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Abstract: Heavy industrial projects are constructed by modules prefabricated in factories, transported to 
sites and installed by mobile cranes. The mobile crane operations are planned by the following four studies: 
(1) crane location selection; (2) crane type selection; (3) crane support design; and (4) crane lift path 
planning. One of the key success factors in heavy industrial projects is the lift path planning because the 
heavy industrial construction projects generally involve congested sites that can lead to crane accidents 
causing production reduction. In this respect, researchers have been paying attention to plan safe and 
practical crane lift paths using optimization algorithms such as A*, RRT, and genetic algorithms. However, 
comprehensive comparison of these algorithms is not examined yet based on features of heavy industrial 
projects and practical rules of mobile crane operation. This research compares the algorithms for the lift 
path planning of the mobile crane in the modular-based heavy industrial project to find the competent 
method which searches collision-free lift paths with the lower operation cost and less computation time. 
The algorithms’ results are compared by the measurement metrics such as computation time, number of 
movements, success rate, linear traveling distance, and crane operation time. The proposed comparison 
is implemented in a case study that includes a considerable number of module lifts installed by the mobile 
crane. This comparison will show which algorithm is more effective for the crane path planning in heavy 
industrial projects and suggest the direction of further research. 

1 INTRODUCTION 

Modular construction, which is off-site construction that delivers the preassembled modular units to the site, 
is increasingly recognized as a cost-effective method that reduces onsite labor, material waste, and 
construction time while achieving safety and productivity. Because of these benefits, a modular approach 
has been widely implemented in high-rise building and heavy industrial projects (Han et al. 2015). Mobile 
cranes are commonly used to handle the modules on site because of its high capacity, thus utilization of a 
mobile crane is a key success factor in modular-based heavy industrial projects. However, insufficient 
planning and analysis of crane utilizations can cause less productivity, and also result in accidents with high 
fatality rates. According to a report on the causes of death in crane-related accidents (“ELCOSH” 2010), at 
least 71% of all crane-related fatal accidents are involved with mobile cranes, which are caused by crane 
collapses (39 %), overhead power line contacts (14%), struck by crane load (14%), struck by other crane 
parts (11%), and other causes such as highway incidents, falls, and caught in/between(23%). In this 
respect, proper lift path planning of mobile cranes is important in heavy industrial projects to improve safety 
and productivity. 

The conventional manual lift analysis by an experienced lift engineer is not suitable in a heavy industrial 
project, normally consisting of huge number of units, which requires consideration of all alternates rapidly 
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without errors (Lei et al. 2015). Numerous studies have attempted to develop automatic path planning 
systems at the theoretical level with rare practical implementations due to the complexity of crane 
constraints and construction environment. There are three main factors to achieve the successful lift path 
planning: efficiency, solution quality, and success rate (Cai et al. 2016). Lift path planning with hill climbing, 
A* algorithm, and genetic algorithm (GA) were developed in the configuration space (C-space), that can 
represent high DOF environment effectively, for the single crane and cooperative cranes (Sivakumar et al. 
2003; Ali et al. 2005). Cai et al. (2016) proposed a parallel GA applying hybrid configuration concepts to 
handle complex site conditions that considers various costs such as energy cost, human cost and 
workability of operator while overcoming collisions and the limitation of the operations. Research by Chang 
et al. (2012) implemented a probabilistic road-map (PRM) method for the crane erection planning in 2.5D 
environment that achieves a near real-time solution. Rapidly exploring Random Trees (RRTs), as one of 
the popular randomized path planning algorithms in robotic, has also been introduced (Lin et al. 2014).  

Previous attempts have been made to implement various algorithms to suggest local/global optimal 
solutions for lift path planning of mobile cranes based on outputs of computation time, travelling distance 
of the lifted object, and crane configurations. However, comprehensive comparison of these algorithms are 
not yet executed. In this respect, this paper represents an on-going project which compares optimal lift 
paths designed by three popular path finding algorithms (A* search, Rapidly-exploring random tree, and 
Genetic algorithm) in a real case. The comparison is executed in the Python environment. The result of this 
paper will propose not only the crane lift path algorithm fitted for heavy industrial projects but also the 
direction of future research in the crane lift path planning. 

