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Abstract: Closed-circuit television (CCTV) monitoring has been widely employed in North America to 
assess the structural integrity of underground drainage infrastructure. This operation is usually conducted 
in two sequential phases. The first consists of dispatching operators to collect video of sections of pipes 
using remotely controlled robots equipped with specialized television cameras. In the second phase, the 

data collected in the field is delivered to the analysis facility , where technologists trained in defect 
classification can examine the video footage. In many municipalities the video-based assessment of the 
sewer pipes is conducted manually, and little is known about the productivity of this process. This 
knowledge gap, combined with the desire to implement better resource management solutions, forms the 

motivation for this research, in which the efficiency of the analysis of video footage of sewer pipe 
condition is explored. In fact, the duration of condition assessment of sewer pipes is influenced by 
multiple factors. Therefore, this paper conducts an assessment productivity analysis that uses statistical 

regression methods to investigate the specific factors influencing the duration of manual condition 
assessments for sewer pipes by each technologist using footage from CCTV monitoring. Finally, the 
proposed method is applied to the case of sewer infrastructure in the City of Edmonton, Canada, in order 

to facilitate productivity improvement for manual condition assessment and human resource allocation.  

1 INTRODUCTION 

The drainage system is one of the most important components of municipal infrastructure in a city, since it 
not only has the highest replacement value, but more importantly it plays a crucial role in improving the 
longevity of its citizens, especially in the context of highly populated areas where hygiene is a key factor 
for avoiding large-scale epidemics (Meeker 1971). As such, municipalities allocate substantial budget and 

other resources to carry out preventive maintenance work for sewer pipes in order to correct structural 
deterioration at the early stage of their occurrence so as to prevent wide disruptions in the level of 
service. One of the most effective means of inspecting underground sewer pipes relies on using closed-

circuit television (CCTV) monitoring, a service generally performed by private companies or by 
municipalities’ drainage departments (Iseley et al. 1997, Makar 1999). The inspection process is typically 
conducted by means of a remotely controlled robot equipped with a specialized television camera that 
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accesses the drainage network through a service opening such as a manhole or a drain cleanout (Davis 
et al. 2001, Guo et al. 2009). In general, CCTV monitoring can be viewed as a two-phase operation in 
which the first part focuses on collecting the data, i.e. , videos, by moving the robot along the pipe 

sections. Note that operators need to adhere to standards such as those described by the National 
Association of Sewer Service Companies (NASSCO) in order to obtain quality information that can be 
accurately analysed. In the second phase of CCTV monitoring, videos recorded in the field are delivered 

to the analysis facility where technologists (i.e., trained individuals) manually and visually examine the 
collected footage. During this process, defects are identified and classified into different categories (e.g., 
crack, fracture, or broken) using standardized nomenclature, i.e., NASSCO assessment document. Since 

maintenance can only begin when the technologists inspecting the videos have finalized their reports, it is 
important to ensure that the inspection step is completed as quickly as possible. Current researches on 
sewer pipes using CCTV monitoring primarily focus on application of innovat ive approaches and other 

artificial intelligence techniques in automated defect detection in order to replace human visual 
identification; by contrast, the productivity improvement of maintenance activities for sewer pipes from the 
management perspective attracts few attentions from the scholars (Moselhi and Shehab-Eldeen 2000, 

Sinha and Fieguth 2006, Yang and Su 2008, 2009). In fact, understanding the factors that can affect the 
productivity is essential for managers since this insight will allow them to more evenly distribute the 
workload between the members of the assessment team, not to mention the ability to improve their 

estimates of the duration needed to process a given batch of videos.  As such, the objective of this 
research is to develop a regression model from which assessment times are estimated using the records 
collected from the industry partner. Statistical analyses are conducted on this model in order to determine 

the factors that affect the productivity of technologists. It is important to mention that effective corrective 
actions to improve productivity can only be taken after these factors are identified.  To achieve this 
objective, this paper first introduces related data collection for manual condition assessment of sewer 

pipes. Then, assessment productivity analysis for each technologist is conducted using a linear 
regression model for the case of sewer infrastructure in the City of Edmonton, Canada, to determine the 
primary influencing factors. Furthermore, a series of assumption are verified for the developed models.  

