 
of detection performance (Redmon et al. 2016). Since YOLO does not depend on image pixels, it then 
succeeds in transferring object detection into a single regression problem. As such, YOLO is superior 
compared to traditional methods in the area of object detection, which is evidenced by the fact it requires 
much less computation time, it encodes contextual information and appearance of each class, and it 
learns generalizable representations of objects (Redmon et al. 2016, Redmon and Farhadi 2017, 2018). 
A brief introduction to the theory behind YOLO is presented below. 

First, the input (i.e., full images) is divided into an S S  grid and each grid cell can predict whether a 

bounding box includes an object with a binary variable defined as Pr( )Object . If there exists an object 

(i.e., Pr( ) 1Object = ), then this system judges whether the predicted box is accurate as the ground truth 

with the variable (i.e., intersection over union (IOU)) defined as truth

predIOU . Based on this, the confidence 

score for each bounding box is equal to Pr( ) truth

predObject IOU . In addition to the confidence score, each 

bounding box also has other four predictions: the box center coordinate ( ,x y ), width (w ) and height ( h ). 

In addition, another variable, conditional class probability, is also predicted in each grid cell, which is 

defined as Pr( )iClass Object . Therefore, for each bounding box, its class-specific confidence score is 

equal to Pr( ) Pr( ) truth

i predClass Object Object IOU  , which can be expressed as Pr( ) truth

i predClass IOU .  
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Before executing YOLO in practice, some input information is needed, such as number and name of 
classes to detect, parameters in the configuration section, the convolutional section, and the YOLO 
section. The above information can be modified in order to seek the optimal classification performance. 
Considering that a general computer would consume a lot of time and require large storage space to 
achieve automated defect detection, the whole task is accomplished with the support of a remote 
supercomputer. 

3 CASE STUDY 
 

3. 1 Data Source and Preparation 

The data used in this study was collected from 63 CCTV monitoring videos for clay sewer pipes, which 
were recorded by EPCOR Drainage Services in the City of Edmonton, Canada. The results of the pipe 
condition assessment can be retrieved from two databases of media inspection and condition; the 
database of media inspection provides the information for all videos recorded by CCTV monitoring in the 
field, while the conditions database describes the type of defects and their locations in the pipe examined 
by each technologist. Based on the aforementioned procedure, 1,451 images are generated to display 
the location and shape of each defect in the pipes. The image selection is based on the consistency 
principle within 1 second.  

The next step is image pre-processing. There are seven classes of defects included in this case: (a) 
structural defects: cracks, fractures, broken, and hole; (b) operation and maintenance defects: deposit 
and root; (c) construction defects: tap. Based on this, we label each image, save its defect description file 
in xml format (see example in Figure 2), and complete the format conversion and save the path creation 
for all needed files.  

 

Figure 2: An example for defect description in xml format 

3. 2 The Automatic Classifier  

We divide the selected 1,451 images into the training group (1,331 images) and the testing group (120 
images). In other words, the number of images for training accounts for 91.8% of the total number. Before 
executing YOLO, some input information must be specified in advance. For instance, the number of 
classes in this case is seven and their names are listed in section 3.1. Parameters in the convolutional 
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section and the YOLO section are shown in Figure 3, where the number of filters is equal to 3*(number of 
classes+5). 

 
Figure 3: Part of parameter setting in YOLO network 

3. 3 Performance Check 

  

   

   
Figure 4: Example of YOLO labelled images 
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Using the automatic classifier derived from the training set of images, the output of the testing results is a 
labelled video. As the video plays, the defect will be marked by a bounding box pointing out the 
corresponding class. Figure 4 shows the example of YOLO labelled images in the video. In addition, a 
confusion matrix is developed to compare the accuracy of the automatic classifier with the human visual 
defect identification (see Table 1).  

Table 1: Confusion matrix for defect detection 

Type Correct/Total 
Mix-up 

Tap 
Mix-up 
Root 

Mix-up 
Fracture 

Mix-up 
Crack 

Mix-up 
Deposit 

Mix-up 
Hole 

Mix-up 
Broken 

Broken 10/10 1 2 2  1 3  
Hole 10/10  1   1  2 

Deposit 20/20 2 1  1   1 
Crack 20/20 1 1 1  1   

Fracture 19/20 1 1  6  2 2 
Root 18/20   4 5 3 1 1 
Tap 19/20  1  1 2   

From Table 1, it can be seen that the automatic classifier based on YOLO has high accuracy (i.e., 
116/120 = 96%) when identifying the correct type of defects. However, this classifier also tends to mix up 
other types of defects, such as root, fracture, and crack. For instance, in one of the pipes in the testing 
dataset, while YOLO did not miss any defects, it did mistakenly detect other defects such as deposits 
inside a broken tap (see Figure 5). This is, however, not a significant problem since the inspector will go 
into the filed to check the condition of the tap manually. Additionally, using YOLO also created some false 
alarms, due to its sensitive detection (see examples in Figure 6). Basically, IOU has a greater influence 
that results from a small error in a small box (rather than in a large box), and these errors in YOLO are 
derived from incorrect localization (Redmon et al. 2016). 

 

 

Figure 5: Example of faulty defect detection in broken tap  
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(a) Too sensitive to detect deposits 

    

(b) Labeling of the same defect twice with two types of classification 

Figure 6: Example of false detection by YOLO  

4 CONCLUSION 

This paper develops a neural network-based method to automatically detect defects for sewer pipes. 
Three steps are involved in the process: image collection, image pre-processing, and automated defect 
detection. This approach offers several advantages. First, colour images of defects derived from CCTV 
monitoring videos are used as inputs directly. In other words, there is no need to convert these images to 
grey scale as done in previous studies. Second, this approach enables the detection of multiple types of 
defects simultaneously. Third, the defect classifier is built by means of a novel neural network approach, 
YOLO, which is superior over traditional methods in the area of object detection. A case study of the 
sewer network in Edmonton is presented to demonstrate the applicability of the framework to automated 
defect detection for sewer pipes. The results show that 96% of images are partitioned into the correct 
classes using the automatic classifier, in spite of some errors such as the mix-up other types of defects. 
The proposed method will be beneficial when it comes to replacing the traditional method used for defect 
identification, improving detection productivity, and helping manage labour resources. Future study will 
focus on improving the classification accuracy and avoiding other interferences by optimizing the YOLO 
network, making it more suitable to defect detection for sewer pipes. In fact, for a specific class such as 
crack or fracture, the class can be divided into sub-classes according to defect severity. The automatic 
classifier is currently only able to identify the large classes of defects, and it does not subdivide these 
defects into specific classes. Thus, future study will consider the development of a classifier that can 
better identify each class and subclass of defect.  
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