2 METHOLOGY 

2.1 Problem Structure 

The objective of the crane lift path planning is to find sequences of crane movements based on the 
consideration of various pick positions and set positions. There are several requirements to be satisfied in 
order to be considered as a feasible path in this paper: (1) the movements should follow kinematics 
constraints of the crane represented as degree of freedoms (DOF) in permissible range; (2) no collision 
between the lifted object and obstacles which are objects already installed; (3) the total weight of lifted 
object should not exceed the allowable crane capacity that is provided by a manufacturer’s capacity chart; 
and (4) dynamic site layout applying scheduled sequences of selected object should be reflected . 

Figure 1: Relationship of lattice-boom mobile crane configurations 

Due to the high DOF in mobile crane as shown in Figure 1, representing a crane configuration using the 
configuration space concept with active DOFs will be beneficial to solve the path planning problem. 
Depending on the mobility of the crane, there are two types of crane operations; (1) pick from fixed operation 
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(PFP), and (2) pick and walk operation (PWO), which includes turning and travelling as parts of active DOF. 
The scope of the current paper considers the lifting method with PFP, which is usually preferred from the 
practitioners perspective since it has less collision errors (Han et al. 2016). In addition, hook rotation and 
boom extension are practically not allowed during the lifting procedure. Accordingly, the single mobile crane 
has three active DOF in this paper and the corresponding configuration set is expressed as Eq. 1 and Eq. 
2 as shown below: 

[1] 𝑃𝑗 =  {𝑀𝑖} 𝑖=0,1,…,𝑛−1 

[2] 𝑀𝑖 = (𝛼𝑠𝑤𝑖𝑛𝑔 ,  𝛼𝑙𝑢𝑓𝑓𝑖𝑛𝑔 , 𝑙h𝑜𝑖𝑠𝑡𝑖𝑛𝑔) 

Where P is the lifting path, represented by a set of configurations, j is the module ID, n is the total number 

of configurations, 𝑀𝑖 is 𝑖𝑡ℎ configuration in the path, 𝛼𝑠𝑤𝑖𝑛𝑔 is the swing angle in degrees, 𝛼𝑙𝑢𝑓𝑓𝑖𝑛𝑔 is the 

luffing angle in degrees, and 𝑙h𝑜𝑖𝑠𝑡𝑖𝑛𝑔 is the hoisting length in feet. The module ID of the lifted object imports 

the corresponding information of dimensions, weight, set location, and the scheduled lifting sequence from 
the database needed for: (1) building the obstacle environment for the current lifted object to check collision; 
(2) checking the crane capacity and safety factor; and (3) visualizing results.  

Figure 2: Process overview of the proposed methodology 

In order to apply multiple algorithms in the specified problem of path finding in mobile cranes, it is mandatory 
to set up the base structure for a reasonable comparison and a flexible implementation. Figure 2 illustrates 
the base structure of the proposed methodology. The database that saved the information of the project, 
lifted objects, and the crane is used to generate the crane lifting path by A* algorithm, RRT algorithm, and 
GA, respectively. The goal of the crane path finding problem is to search the path consisting of crane 
movements without the violations regarding the capacity, the safety factor, collisions, and crane kinematic 
constraints.  

Crane capacity and safety factor assessment were prepared mainly according to the procedure introduced 
by Han et al. (2017) based on the calculation of the required lifting weight (𝑊𝑇𝑜𝑡𝑎𝑙) and the working radius 
(RA). The safety factor is calculated by 𝑊𝑇𝑜𝑡𝑎𝑙 and the gross capacity at RA is obtained from the capacity 
chart provided by manufacturers. In this paper, the crane operation with the safety factor exceeding 85% is 
considered as an unsafe operation. Therefore, the crane configuration within the allowable working radius 
and safety factor of 85 % is considered as a safe operation. This safety factor is also used to calculate the 
operation time (cycle time) of path by indicating the speed of the movement depending on the 
corresponding safety factor with a concept that the speed of movement is influenced by the safety factor, 
which means lower safety factor causes high speed and vice versa. To reflect the realistic analysis, 
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preparation time to convert the movements is considered by applying penalty time matrix of crane 
operations. 

