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Abstract: As an important component of project control, project managers frequently update the progress 

of the various tasks in an effort to forecast project completion time. Current methods for progress analysis 
and forecasting, however, rely on well-known performance indices such as the Schedule Performance 
Index (SPI) and the Estimate at Completion (EAC) of the Earned-Value (EV) analysis. These indices, 
however, were developed with the assumption that the remaining part of the project will follow the latest 
progress trend, without regard for how current events, changes, and interruptions may shape future ones 
(i.e., the ripple effect of progress events). While simulation and uncertainty analysis could improve 
forecasting, there is still a need for more accurate forecasting methods. This paper investigates the benefits 
of developing Bayesian networks to predict project completion time based on a certain event(s) affecting 
the ongoing and/or the upcoming project tasks. To facilitate accurate forecasting, a register of possible 
events that trigger changes in future forecasts is identified, and includes events such as productivity loss in 
similar tasks, payment delays, potential site congestion, etc. A hypothetical seven-activity project is then 
used to demonstrate the steps in Bayesian network modeling and to highlight the difference between 
schedule updates with and without Bayesian relationships among task durations. The paper then discusses 
the potential advantages as well as the challenges of developing Bayesian models. The proposed model 
assists in decision-making regarding proactive remedial actions on construction projects.  

1. INTRODUCTION 

Project managers need to constantly forecast future project progress and completion time based on current 
project data. However, construction progress is of highly uncertain and dynamic nature due to the multiple 
stakeholders and processes involved, each with its own uncertainties. This makes the traditional forecasting 
approaches inaccurate and, therefore, unreliable. The Project Controls report developed by the 
Construction Industry Institute (CII) views forecasting as an area of weakness for both owners and 
contractors in construction projects (CII 2011). Hence, there is a crucial need for better forecasting tools 
and techniques as large resource variances can affect the viability of the project and can even jeopardize 
its completion. A good forecasting system should be simple in nature as well as in its data requirements, 
and generates forecasts that are accurate, timely, unbiased, and stable.  
 
Most project updates rely on an assumption about future productivity, with the most common assumptions 
being either the originally planned or the real-time measured productivity. This does not account for any 
means of interaction between the activities and external factors or among the activities themselves (ripple 
effect). Changes and disruptions can affect both changed and unchanged work since the workflow and 
planned progress have been interrupted (Jones 2001). Appeal boards and courts have gradually begun to 
accept the premise of cumulative impact, if causal links can be demonstrated (Ibbs 2005). 
 
Many professional entities in the industry tried to quantify this ripple effect of changes. For example, The 
Mechanical Contractors Association of American (MCAA) published a guide that discretizes 16 factors (e.g., 
morale, stacking of trades, and crew size inefficiency) and their projected impact on labor productivity 
(MCAA 2011). For instance, in this guide, minor site access affects productivity by 5%, while severe site 
issues can have a 20% effect, without explaining how these values were determined. These percentages 
are added to the expected man hours allocated to the related change order, in an additive manner in case 
more than one factor is involved. Similarly, The National Electrical Contractors Association (NECA) has a 
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manual with 25 variables and five degrees of severity (NECA 1976). Both the MCAA and NECA manuals 
were developed by contractor groups. From the owner side, the Army Corps of Engineers also used to have 
their own evaluation guide (US Army Corps of Engineers 1979) until it was rescinded in 1996 (Geneni 
1996). With no insight regarding how these manuals were created, a question of objectivity arises and 
whether these manuals were developed to maximize the gains of one party.  
 
As an effort to address the cumulative or ripple effect on productivity, Bayesian networks are introduced in 
the paper as a probability-based approach that can be applied at the activity level to update predictions 
based on additional observations related to other progress events. Using Bayesian networks (BNs) on the 
activity level to provide a more flexible, reliable and quantitative forecasts that help in performing accurate 
project updates in view of the current project state, and taking into account how current events could shape 
future ones. Next section provides an introduction to the theory behind Bayesian networks and its relevant 
practical applications. This is followed by a description of the proposed model and its application on a 
hypothetical schedule at different progress stages, to highlight its versatility and strengths. Afterwards, the 
pros and cons of the proposed model are highlighted along with future enhancements. 

2. BAYESIAN NETWORKS 

A Bayesian network consists of two parts (Pearl 2014): (1) a directed acyclic graph (DAG) which represents 
a visual component of the relationships among a group of dynamically changing input variables, and a set 
of impacted outputs; and (2) a set of conditional probability tables (CPT) of the values of the observed 
and/or measured conditional probabilities about the occurrence of events that cause the impact to happen 
(e.g., Figure 1). For example, in Figure 1, the probability of material shortage to take place is 75% if there 
was payment delay, and 15% if payment delays did not occur. Bayesian networks can be constructed 
manually through expert opinions (e.g., Fan and Yu 2014; Nadkarni and Shenoy 2004), generated 
automatically through machine learning and observed data (e.g. Lee et al. 2009); or a combination of both 
(e.g., Flores et al. 2011; Procaccino et al. 2005). 

