
 
   
CSCE Annual Conference 
Growing with youth – Croître avec les jeunes 

 

 
Laval (Greater Montreal) 
June 12 - 15, 2019  
 

COMPARATIVE ASSESSMENT OF VARIOUS RANDOM PARAMETER 
ORDERED MODELS: A COMPREHENSIVE EVALUATION OF WORK ZONE 
COLLISION INJURY-SEVERITIES 

Nahidi, S.A.1,4 
1 University of Waterloo, Canada 
4 snahidi@uwaterloo.ca 
 

Tighe, S.L.1,4 
1 University of Waterloo, Canada 
4 sltighe@uwaterloo.ca 
 

Abstract: Maintaining driver and worker safety on highways experiencing closures during construction, 
maintenance, and rehabilitation activities is crucial. Throughout the years, several studies have been 
conducted to identify the influences of various factors on the injury-severity level of the collisions occurring 
on highways. Developing statistical models can help identify the factors which significantly influence the 
injury-severity level. The clear and practical results of these models could be adopted by the contractors to 
improve the level of safety in the work zones. In recent years, several complicated and advanced statistical 
models were applied to injury-severity data; these models are often time inefficient, impractical, and hard 
to interpret by non-statistical experts. Also, these models are intended to have the issue of overfitting which 
limits the ability of the models to predict future events. This study collected historical data from four different 
US states (New York, Pennsylvania, Illinois, and Michigan), between 2013 and 2016, to develop an injury-
severity level statistical model. Selected states have similar weather condition, pavement condition, and 
construction policies and regulations as Ontario, Canada. The authors believe due to the stated similarities 
between these US states and Ontario, the statistical models developed will be spatially transferable. 
Therefore, this paper aims to apply the random parameter concept to some of the well-known fixed 
parameter statistical models to overcome issues from both unnecessarily complicated models and 
statistically insufficient methodologies. Random parameter ordered Probit, random parameter ordered 
Logit, and random parameter ordered arctangent models will be developed to address stated issues. Then, 
a comparative assessment among all ordered models will be conducted to investigate which one of these 
models has statistical dominance. Finally, these models will be used to develop an Excel-based system 
which can be adapted by non-statistical experts to operate, understand, and plan. The Excel-based system 
will interpret the effect of each significant factor as well as predicting the possible severity level of future 
collisions in the work zones. This study intends to present a straightforward methodology, which addresses 
previous concerns in this field. 
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1 INTRODUCTION 

In the last decade, many researchers have attempted to investigate the factors and causes of the crashes 
in highway work zones. Based on the 2016 Transport Canada Statistics study: 1898 fatalities, 10,322 major 
injury collisions, and 160,315 minor injury crashes occurred in work zones on Canadian highways. As such 
work zones can be considered high-risk locations. In a 2007 report by the same organization concerning 
the social costs of motor vehicle collisions, highway traffic delays, out-of-pocket expenses, hospital/health 
care, tow trucks, and Police, Fire and Ambulance Services were the main contributing factors. Using these 
factors, the social cost in Ontario for motor vehicle collisions was estimated to be approximately 18 billion 
dollars. Among all other injury-severity levels, fatalities had the highest share (11 billion dollars). With 
growth of the traffic volume on Ontario roadways, it is expected that the needs for setting up the work zones 
to maintain the serviceability of the highways will also increase. The nature of the work zones (i.e. narrower 
lanes and temporary changes in the geometry of the highways) may make these sections more vulnerable 
to collisions.  