(a) Type 1 (b) Type 2 and Type 3 

Figure 3: Three types of potential collision 

During mobile crane operations, there are three types of potential collision: (1) Type 1: between the crane 
configurations and obstacles represented in Figure 3(a); (2) Type 2: between the crane configurations 
(mostly boom) and the lifted object shown in Figure 3(b); and (3) Type 3: between the lifted object and 
obstacles illustrated in Figure 3(b). Type 1 collision is prevented by locating the crane at the collision-free 
region where there are no obstacles in the superlift swing range or limiting the permissible range of swing 

angle between 𝑆𝑚𝑖𝑛 to 𝑆𝑚𝑎𝑥  as shown in Fig. 3(a). Type 2 collision is avoided by locating the lifted object 
distantly from obstacles or limiting the permissible range of hoisting length by satisfying Eq. 3 and Eq. 4.  

[3] ℎ𝑚𝑖𝑛 =  (
𝐶𝑏𝑜𝑜𝑚

sin  𝛼𝑙𝑢𝑓𝑓𝑖𝑛𝑔

+ 
𝑂𝑤𝑖𝑑𝑡ℎ

2
) tan  𝛼𝑙𝑢𝑓𝑓𝑖𝑛𝑔 

[4] ℎ𝑚𝑎𝑥 = ℎ −  𝑂ℎ𝑒𝑖𝑔ℎ𝑡 

Where ℎ𝑚𝑖𝑛 is the minimum permissible hoisting length, 𝐶𝑏𝑜𝑜𝑚 is the clearance between the boom and the 
lifted object set by users,  𝛼𝑙𝑢𝑓𝑓𝑖𝑛𝑔 is the luffing angle, 𝑂𝑤𝑖𝑑𝑡ℎ is the width of the lifted object,  𝑂ℎ𝑒𝑖𝑔ℎ𝑡 is the 

height of the lifted object, ℎ𝑚𝑎𝑥 is the maximum permissible hoisting length, and h is the vertical distance 
between boom top to the ground level. 

Type 3 collision is solely examined in the algorithms with an assumption that lifted object do not rotate 
during the operation, which means that the lifted object is oriented in the same direction during the entire 
process. Collisions can be detected by identifying the interruption between lifted object and the obstacles 
by comparing their minimum and maximum x, y, and z coordinates.  Figure 4 illustrates collision conditions 
when box A and box B are defined by minimum and maximum values in x, y, z axis (Ax.Min, Ax.Max, 
Ay.Min, Ay.Max, Az.Min, Az.Max, Bx.Min, Bx.Max, By.Min, By.Max, Bz.Min, Bz.Max). 

Figure 4: Examples of the collision identification 
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To have collision in 3 dimensions, y and z dimensions also have to be overlapped. In this method, 3D 
collision detection is shown below as pseudocode in Figure 5. The value of the clearance is considered at 
the minimum and maximum coordinates of the lifted object to guarantee the safe operation. Also, applicable 
obstacles present in the dynamic site layout are loaded from the database by the sequence of the lifted 
object. For example, if the module with sequence number 10 is lifted, the modules with sequence number 
1 to 9 are loaded to build the obstacle environment. 