 
 
 
 

 
 

 
 
 
 
 

Figure 1: Sample Bayesian Network Diagram 

As shown in Figure 1, the DAG is composed of nodes that represents the different variables; and the uni-
directional arcs represent the causal relationships between parent nodes and child nodes. The probability 
of occurrence of a child node is dependent on whether the event represented by the parent node occurred 
or not. The conditional probabilities in the CPT, thus, follow Bayes’ theorem (Charles River Analytics 2008), 
which can be easily expressed using equation (1): 
 

[1]                                    𝑃(𝑏|𝑎) =   
𝑃(𝑎|𝑏)∗𝑃(𝑏)

𝑃(𝑎)
 

 
Where, P(a) is the probability of a, and P(a|b) is the probability of a given that b has occurred. As opposed 
to static networks, dynamic Bayesian networks (DBNs) incorporate temporal analysis, and utilize equation 
(1) but with events (a) and (b) referring to an event occurring in the past and the future, respectively. 
  
Bayesian networks’ feature of combining analytical and visual components, as well as their simple 
underlying theory give them the following advantages (Hu et. al. 2013; Wang and Wang 2016): 

 Input Variable: 
Payment Delay 

 

Output Variable: 
Construction Delay 

 

Output Variable: 
Material Shortage 

 

 Conditional Probability Table for Material Shortage 

 Material Shortage 

Payment Delay Yes No 

Yes 0.75 0.15 

No 0.25 0.85 

 

Directed Acyclic Graph (DAG) 
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(1) Visually modelling cause-effect relationships to help identify risk sources;  
(2) Ability to calculate the independent impact, or lack thereof, of a subset of the variables;  
(3) Applicability to model “what-if” scenarios; and  
(4) Ability to be continuously updated as new information and observations are collected. 

 
As such, Bayesian networks can be used to calculate the probability of unknown events using variables 
that are now known. This makes Bayesian networks applicable for both prediction and diagnosis, as well 
as sensitivity analysis. These advantages have made Bayesian networks under the spotlight in a variety of 
research fields. Applications include industrial engineering and plant modelling (e.g. Khakzad and Van 
Gelder 2018; Zhu et al. 2018); logistics (Guo 2015); traffic safety (Sun et al. 2015); software risk 
management (Fan and Yu 2004); maintenance (Bortolini and Forcada 2017); medicine (Constantinou et al. 
2016); banking (Tavana et al. 2018); and others.  
 
Within the construction industry, Bayesian networks have been utilized for various site safety applications. 
Xu et al. (2015) used Bayesian networks to build a construction safety pre-warning system. Gerassis et al. 
(2016) used it to analyze the causes of accidents related to construction of embankments while Martin et 
al. (2009) analyzed workplace accidents related to falls from heights. Zhang et al. (2014) and Wu et al. 
(2015) developed decision support tools for tunnel construction safety analysis using fuzzy Bayesian 
networks and dynamic Bayesian networks, respectively. Other areas of prominent Bayesian networks 
applications are pipeline risk assessment (Zhang et al. 2012); infrastructure integrity (Straub 2009); project 
delivery method selection (Bypaneni et al. 2018); project cost benefit analysis (Yet et al. 2016); cost risk 
analysis (Khodakarami and Abdi 2014); and estimating overall project delay (Luu et al. 2008). 

3. PROPOSED MODEL FOR ACTIVITY PROGRESS UPDATES 

A well-designed network shall properly represent the true system and may result in a smaller number of 
required parameters as well as less processing time. For the proposed progress updates model, the first 
step was to identify the significant factors that, when observed, may suggest the potential delay to the 
construction activity being analyzed. Since the current model is in its early stage of development, detailed 
steps of constructing Bayesian network for progress updates were applied to a sample activity within a 
hypothetical construction project (Figure 2). The same analysis can be extended to the whole project 
network to develop a complete progress update model. The small project of seven activities in Figure 2 
serves to demonstrate how Bayesian networks can be applied in real life.  
 