In a study by Khattak et al. (2002), it was concluded that the collision rate generally increases in the high-
risk work zone sections of highways. Turochy et al. (2018) conducted a study to investigate most influential 
factors on work zone crashes. They concluded that evening and overnight closures, various manners of 
collision (head-on, rollover, and angle crashes), and excessive speed significantly affected the injury-
severity level of the collisions occurring in the work zones of Alabama. Meng and Weng (2011) focused on 
the rear-end crashes in work zones and they stated that rear-end crashes are more likely to occur in 
expressways compared to arterial roadways. In addition, they determined that truck percentage and lane 
traffic flow are the most significant factors in work zone related crashes. Yang et al. (2015) found that the 
length of the work zones as well as the traffic volume increases the likelihood of crash occurrence in work 
zones. Yang et al. (2015) also claimed that although there were frequent attempts to determine a 
comprehensive relationship between work zone crashes and time, weather, and traffic control devices, a 
more meaningful relationship cannot be determined based on the current findings. 

Crash records could possibly present useful information about the consequences of collisions and to identify 
crash severity. In previous literature, there has been very little agreement on severity of the crashes and 
their relationship with work zones. Some researchers determined that there is no significant difference 
between work zone crashes and regular crashes in terms of severity (Hall & Lorenz 1989; Chambless et 
al. 2002). However, there were some cases in which work zone crashes were found to be more severe 
than non-work zone crashes (Garber & Zhao 2002; Daniel et al. 2000). Schrock et al. (2004) determined 
that almost 6 percent of the 77 fatal crashes that occurred in the Texas were directly caused by work zones, 
and 39 percent were indirectly caused by work zones. Opposingly, based a survey completed by Benekohal 
and Shim (1999), the majority of 930 truck drivers surveyed perceived that driving through work zones is 
more hazardous than non-work zone sections of the highways.  

Lin et al. (2004) explored the influence of the speed limit control on the safety of highway work zones. The 
interesting finding of this research was that not only lower speeds improve the safety of the work zones, 
but also reduction in the variance of the speed circuitously improves the safety. 

Mohan and Gautam (2002) categorized the work zone collisions into two groups: worker-based and 
motorist-based collisions. Based on their analysis they claimed that the first group of collisions, where 
construction workers experienced an incident, accounted for 30% of all collisions, and the second group of 
collisions are those that involve motorists with remaining  70%. They also determined that driver error is 
the main reason of these collisions. An earlier study by Bryden and Andrew (1999) deduced that 15 percent 
of all serious injuries and over 40% of the fatal crashes involved pedestrian workers. Factors that 
significantly affected the injury-severity of the crashes occurred in the work zone were identified by Wong 
et al. (2011). They categorized these factors as location of the accident or work zone, duration of the work 
zone, time of day and type of activity in the work zone. Another factor that researchers believe that could 
possibly decrease the crash frequency is the use of traffic control devices in work zones (Bai and li 2011). 
Although these studies emphasized that using traffic control devices reduce the crash frequency, in some 
cases it was found that they can also be hazardous for drivers, as well as pedestrians and workers (Khattak 
et al. 2002). This demonstrates that there is not a clear view which constitutes the effective use of these 



 
   
devices, and further studies could be undertaken to draw more solid conclusions about their effects (Bligh 
et al. 1998; Bryden et al.1998). Hall and Lorenz (1989) analyzed the before and during-construction period 
of more than 1500 construction zones and they captured that rear-end collisions significantly increased due 
to construction zones. They recognized that almost 36 percent of the collisions in the work zones were rear-
end. However, they also concluded that other crash types were less affected by these zones. 