2.2 A* Search 

A* algorithm is a global search method that holds information of previous configurations with the heuristic 
value until it reaches the goal node (Sivakumar et al. 2003). It starts from defining the start node and the 
end node, which are the pick configuration and the set configuration respectively. After this, the OPEN list 
that contains the start node and the empty CLOSED list are formed. The OPEN list will keep the expanded 
nodes that are not yet examined, and the CLOSED list will keep the nodes that are already examined to 
check whether the new expanded nodes from the current node are generated before. If the OPEN list is 
not empty, nodes in the OPEN list are evaluated in ascending order of the estimated total cost value 
expressed in Eq. 5:  

[5] f(n) = g(n) + h(n) 

Where g(n) is the cost of the path from the start node to the n𝑡ℎ node (current node), h(n) is the heuristic 

function that estimates the cost of the cheapest path from the n𝑡ℎ  node to the goal node, and f(n) is the 
total cost of the path. Here, the cost is simply the distance that the lifted module has traveled.  

After calculating the f(n) value of each nodes in the OPEN list, the OPEN list is sorted by f(n) value in 
ascending order. Therefore, the first node in the OPEN list has the lowest cost, which means that it is the 
best node to perform the cheapest path in the current OPEN list. This node is then removed from the OPEN 
list and added to the CLOSED list. If this node is equal to the set node, it becomes the feasible, near optimal 
path solution. If this node is not equal to the set node, neighbor nodes of this node are used to expand the 
search area by added it in the OPEN list. Generations of neighbors are done by considering the incremental 
value in the crane operation, which is one unit of each movement. For each neighboring nodes, several 
feasible checks are conducted: (1) check if the crane movement is within the permissible range of the crane 
kinematic constraints, (2) check if there is any collisions, (3) check if this node is in the CLOSED list, 
meaning the same node has already been checked, and (4) check if any nodes in the OPEN list have same 
configurations while having same or bigger g(n). This way, when the configurations are the same, only the 
nodes with cheaper costs will be saved in the OPEN list for further evaluations. This method can reduce 
the process time by removing superfluous calculations. If the neighboring nodes pass all these checks, 
those nodes are appended to the OPEN list and the same procedure is repeated until the end node is 
reached. 

2.3 RRT 

A tree is constructed starting with the start node, the tree is then expanded by 1 unit for each crane 
movements according to the sampling strategy. The sampling strategy has a great effect on the quality of 

CollisionDetection 

O: list of obstacles 

L: Lifted object 

For each obstacle o in O do: 

 If (ox.Min < Lx.Max) and (ox.Max > Lx.Min) and 

     (oy.Min < Ly.Max) and (oy.Max > Ly.Min) and 

     (oz.Min  < Lz.Max) and (oz.Max > Lz.Min):  

  Collision = True 

 End if 

   
Figure 5: Pseudo code of process flow in collision detection 

X axis 

Y axis 

Z axis 



 

   

GEN067-6 

 

the path and the efficiency of the algorithm because the random sample controls the direction of the tree 
growth to find the optimal path while avoiding collisions and the local confinement (Lin et al. 2014).  

With the probability p (sample rate), the tree expands towards the targeted node, and with the probability 
p-1, it expands towards a random sample node generated randomly within the exploring space. It is 
observed that 5 – 10 % of probability is suitable as p to bias towards the goal node while 100% of probability 
possibly gets the node stuck by failing to avoid obstacles. This strategy keeps the tree expanding to 
unsearched area with the tendency to reach the targeted node while not trapping it in local areas. The 
nearest node of the sample node is obtained from the tree. There are two ways to select an expanded node 
among the six possible movements from the nearest node: (1) the node that has the smallest distance to 
the end node; and (2) the node that has the smallest angular difference. Both methods are implemented in 
the case study and compared to verify which one results in a better path solution. After selecting the 
candidate of the expanded node, collision is checked. If there is a collision, the sampling process is 
repeated. If there is no collision and the expanded node is equal to the end node, the result path is printed. 
If the expanded node is not equal to the end node, it is added to the tree and the same procedure is 
repeated until it reaches the targeted node. 