2 DATA COLLECTION  

Media Inspection 

MediaID, InspectionID, 

Video_Name, 

Video_Location 

Conditions 

ConditionID, 

InspectionID, Distance, 

Counter, PACP_Code, 

Value_1st_Dimention, 

Value_2nd_Dimention, 

Value_Percent, Joint, 

Remarks, VCR_Time, 

Continuous,  ...

Inspections 

InspectionID, 

Surveyed_By, 

Certificate_Number, 

Drainage_Area, Date, 

Time, Sewer_Use, 

Height, Material, Shape, 

Length_Surveyed... 

 Assessment 

Productivity 

Assessment_Date, 

Pipe_ID, Technologist, 

Time_Taken_To_Asses

s, Assessed_By, 

Lenth_Surveyed, 

Comments,...

Modeling Dataset

Assessed_Time, 

Number_of_Tap, 

Number_of_Defect, 

Duration_of_Video, 

 
Figure 1: Data collection schematic 
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The dataset used in this study has been collected and merged from four databases maintained by 
EPCOR Drainage Services in Edmonton, Canada. The schematic of modelling the dataset can be seen in 
Figure 1. The database of media inspection provides the information for all videos recorded by CCTV 

monitoring in the field, while the conditions database describes the type of defects and their locations in 
the pipe examined by each technologist. The foreign key to link the two databases is InspectionID. The 
inspections database provides physical properties of the pipes such as height, slope, shape, material, 

length, the laid year, and location, which is linked with the conditions database through InspectionID. The 
time that technologists spend on the video-based assessment for each pipe is derived from the 
assessment productivity database, which is linked with the media inspection database through Pipe_ID 

and Video_Name.  

Dv

ttap ttap ttap
tdefect tdefect tdefect

 
Figure 2: An illustration of assessment time 

Based on rules of thumb and experience (see Figure 2), the total assessment time should theoretically be 
the sum of the inspection time spent on each defect (and the sewer taps) plus video duration for this pipe. 

In other words, the total assessment time can be written as,  

[1] 


= +v k k

k F

T D n t  

where 
vD  is the duration of the video; 

kn  is the number of defects (or features) of type k ; and 
kt  is the 

time needed to inspect one such defect (or feature). Since EPCOR uses the NASSCO standard, four 

primary categories of pipe defects are listed based on pipeline assessment and certification program 
(PACP) (NASSCO 2015): structural defects, operation and maintenance defects, construction defects, 

and miscellaneous defects. In addition, each type of defect can have several subclasses. As for F , this 

study only considers the first-class defects and merges them as = { , , ,...}F tap crack deposit . As such, we 

assume the modelling dataset used in this study is composed of four variables listed in Figure 1. Of them, 

Number_of_Tap (
tapn ) and Number_of_Defect of all types (

defectn ) in each pipe are manually counted by 

filtering the data below the PACP_Code field, while other variables including Assessed_Time (T ) and 

Duration_of_Video (
vD ) are directly collected from the four databases. To be noted, the variable 

Duration_of_Video is the total time for each pipe recorded by CCTV monitoring.  Although there are 

various types of defects, this study assumes technologists would spend approximately the same amount 
of time on each type of defect, with the exception of taps. In other words, tap and defect are treated 

differently. 

The collected dataset contained observations of CCTV monitoring and pipe condition assessment for the 
year 2018 from various locations across the City of Edmonton. After necessary data cleaning, the final 

dataset contained 134 observations and the condition assessment for sewer pipes is conducted by three 
technologists. It guarantees that the number of observations for each technologist exceeds 30, which is 
the minimal amount for statistical analysis. The statistical description of all variables is presented by 

technologist in Table 1. The number in parentheses for each technologist refers to the total number of 
observations, while SD indicates the standard deviation. 