Mannering and Bhat (2014) conducted a detailed review on the various statistical modelling approaches in 
transportation safety analysis. Their review describes the chronological attempts of researchers in offering 
the most comprehensive solutions for the road safety concerns. Researchers such as Maycock and Hall 
(1984) were pioneers in applying count data models such as Poisson and negative binomial regressions to 
model accident frequency. Around the 1990s, researchers started adapting more advanced statistical 
models on crash data.  They recognized that there were several segments in the roadway (or work zones) 
without any recorded collisions; this initiated the use of zero-inflated Poisson and negative binomial models. 
Miaou (1994) investigated the relationship between geometric design of the road segments and truck 
related crashes. He also conducted a comprehensive comparison between the results of zero-inflated 
Poisson and negative binomial models. In last two decades, more innovative methods with more 
complicated statistical methodologies have been examined. Bhat et al. (2014) developed a new method 
that accounts for endogenous covariates in count data models. More reliable analytical approximation, in 
addition to ability of evaluating asymptotic standard errors were the most highlighted results of his study. 
Chen et al. (2019) investigated the effect of the road geometry factors on various road classes by using 
bivariate negative binomial models. Shibata and Fukuda (1994) conducted an unconditional multiple logistic 
regression analysis to investigate the risk factors in fatal crashes. They found that motorcyclist helmet use, 
using seat belts, and low alcohol level can significantly avoid fatalities in collisions. This study offered a new 
standpoint toward solving crash related concerns, and more advanced crash injury severity methodologies 
have been introduced since then. Several subsets of Logit/ Probit models such as Multinomial Logit 
(Shankar and Mannering 1996; Ye and Lord 2014; Nahidi et al. 2017), Nested Logit (Chang and Mannering 
1998; Yasmin and Eluru 2013), Sequential Logit/ Probit (Jung et al. 2010; Xu et al. 2013) have been 
introduced to crash-injury severity modelling. In late 2000s, random parameter modelling was instigated to 
eliminate the unobserved heterogeneity issue. Eluru and Bhat (2007), as well as Anastasopoulos and 
Mannering (2009) were the innovators who applied random parameter method on crash-injury severity and 
accident frequency models, respectively. 

2 METHODOLOGY 

2.1 Ordered Probability Models 

There are many cases in the transportation safety field where researchers have used discrete ordered data 
as a dependent variable. Results of questionnaires with qualitative scales, hierarchical opinions (such as 
agree, neutral, disagree), or categorical frequency data (such as KABCO classifications) are some 
examples for these types of data. In the mid-70s, ordered probability models were introduced in 
transportation field; the main idea of this methodology depends on a variable referred as z, which estimates 
the ordinal ranking of the data. This unobserved variable (z) could be formulized as Equation 1: 

[1] 𝑧𝑧 = 𝛽𝛽𝛽𝛽 + 𝜀𝜀 

In this equation X represents the vector of significant independent variables, 𝛽𝛽 is the set of estimated 
coefficients for each independent variable, and 𝜀𝜀 is the random disturbance (Washington et al. 2010). 

In Equation 2, the dependent variable (y) is categorized as 1,2, 3, ..., k; predictions can be made by 
comparing the boundary limits (thresholds) with z, 

[2] 𝑦𝑦 = 1  𝑖𝑖𝑖𝑖 𝑧𝑧 ≤ 𝜇𝜇0 

     𝑦𝑦 = 2  𝑖𝑖𝑖𝑖 𝜇𝜇0 < 𝑧𝑧 ≤ 𝜇𝜇1 

     … 

     𝑦𝑦 = 𝑘𝑘  𝑖𝑖𝑖𝑖 𝑧𝑧 ≤ 𝜇𝜇𝑘𝑘−1 



 
   
The probability of each category could be calculated as Equation 3, 

[3] 𝑃𝑃(𝑦𝑦 =  1)  =  F(–𝛽𝛽𝛽𝛽) 

    𝑃𝑃(𝑦𝑦 =  2)  =  F(𝜇𝜇1–𝛽𝛽𝛽𝛽) –  F(–𝛽𝛽𝛽𝛽) 

    𝑃𝑃(𝑦𝑦 =  3)  = 𝐹𝐹(𝜇𝜇2–𝛽𝛽𝛽𝛽) –  F(𝜇𝜇1–𝛽𝛽𝛽𝛽) 

    … 

    𝑃𝑃(𝑦𝑦 =  𝑘𝑘)  =  1 –  F(𝜇𝜇𝑘𝑘−1–𝛽𝛽𝛽𝛽) 