 

Figure 2: CPM Activity Network for the Sample Project 

The first step was to define the factors that affect progress updates. For this simple project, Activity C is the 
one being analyzed, where Activity B is the immediate predecessor; activity F is being performed within the 
same working space; and activity E is a similar activity that is taking place at a different location in the 
project. Having this information about activity C, a visual DAG network was constructed from the factors 
that affect its progress updates (identified based on brainstorming and expert opinion), as illustrated in 
Figure 3. This was developed using a commercial software, GeNIe Ver.2.2 (http://genie.sis.pitt.edu/), for 
modeling Bayesian belief networks. The figure shows the cause and effect relationships represented by the 
uni-directional arcs among ten factors that affect two primary causes of activity delay: late start; and 
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extended duration. Three constants (A, B, and C) are also shown in the figure: A (original duration); B 
(Delay in Activity B); and C (Productivity of Activity E). Also sample CPT for node 8 is shown in the figure.  
 
 

 

Figure 3: Proposed Bayesian Network for Activity C 

Full conditional probabilities were defined for each of the nodes, relating them to the probabilities of their 
parent nodes, if any. While ensuring that the sum of all probabilities for each node equals to 1.0, the 
conditional probability table can be built using statistical data or expert advice, thus creating what is known 
as the prior distributions of the nodes. 
 
For simplicity, the states for each variable limited to two (yes/no), and conditional probability values being 
25%, 50%, 67%, and 75% only. The probabilities for extended duration and late start of the activity (both 
expressed as a percentage of the activity’s original duration) are assumed to follow a gamma distribution. 
Gamma distributions are commonly used in Bayesian analysis due to its analytical convenience in terms of 
creating the posterior distributions for the outputs. For each of those nodes, the distribution’s shape factor 
is the sum of the expected values of the parent nodes’ states (Yes=1, No=0) and while the scale factor was 
assumed to be constant (0.1). This means that the higher the occurrences (or expectations) of delay events, 
the more likely it is for the expected activity delay to assume a greater value, all while fixing the scale 
parameter to ensure the obtained values are within a reasonable domain. Parent nodes that do not 
contribute to the gamma distributions of their respective child nodes are the three constants (A, B, and C). 
Node A represents the original duration of the activity, and is implemented in the network as a constant so 
late start can be represented as a percentage of the original activity duration in order to be able to add this 
effect to the extended duration effect, and node B which represents the delay in the predecessor activity 
directly leads to a late start of the activity under investigation. Node C represents the productivity of activity 
E, a similar activity taking place at a different location, it is assumed that if actual productivity of activity E 
was different than planned, then the expected duration of activity C would be affected by the same amount. 
Finally, total delay is defined as the sum of the expected duration extension and the expected late start that 
the activity might experience.  
 
Figure 4 shows all the DAG nodes along with their probability of occurrence. For example, stacking of trades 
(node 8) is affected by only one factor (i.e. has only one parent node: Delay in activity F, node 5). Since 

Sample CPT 

 Node 8 

Node 5 Yes No 

Yes 0.5 0 

No 0.5 1 

 

Constants 

Constant 
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node 5 was assigned a probability of occurrence (P(5) = 0.5) and the probability of occurrence assigned to 
node 8 is 50% if node 8 happened (P(8)|P(5) = 0.5) and zero if node 5 did not happen. Thus, the expected 
value at node 8 is (0.5 x 0.5 + 0.5 x 0 = 0.25, as shown on node 8 in Figure 4), indicating that the stacking 
of trade has a 25% chance of occurrence.  
 

 

Figure 4: Initial Bayesian Network (priori) for Activity C. Nodes in bold font enter the model as constants 

3.1. Case 1: Planning Phase 
 
The model as shown in figure 4, can be used in the planning phase where no observations are collected to 
update the model at this stage. In this scenario, extended duration shall follow a gamma distribution of 
shape parameters 2.5 (the sum of the expected values of its parent nodes: nodes 7, 9, 11, 12, 13, and 15) 
and 0.1, plus a constant value of the expected time extension due to the reduced observed productivity of 
activity E following equation 2. Similarly, late start (node 4) will follow a gamma distribution of parameters 
1.93 (sum of nodes 9 through 12) and 0.1, plus the delay in the predecessor activity (B) expressed as a 
percentage of the original duration of activity C under investigation. 
 

[2]         Extended Duration due to reduced productivity =      
1

1 −   
𝑎𝑐𝑡𝑢𝑎𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑣𝑖𝑡𝑦

𝑝𝑙𝑎𝑛𝑛𝑒𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦
 
 − 1  

 
Ultimately, adding the late start and extended duration nodes yields the total expected delay for activity C. 
The probability density and the cumulative distribution functions (PDF and CDF, respectively) are featured 
in Figure 5. From the CDF function, there is a 95% confidence level that the total delay in activity C shall 
not exceed 120% of the activity duration. 
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Figure 5: Probability Density function (PDF) and Cumulative Distribution Function (CDF)  
for the expected delay in activity C based on the baseline network 

3.2. Case 2: Project Updates 
 
During construction, progress updates and, accordingly, it automatically calculates the delay probabilities 
as well as the probabilities of other events that were yet to be observed. As more real progress updates 
are collected, the Bayesian network updates the probability distributions, creating new distributions 
(posterior distributions) that are better representations of the real situation and can be used in future delay 
calculations and predictions. 
 