Table 1: Statistical description of variables by technologist in the dataset 

Technologist 
Assessed_Time  

(second) 
Number_of_Tap 

(No.) 
Number_of_Defect 

(No.) 
Duration_of_Video 

(second) 

 Min. 600 0 4 10 

#1 Max. 6,600 14 132 1,220 

(58) Mean 2,900.69 2.50 36.14 483.34 
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 SD 1,243.35 3.46 26.50 276.38 

 Min. 900 0 14 194 

#2 Max. 5,400 13 101 1,559 

(43) Mean 2,183.72 5.42 42.84 569.95 

 SD 1,070.37 3.61 23.37 290.18 

 Min. 900 0 4 107 

#3 Max. 7,200 30 100 1,541 

(33) Mean 2,618.18 3.61 23.06 502.09 

 SD 1,344.31 6.45 19.14 322.89 

3 MODEL DEVELOPMENT  
 

3.1 The Linear Regression Model 

The multiple linear regression model, which is widely used in business, social science, engineering, and 
other disciplines, is a statistical approach to express the relationship between the dependent variable and 
more than one independent variable (Neter et al. 1989, Zaman et al. 2013). The general form of the 

multiple linear regression model is defined as (Neter et al. 1989):  

[2]     = + + + + +0 1 1 2 2i i i k ik iY X X X  

where =1,2,...,i n  with n  is the number of observations; 
iY  is the value of the dependent variable in 

observation i ; 
ijX  is the value of independent variable j  in observation i ;  j

 is the coefficient of 

independent variable j ;  i
 is the error term in observation i  with a normal distribution (0, )N , while  i

 

and  j
 are independent for all = , 1,2,..., ;i j n i j .  

Due to  ={ } 0iE , the response function for regression model (i.e., Eq. (2)) can be transferred into Eq. (3). 

It means that the dependent variables 
iY  satisfy normal distribution with mean { }E Y  and variance  2

.  

[3]    = + + + +0 1 1 2 2{ } k kE Y X X X  

A classical approach to estimate the coefficients  j
 is the least squares method, which aims to find the 

values of  j  with the minimal value of the quadratic error S  as Eq. (4). If we denote jb as the estimator 

of  j  and b  as the vector 
0 1( , ,..., )kb b b , the least squares estimators are described as Eq. (5). 

[4]    
=

= − − − − − 2

0 1 1 2 2
1

( )
n

i i i k ik

i

S Y X X X  

[5] −= 1( ) ( )T Tb X X X X Y , where 
1 2[ , , , ]TnY Y Y Y=  and 

11 12 1

21 22 2

1 2

1

1

1

k

k

n n nk

X X X

X X X

X

X X X

 
 
 
 

=  
 
 
 
  
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In fact, the least squares method only reflects the parameter fitting. For uncertain models, stepwise 
regression is a helpful method, in a greedy fashion, to search the final optimal linear regression model 
among pre-listed independent variables (Neter et al. 1989). The Pearson test, meanwhile, is used to 

verify correlation coefficients among all independent variables as well as between the dependent variable 
and each independent variable (Pearson 1895). The above two functions can be realized by means of 
SPSS statistics software and the detailed introduction for the implementation process can be found in the 

SPSS documents (SPSS 2019a, 2019b). 

3.2 Assessment Productivity Analysis  

Since video-based assessment depends on the experience, expertise, and capability of the technologist 
to large extent (Meegoda et al. 2006), the multiple linear regression model for assessment productivity is 

conducted for each technologist separately. Using SPSS 24.0 software as the main tool and setting 
Assessed_Time in Table 1 as the dependent variable, the results for the three linear regression models, 
one for each technologist, are shown in Table 2. The Pearson test for all variables selected in the three 

built models is presented in Table 3.  

Table 2: Linear regression models for assessment productivity 

 
Dependent 

Variable 
Coefficient T-test 

R-square/ 

Adjusted R-square 

Technologist #1 

Constant 996.524 6.692*** 

83.2% / 82.5% Number_of_Defect 36.862 13.290*** 

Duration_of_Video 1.184 4.451*** 

Technologist #2 

Constant 137.671 0.862 

84.4% / 83.6% Number_of_Defect 33.531 9.954*** 

Duration_of_Video 1.070 3.944*** 

Technologist #3 
Constant 960.676 4.766*** 

80.3% / 79.0% Number_of_Defect 50.597 6.537*** 

 Duration_of_Video 0.977 2.130** 

     Note: *** and ** are at the 0.01 and 0.05 significance level, respectively. 