F(z) is the cumulative distribution function. Any changes to type of the cumulative distribution function., e.g. 
Probit, Logit, and arctangent, could alter the estimation procedure and affect the final outcomes. Note that 
the first threshold in these types of estimations are generally considered as zero. Consequently, Equation 
4 is the general equation for calculating the probabilities: 

[4] 𝑃𝑃(𝑦𝑦 =  𝑖𝑖)  =  F(𝜇𝜇𝑖𝑖–𝛽𝛽𝛽𝛽) –  F(𝜇𝜇𝑖𝑖+1–𝛽𝛽𝛽𝛽) 

Also, based on the underlying mathematical structure, the likelihood and log-likelihood functions could be 
formed as Equation 5 and 6, respectively, 

[5] 𝐿𝐿(𝑦𝑦|𝛽𝛽1 , … ,𝛽𝛽𝑠𝑠 ,𝜇𝜇1, … ,𝜇𝜇𝑘𝑘−1) = ∏ ∏ [F(𝜇𝜇𝑖𝑖–𝛽𝛽𝑋𝑋𝑛𝑛) –  F(𝜇𝜇𝑖𝑖+1–𝛽𝛽𝑋𝑋𝑛𝑛)]𝛿𝛿𝑖𝑖𝑖𝑖𝑘𝑘
𝑖𝑖=1

𝑁𝑁
𝑛𝑛=1  

[6] 𝐿𝐿𝐿𝐿(𝑦𝑦|𝛽𝛽1, … ,𝛽𝛽𝑠𝑠 , 𝜇𝜇1, … ,𝜇𝜇𝑘𝑘−1) = ∑ ∑ 𝛿𝛿𝑖𝑖𝑖𝑖  𝐿𝐿𝐿𝐿[F(𝜇𝜇𝑖𝑖–𝛽𝛽𝑋𝑋𝑛𝑛) –  F(𝜇𝜇𝑖𝑖+1–𝛽𝛽𝑋𝑋𝑛𝑛)]𝑘𝑘
𝑖𝑖=1

𝑁𝑁
𝑛𝑛=1  

N is the number of observations and 𝛿𝛿𝑖𝑖𝑖𝑖 is equal to 1 for observation n if it the observed outcome is i, and 
it is equal to 0 otherwise. The most crucial assumption through estimation procedure is 0 ≤ 𝜇𝜇1 ≤ ⋯ ≤ 𝜇𝜇𝑘𝑘−1. 
One of the concerns associated with ordered probability models is that 𝛽𝛽s cannot give a full picture of their 
effect on each category. The positive sign of the 𝛽𝛽s shows that it increases the probability of the very high 
category and reduces the probability of first category, but it doesn’t represent details about the changes in 
intermediate categories. To have better insight about effect of each 𝛽𝛽 on the interior categories, it is 
recommended to calculate the marginal effect, which could be estimated as Equation 7 (Washington et al. 
2010), 

[7] 𝜕𝜕𝜕𝜕(𝑦𝑦 = 𝑖𝑖)
𝜕𝜕𝜕𝜕

 = [𝑓𝑓(𝜇𝜇𝑖𝑖–𝛽𝛽𝛽𝛽)–  𝑓𝑓(𝜇𝜇𝑖𝑖+1–𝛽𝛽𝛽𝛽)]𝛽́𝛽 

where 𝑓𝑓(𝑧𝑧) represents the standard density function. 

As previously mentioned, several F(z) cumulative functions could be adapted for probability estimation. 
Three of the cumulative density functions that are used in this study are Probit, Logit, and arctangent; their 
respective 𝑓𝑓(𝑧𝑧)’s and 𝐹𝐹(𝑧𝑧)’s are presented in Table 1. In the ordered Logit model, it is assumed that 𝜀𝜀 has 
a standard logistic distribution instead of normal distribution which is the assumption of Probit model. The 
ordered arctangent model is generally used to capture any asymmetric distributions (Greene 2002). 