In this scenario, it is assumed that there was a delay in the Notice to Proceed (NTP); activity F experienced 
a late start; and actual productivity of activity E was 75% of the planned. No payment delays took place and 
there is no evidence to confirm or deny the presence of rework/variations relevant to that activity (Activity 
C). The model allows for easy updates simply by clicking on the node to be updated and specifying the 
value. The updated network is shown in Figure 6 (the manually updated nodes have a darker color). Looking 
at nodes 5 and 8 again, node 5 now has a value of 1 since its occurrence has been confirmed. Hence, the 
probability for node 8 occurrence has now changed to be 50% (0.5*1+0*0). 
 

 

Figure 6: Updated Bayesian Network for Activity C after Progress Updates 
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The CDF for the total delay for this case is shown in Figure 7. Since the time extension due to the reduced 
productivity in activity E is added as a constant to the model, the graph indicates that the minimum amount 
of delay expected is the one caused by said effect as shown by the flat line at the beginning of the graph. 
An interesting observation is after confirming the occurrence of 3 delay events (delayed NTP, reduced 
productivity in activity E, and delay in activity F) the expected total delay in activity C with 95% confidence 
level is only 140% or less. This shows the significance of the payment delays and the fact that simply 
confirming the non-occurrence of that event greatly counteracted the adverse effects of the other events in 
the network. Similarly, stakeholders can investigate the effects of one event at a time to determine the best 
course of action. Another example is the case when the delay in activity F was the result of a change order, 
the contractor could use the same procedure to investigate how such change order might affect other 
portions of the project.  

 
Figure 7: Cumulative Distribution Function (CDF) for the Expected 

 Delay in activity C based on the Updated Network 

4. DISCUSSION AND ONGOING WORK 

Ultimately, activity-based Bayesian networks similar to the one presented in this paper could be aggregated 
to present work packages that make up the entire project. Original project duration is determined by a 
suitable deterministic method (e.g., CPM, LOB), and information regarding delays in various project work 
packages are updated as the project progresses and more observations enter the Bayesian network. Thus, 
providing more certainty about the potential overall project delay. 
 
This study presented, in a conceptual form, a project planning and updates procedure utilizing Bayesian 
networks. The procedure was applied at the activity level to a hypothetical schedule to demonstrate the 
flexibility of the model and the various project stages in which applying it may prove useful. Bayesian 
networks are mathematically sound yet simple enough and include a visual component which facilitates 
interaction with decision makers and experts. Moreover, Bayesian networks allow to build a knowledge 
database that grows stronger and more reliable as new data are collected (Martin et al. 2006). This proves 
to be helpful at the beginning stages of the project when less project-specific data is available. The approach 
proves to be more practical than PERT due to its dynamic nature, allowing for duration expectations and 
critical path activities to be updated as the project moves forward as well as targeting specific risks and 
potential delay events with corrective actions to ensure the project stays on track. 
 
The utilized software has many features that were not implemented in building the model featured in this 
study. For example, sub-models can be nested within the main model to properly calculate the probability 
states of a parent node instead of it having it as a set value and to ease the network presentation and 
communication. Other node types that can be used are decision nodes, which can represent potential 
corrective actions. 
 
One main limitation to the method is its high reliance on records to build the conditional probability tables, 
which can prove to be a laborious process especially in more complex projects. While the network allows 
for integrating expert opinions into the model to make up for the missing data, performing expert surveys is 
not that easy of a task and it introduces subjectivity to the model. Bayesian networks also tend to discretize 
data to function properly, which might lead to data loss or increased model complexity.  
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5. CONCLUSION 

This paper discussed the utilization of Bayes theorem in project updates and presented a conceptual 
Bayesian network to predict activity durations based on a certain event(s) affecting the activity. The model 
was applied in two different scenarios: during the planning phase to assign schedule contingencies, and 
during the project progress to consider remedial actions. The model could be expanded to address work 
packages or the entire project. Bayesian networks allow for dynamic project updates and its graphical 
nature allows for easy representation of its findings. In addition, Bayesian networks have the ability to “learn” 
as more observations are added into the model, thus constructing a powerful knowledge base that could 
prove helpful for future projects where project-specific data are not yet available. 
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