Table 3: The Pearson test for all variables 

 Assessed_Time Number_of_Defect Duration_of_Video 

Technologist #1:    

Assessed_Time 1.000 0.878*** 0.539*** 

Number_of_Defect  1.000 0.351*** 

Duration_of_Video   1.000 

Technologist #2:    

Assessed_Time 1.000 0.885*** 0.677*** 

Number_of_Defect  1.000 0.528*** 

Duration_of_Video   1.000 

Technologist #3:    

Assessed_Time 1.000 0.880*** 0.723*** 

Number_of_Defect  1.000 0.678*** 
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Duration_of_Video   1.000 

       Note: *** is at the 0.01 significance level. 

It can be seen that the fitness of the above three linear regression models is quite good, since in each 
case either R-square or adjusted R-square is close to or exceeds 80% (Zaman et al. 2013). Meanwhile, 
P-values for all the independent variables selected for the models show that all coefficients pass at least 

the 0.05 significance level. Also, we can find a variance in the influence degree of these factors on 
assessment productivity of different technologists, while there is a similarity in the coefficients of 
Duration_of_Video in the three linear regression models—all are around one. By contrast, the 

assessment productivity of all the technologists has a highly positive correlation with Number_of_Defect, 
which has a dominant performance in the case of Technologist #3. Furthermore, Number_of_Tap is 
excluded in the three linear regression models; this may be attributed to the values of this variable among 
these observations being too small (see the mean value from Table 1), further triggering a slight effect or no 
effects on individual assessment productivity. From the Pearson test, there is no high correlation between 

the independent variables (i.e., the coefficient is smaller than 0.7), which satisfies at least the 0.05 
significance level. Meanwhile, the dependent variable, Assessed_Time, has a significantly good 
correlation with all selected independent variables. 

Another interesting finding is that the constant value in each model is relatively large compared with other 
coefficients, while this performance is dominant among Technologist #1 and Technologist #3. A possible 

explanation of this result is that the manual video-based assessment for sewer pipes largely depends on 
the video quality (lighting, shooting angle, and other interferences) of the CCTV monitoring. Although 
Number_of_Defect is regarded as one of the independent variables, it cannot directly reflect the time the 

technologist spends on identification and classification of a specific defect. Sometimes, they need to use 
auxiliary tools to improve the frame quality after pausing the video playback. Moreover, the experience, 
expertise, and capability of the technologist and his or her operation habits during the entire process will also 

influence the assessment productivity. Hence, as seen from Table 2, the constant value of Technologist #2 is 
around 2.3 min, while Technologist #1 and Technologist #3 require more than 16 min.  

3.3 Assumption Verification for the Developed Models  

• Linear relationship test 

Before using the linear regression model, we assume there exists a linear relationship between the 
dependent variable and each independent variable selected in the developed models. To verify this point, 
the results are shown in Figure 3.  
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(c) Technologist #3 

Figure 3: Linear relationship test for all variables 

• Durbin-Watson test 

The Durbin-Watson test is used to verify whether there exists autocorrelation in residuals from the 
statistical regression model. Generally, if the range of the Durbin-Watson value is between 1.5 and 2.5, it 

indicates there is no autocorrelation among the residuals in the sample (Leung et al. 2000). As for the 
developed models, the Durbin-Watson values are 1.868, 1.466 (nearly 1.5), and 1.665 for Technologist 
#1, Technologist #2, and Technologist #3, separately. Hence, the developed models are found to satisfy 

this assumption for residuals. 

• Histogram & P-P plot 

The histogram is used to display the distribution of regression standardized residuals, while the P -P plot 
is used to investigate the deviation between the observed cumulative probability of standardized residuals 
and their expected values. For instance, if the points in the P-P plot are distributed much closer to the 

diagonal, it indicates the greater normality. Hence, these two approaches help to verify whether the 

standardized residuals in the statistical regression model satisfy the normal distribution (see Figure 4).  
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(b) Technologist #2 
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                                                                  (c) Technologist #3 

Figure 4: Histogram & P-P plot for regression residuals 
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• Scatter plot of the residuals 

The scatter plot is used to verify whether the variance of standardized residuals is stable, meaning their 
distribution is scattered evenly around the value of 0. In this case, the linear regression model satisfies 
the assumption that the mean of the residuals is 0 and that its variance is constant (the results for the 
three developed models are shown in Figure 5).  
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                             (b) Technologist #2                                                       (c) Technologist #3 