2.2 Random Parameters 

Random parameter modelling is a robust estimation method to eliminate the unobserved heterogeneity 
issue. The underlying formulation of the random parameter model is based on conditional probability. 
Contrarily to the fixed parameter models which estimates one coefficient for each factor, in random 
parameter modelling there is the luxury to estimate a set of coefficients for each factor which are changing 
across the observations. 

General formulation of random parameter modelling is shown in Equation 14, 

[14] 𝑔𝑔(𝑦𝑦𝑖𝑖𝑖𝑖|𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑧𝑧𝑖𝑖) = 𝑓𝑓(𝑦𝑦𝑖𝑖𝑖𝑖 ,𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑧𝑧𝑖𝑖 ,𝑎𝑎𝑖𝑖) 

where 𝑓𝑓 is the density function for the ith individual observed dependent variable at time t, 𝑦𝑦𝑖𝑖𝑡𝑡is the ith 
individual dependent variable at time t, 𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑧𝑧𝑖𝑖 are measured covariates, and 𝑎𝑎𝑖𝑖 is a factor specific parameter 
vector which alters randomly across each observations, with mean 𝑎𝑎 and covariance matrix Ω. 



 
   

Table 1: List of Probability Density Functions and Cumulative Density Functions1 

Probit Logit Arctangent 

[8] 𝑓𝑓(𝑧𝑧) = 1
√2𝜋𝜋

𝑒𝑒−[𝑥𝑥
2

2 ] = 𝜙𝜙(𝑧𝑧) [10] 𝑓𝑓(𝑧𝑧) = 𝛬𝛬(𝑧𝑧)[1−𝛬𝛬(𝑧𝑧)] [12] 𝑓𝑓(𝑧𝑧) = 2
𝜋𝜋
∗ 1
1+𝑧𝑧2

 

[9] 𝐹𝐹(𝑧𝑧) = ∫ 1
√2𝜋𝜋

𝑒𝑒−[𝑥𝑥
2

2 ]𝑧𝑧
−∞ 𝑑𝑑𝑑𝑑 = Φ(𝑧𝑧) [11] 𝐹𝐹(𝑧𝑧) = 𝑒𝑒𝑧𝑧

1+𝑒𝑒𝑧𝑧
= 𝛬𝛬(𝑧𝑧) [13] 𝐹𝐹(𝑧𝑧) = 2

𝜋𝜋
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (𝑧𝑧) = 𝐺𝐺(𝑧𝑧) 

1 𝑓𝑓(𝑧𝑧) and 𝐹𝐹(𝑧𝑧) are representing Probability density function and Cumulative Density Function, respectively. 

Random parameter structure could be revised based on the model structure. For ordered probability 
models, random parameter formulation is, 

[15] 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃[𝑦𝑦𝑖𝑖𝑖𝑖 = 𝑗𝑗 |𝑥𝑥𝑖𝑖𝑖𝑖 ,𝛽𝛽𝑖𝑖] = 𝐹𝐹�𝑦𝑦𝑖𝑖𝑖𝑖 = 𝑗𝑗,𝜇𝜇,𝛽𝛽′𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 + 𝑎𝑎𝑖𝑖�, 𝑖𝑖 = 1, 2, … ,𝑁𝑁, 𝑡𝑡 = 1, 2, … ,𝑇𝑇𝑖𝑖 . 

where 𝐹𝐹 could be any of mentioned distributions (Logit, Probit, arctangent). The assumption is that 
parameters are randomly distributed with heterogenous parameters generated by Equation 16, 

[16] 𝐸𝐸[𝛽𝛽𝑖𝑖|𝑧𝑧𝑖𝑖] = 𝛽𝛽 + 𝛥𝛥𝛥𝛥 

Finally, the model could generate the coefficients with use of Equation 17,  

[17] 𝛽𝛽𝑖𝑖 = 𝛽𝛽 + 𝛥𝛥𝑧𝑧𝑖𝑖 + 𝛤𝛤𝑣𝑣𝑖𝑖 

where 𝛽𝛽 is the fixed constant terms in the means of the distributions for the random parameters, Δ is the 
coefficient matrix, 𝑧𝑧𝑖𝑖 is a set of observed variables which are not altered by time and the means of the 
random parameters, Γ is a lower triangular matrix which produces the covariance matrix of the random 
parameters, and finally 𝑣𝑣𝑖𝑖 is the unobservable latent random term in the ith observation in 𝛽𝛽𝑖𝑖 . 

3 DATA 

National Highway Traffic Safety Administration (NHTSA) aimed to present a detailed dataset in the Fatality 
Analysis Reporting System (FARS) encyclopedia.  Data used in this study is a subset of the database which 
consists of work zone collision data from rural and urban interstate highways in New York, Indiana, 
Michigan, and Pennsylvania which were gathered within a 4-year period (2013-2016). The data involves 
256 work zone collisions, with various injury-severity levels (property damage only or PDO, minor injuries, 
major injuries and fatalities). Each work zone accident had various sets of information such as crash, 
vehicle, driver, and pre-crash information. Crash related information consist of atmospheric condition, hour 
of the collision, day of the collision, month of the collision, heavy truck involvement, road signage, light 
condition and several other factors. Driver information summarizes age of the driver, drug and alcohol 
involvement, gender, speeding, and other person related factors. Vehicle data represents the type of 
vehicle, make of vehicle, age of vehicle, and safety system of the vehicle. Finally, pre-crash datasets 
recapped evidence related to the manner of collision, the driver’s view (i.e. obstructed or unobstructed), 
driver distraction and so on. This dataset also contained the injury level of the people involved in the 
collision. Based on the dataset there were 77 property damage only collisions, 58 minor injuries, 38 major 
injuries, and 83 fatalities. 

4 RESULTS AND DISCUSSION 

Based on the developed models, all three ordered probability models had exceptional performance on 
predicting the injury-severity level of the collisions in the work zones. As shown in Table 2, several factors 
were found to be significant, however, the magnitude of each factor is not the best presentation of its actual 
influence on its respective crash-injury severity class. A positive value shows enhancement in probability 



 
   
of fatal crash occurrence, as well as, reduction in probability of PDO. A negative value represents the 
opposite. The marginal effect, as the representor of the effect of each factor on intermediate classes, has 
been estimated and the results will be used throughout the discussion. 

The results illustrate that if a crash occurs between 8 PM and 6 AM, the probability of experiencing fatal 
crash could increase. This finding could emphasize on several issues of night time work zones such as 
poor visibility/ lack of vision and the increased likelihood of impaired drivers. Drivers under the age of 25 
years and older than 50 are also more probable to have fatal collisions. This could be attributed to the lack 
of the experience for the former group and ageing or health related issues for latter. Better young driver 
education, as well as, stricter driver’s license renewal regulations for elderly persons could possibly reduce 
the risks of more serious collisions and reduce this factor’s effect in future models. Impaired driving also 
had a significant influence on injury-severity of the collisions in the work zones. As expected, it is found that 
not using alcohol and/or drugs reduces the probability of fatal crashes. 

Because of work zones’ nature, it is always recommended to have speed control in these vulnerable areas. 
This could significantly improve the safety for both drivers and workers. It is found in this study that speed 
limits less than 50 mph (or 80 km/h) could reduce the probability of fatal crash incidences. Highways with 
four or more than four lanes are also more probable to experience fatal crashes. Usually highways with 
these characteristics are separated and they accommodate higher number of vehicles with higher speeds. 
Due to these facts it was expected to capture higher probability of fatal crashes in these highways. 