Figure 5: Scatter plot for regression residuals 

4 CONCLUSION 

This paper develops a productivity analysis model for the manual condition assessment for sewer pipes 
based on CCTV monitoring. Using sewer networks in the City of Edmonton, Canada as a case study, 
three linear regression models are developed for the corresponding technologists in order to investigate 
the primary factors influencing assessment productivity individually. The overall goodness-of-fit values 

exceed 80%, indicating all the developed models can explain the assessment productivity with 
reasonable accuracy, although there is diversity in influencing factors of productivity. The common factors 
among the three technologists are the number of defects in the pipe and the video duration, which 

determine labour productivity to a varying degree. If the number of defects can be roughly estimated by 
some approaches/counting tools, this model is applicable to predict the total time a given technologist 
would spend on a certain workload of pipe assessment in order to reasonably schedule his/her task. 

Meanwhile, managers can allocate human resources more efficiently and adopt technical training in order 
to standardize assessment productivity of all technologists. Considering the large constant value for two 
of the three built models, future study may take other influencing factors into account to conduct a more 

reasonable linear regression model aiming at a specific technologist. 



 

   

CON86-10 

 

ACKNOWLEDGEMENTS 

We gratefully acknowledge the financial support of the Natural Sciences and Engineering Research 

Council of Canada (CRDPJ 503647-16). 

REFERENCES 

Davis, J., Clarke, B.A., Whiter, J. T., and Cunningham, R.J. 2001. Factors influencing the structural 
deterioration and collapse of rigid sewer pipes. Urban Water, 3(1-2): 73-89. 

Guo, W., Soibelman, L., and Garrett Jr., J.H. 2009. Automated defect detection for sewer pipeline 

inspection and condition assessment. Automation in Construction, 18(5): 587-596. 
Iseley, T., Abraham, D.M., and Gokhale, S. 1997. Intelligent sewer condition evaluation technologies. 

Proceedings of the North American NO-DIG Conference, North American Society for Trenchless 

Technology, Seattle, WA, USA, 254-265. 
Leung, Y., Mei, C.L., and Zhang, W.X. 2000. Testing for spatial autocorrelation among the residuals of 

the geographically weighted regression. Environment and Planning A, 32(5): 871-890. 

Makar, J.M. 1999. Diagnostic techniques for sewer systems. Journal of Infrastructure Systems, 5(2): 69-
78. 

Meegoda, J.N., Juliano, T.M., and Banerjee, A. 2006. Framework for automatic condition assessment of 

culverts. Transportation research record, 1948(1): 26-34. 
Meeker, E. 1971. The improving health of the United States, 1850-1915. Explorations in Economic 

History, 9: 353-373. 

Moselhi, O. and Shehab-Eldeen, T. 2000. Classification of defects in sewer pipes using neural networks. 
Journal of infrastructure systems, 6(3): 97-104. 

NASSCO. 2015. Pipeline assessment and certification program (PACP). 7th ed., NASSCO, Marriottsville, 

MD, USA. 
Neter, J., Wasserman, W., and Kutner, M.H. 1989. Applied linear regression models. 2nd ed., Irwin, 

Homewood, IL, USA. 

Pearson, K. 1895. Note on regression and inheritance in the case of two parents. Proceedings of the 
Royal Society of London, The Royal Society, London, UK, 58: 240-242. 

Sinha, S.K. and Fieguth, P.W. 2006. Neuro-fuzzy network for the classification of buried pipe defects. 

Automation in Construction, 15(1): 73-83. 
SPSS. 2019a. https://www.spss-tutorials.com/stepwise-regression-in-spss-example/. 
SPSS. 2019b. https://www.spss-tutorials.com/spss-correlation-analysis/. 

Yang, M.D. and Su, T.C. 2008. Automated diagnosis of sewer pipe defects based on machine learning 
approaches. Expert Systems with Applications, 35(3): 1327-1337. 

Yang, M.D. and Su, T.C. 2009. Segmenting ideal morphologies of sewer pipe defects on CCTV images 

for automated diagnosis. Expert Systems with Applications, 36(2): 3562-3573. 
Zaman, H., Bouferguene, B., Al-Hussein, M., Lorentz, C., and Melmoth, D. 2013. Estimating of flushing 

duration for preventive maintenance of wastewater collection system. Proceedings of the CSCE 

Annual Conference 2013, CSCE, Montréal, Québec, Canada, CON-136-1-10. 