Careless driving was another crucial factor that was found to be statistically significant. Improper lane 
changes, failing to remain in proper lane and running off the road increase the probability of fatal crashes. 
The results of the models also demonstrated the importance of using traffic control devices; using these 
devices could desirably lead to less severe collisions. Warning signs were also found to be very influential 
in reducing the severity of the collisions. Rear-end crashes are also less probable to cause fatal collisions. 
To investigate the real impact of this factor, the marginal effect should be used; results illustrate that rear-
end collision increase the probability of having PDO or minor injuries rather than fatalities and major injuries. 

Three parameters were found to be significant as random parameters including: heavy truck involvement, 
the effect of queuing and the occurrences of vehicle roll-over. The heavy truck involvement factor increased 
the probability of fatal crashes in 83% of the occasions. Therefore, limiting the access of trucks could vastly 
improve the safety of the work zones. In remaining 17% of fatal crashes, the probability was reduced due 
to queuing. Lower speeds and congestions sometimes avoid fatal collisions; however, it might increase the 
probability of PDO and minor injuries. In addition, in 84% of the collisions with roll-over, the probability of 
fatal crashes increases. Surprisingly, the remaining 16% of collisions involving roll-overs only increased the 
probability of PDO occurrence, which might be the result of roll-overs of vehicles within the construction 
zones with very low speed. The study also captured that females are more probable to have fatal accidents. 

Table 3 presents the prediction performance of all three developed models. Results show the high 
prediction performance of these models; however, Logit models shows slightly more satisfying performance 
over the other two models. This model predicts all PDO and minor injury collisions correctly. Only 1 in each 
major injury and fatality categories was predicted incorrectly. The other two models have less accurate 
prediction performance in major injury class, which could be due to lower number of observations of this 
category in comparison with other ones. Also, the Logit model has the lowest value for log-likelihood 
function. Therefore, it could be concluded that this model would be the most appropriate choice for this 
study. 

One of concerns that authors were eager to address was to present the most practical way to use the 
developed models. An excel-based form could be designed with surveys related to the significant factors 
found in this study. The underlying model would start predicting the level of the crash-injury severity by 
inserting the corresponding values for each survey question; thus, contractors could arrange and modify 
their work zones by having insight about the possible injury-severity risks. Figure 1 represents a sample of 
the recommended excel-based form. 



 
   

Table 2: Ordered Probability [Logit, Probit and Arctangent] Models Results 

List of statistically significant parameters 
Probit Model Logit Model Arctangent 

Model 
Coef. t-stat Coef. t-stat Coef. t-stat 

Constant 5.561 7.140 12.311 7.280 10.458 7.070 
Collision Hour (1 if collision occurred between 
8PM and 6 AM, 0 otherwise)  1.348 4.320 3.551 5.660 3.089 5.650 

Driver's Age (1 if it is less than 25 or more than 
50, 0 otherwise)  1.172 4.710 2.518 5.170 2.148 5.110 

Alcohol or Drug involvement (1 if any or both 
is/are not involved, 0 otherwise) -0.997 -3.830 -2.112 -4.220 -1.831 -4.250 

Speed at the time of collision (1 if it is less than 
50 mph, 0 otherwise) -1.510 -4.850 -2.870 -4.810 -2.451 -4.770 

Number of lanes (1 if the highway has 4 or 
more lanes, 0 otherwise) 5.865 5.200 15.559 5.570 13.274 5.530 

Driver related factor (1 if failing to keep in 
proper lane or run off road or following 
improperly, 0 otherwise) 

1.522 3.920 4.506 5.420 3.802 5.320 

Month of collision (1 if the collision occurred 
between April and July, 0 otherwise) 1.473 5.110 3.407 5.760 2.924 5.700 

Traffic control devices (1 if used, 0 otherwise) -2.331 -4.360 -4.631 -4.460 -4.003 -4.490 
Manner of collision (1 if rear-end, 0 otherwise) -1.449 -3.600 -1.842 -2.490 -1.534 -2.430 
Work zone signage (1 if warning sign is 
available, 0 otherwise) -1.660 -3.160 -4.296 -4.150 -3.762 -4.230 

Heavy truck involvement (1 if it is involved, 0 
otherwise) 1.903 5.140 3.838 5.370 3.337 5.370 

(Std. dev. of parameter dist.– normally 
distributed) 2.053 9.070 4.672 8.520 4.001 8.210 

Roll-over (1 if roll-over didn't occur, 0 
otherwise) -2.930 -6.760 -6.735 -7.070 -5.721 -6.870 

(Std. dev. of parameter dist.– normally 
distributed) 2.927 10.340 5.164 8.890 4.408 8.530 

Gender of the driver (1 if male, 0 if female) -1.197 -4.410 -2.087 -4.180 -1.762 -4.110 
(Std. dev. of parameter dist.– normally 

distributed) 1.976 9.010 6.493 8.940 5.515 8.570 

Threshold (01) 2.793 8.110 6.053 7.650 5.164 7.440 
Threshold (02) 4.431 10.080 9.643 8.990 8.222 8.630 
Log-likelihood function -303.201 -302.937 -302.980 
Likelihood at zero -372.337 -372.337 -372.337 

In the example shown in the Figure 1, the underlying model estimated the value of 11.209 from the survey 
questions. Based on the recommended use of the Logit model, this value would be compared with 
thresholds presented in Table 1 for Logit model. Since 11.209 is greater than 9.643, it could be concluded 
that the probability of experiencing fatal collisions in that specific work zone is higher than other injury-
severity categories. It is also shown in Figure 1 that in the prepared electronic form there is an option for 
choosing the answers from set of possible responses. These cells are directly connected to the “Prediction” 
cell, which is the outcome of the developed Logit model; and this design choice illustrates the final decision 
of this study. 



 
   

Table 3: Prediction Performance of Developed Models 

    Probit Model Prediction Performance 

Actual  

  PDO Minor Injury Major Injury Fatality 
PDO 77 0 0 0 

Minor Injury 0 58 0 0 
Major Injury 0 6 31 1 

Fatality 0 0 3 80 
    Logit Model Prediction Performance 

Actual  

  PDO Minor Injury Major Injury Fatality 
PDO 77 0 0 0 

Minor Injury 0 58 0 0 
Major Injury 0 0 37 1 

Fatality 0 0 1 82 
    Arctangent Model Prediction Performance 

Actual  

  PDO Minor Injury Major Injury Fatality 
PDO 77 0 0 0 

Minor Injury 0 58 0 0 
Major Injury 0 3 33 2 

Fatality 0 0 1 82 

 

Figure 1: Sample of the Excel-Based Form 



 
   
5 CONCLUSION 

The safety of the highways, especially work zones, is crucial and any negligent act that increases the 
probability of fatal crashes should be avoided. Previous literature emphasized that several factors such as 
the drivers’ behaviours, geometric design of highways, work zone set up guidelines can significantly 
enhance the probability of harmful incidences in these high-risk areas. This study aimed to investigate the 
possible solutions and factors that can improve the safety of the highways. Crash data from 4 states (New 
York, Pennsylvania, Illinois, and Michigan) had been used to develop statistical models.  It was assumed 
that selected states typically have similar environmental condition, pavement condition, and construction 
policies and regulations as Ontario, Canada. The authors believe that the random parameter ordered 
probability models could identify some of the crucial factors to improve road safety. The ordered Logit model 
presented better results in comparison with Probit and arctangent models. The analysis of several random 
parameter techniques was used to eliminate the unobserved heterogeneity issue with ordered probability 
models. As ordered probability models are moderately easy to interpret, determining a way to improve the 
usability of random parameter models was one of the main objectives of this study. This objective was met 
through the creation of an efficient and straightforward solution for non-statistical experts in the field that 
will help them to have a better understanding about the possible scenarios of work zone set ups and 
conditions. 
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