2.4 Genetic Algorithm 

An initial generation of paths is randomly built within the permissible range of crane operations. Each path 
is evaluated by a fitness logic chart as illustrated in Figure 6. The fitness evaluation is critical in GA because 
it determines the quality of paths and check the constraints of crane operation. The fitness value (𝑓𝑖) 
represents the suitability of the path. If any configurations in the path have collision or the length of the path 

and the number of movements are more than the maximum setting value, 𝑓𝑖 becomes 0. If the individual 
has no violation in these three conditions, the last landing node of the path will be checked if it arrives at 
the end node. The 𝑓𝑖 of the path landed at the goal node will be evaluated by the length of the path, the 

number of movements, and the scaling factor (λ1). Lastly, the constraints of the crane’s permissible range 
is evaluated. If the path includes any movements that are not within the permissible range of crane 

operations, the scale factor (λ2) will be deducted from the overall 𝑓𝑖. This fitness logic was tested and it 
verifies the improved path for the crane lift path planning over generations.  

Path

Collision

Maximum 

path length

Maximum 

Operation length

Reach at 

the end node

Fitness value = 0

Fitness value 

= λ1 + 1/individual length + 

1/operation length

Fitness value 

= 1/distance from the landing 

node to the end node

Movements are within 

permissible range
Fitness value -= λ2 

final fitness value

Y

Y

Y

Y

N

N

N

N

N

Y

 

Figure 6: Fitness Evaluation 

To reproduce the next generation, the paths with high fi from the previous generation are selected with the 

probability of 𝑃𝑏𝑒𝑠𝑡  to evolve the results by generations. Then, (1-𝑃𝑏𝑒𝑠𝑡) of paths are randomly chosen to 
form a list of breeders to generate the next generation by using crossover and mutation. The crossover 
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enables the paths to evolve towards a local optimal solution and the mutation prevents it from being stuck 
in one place. From the list of breeders, two paths are randomly selected as parents. The crossover rate 
(𝑟𝑐)) is a normally high value between 80% and 95% to guide the direction of the evolution. There are 
several ways to carry out the crossover based on the single point, multi-point, uniform, and arithmetic. The 
multi-point crossover method, which alters the segments of parents in multiple points, is adopted in this 
paper. If crossover is only used to form the next generation, the path will have limited evolution opportunities 
that could result the confinement or less optimal path. Therefore, a mutation process that generates random 
tweaks in the individual is used to guarantee the diversity of the genetic population by exploration. The 

mutation rate (𝑟𝑚) is set to a low value between 0.005 and 0.5 because the high probability of mutation 
leads pure random searches that slows down the evolution while adequate mutation rate enables the 
prevention of the convergence of the path (Srinivas and Patnaik 1994). The reproduction process is 
repeated until it reaches the number of generations set by users. 

2.5 Measurement Metric 

The criteria for comparing the algorithms are (1) the computational time to run the algorithm; (2) the 
travelling distance of the lifted module; (3) the number of total movements and each movement; (4) the 
cycle time of the crane operation; and (5) the success rate, which shows the probability to find the solution. 
RRT and GA require to be run multiple times due to the nature of randomness. Therefore, RRT and GA’s 
success rate will be a percentage of pass/fail of the multiple iterations and A * will a single pass/fail. 

3 CASE STUDY 

The case study is based on an industrial modular project by PCL industrial Management in Alberta, Canada, 
which includes a considerable number of module liftings with a crawler crane (Demag CC 2800). The 
proposed methodology is implemented in a Visual Studio Code environment with Python, and Matplotlib is 
used for plotting to visualize the lift paths of each algorithms. The database of PCL Industrial Management, 
Inc. is used as a primary input data stream, which includes: (1) module information (coordinates of set 
position, geometric size, and weight); (2) installation sequence; and (3) crane information (capacity in each 
radius and crane configurations).  

Module 9 is selected as the lifted object. The difficulty of path planning for module 9 is relatively low because 
the installation level is ground floor and there are no obstacles in a straight line between the pick point and 
the end point. The scheduled sequence of module 9 is 104. Table 1 shows the permissible ranges of crane 
movements based on crane specifications and calculations from Eq. 3 and Eq.4. 

Table 1: Crane permissible range 

 Swing (degrees) Lifting (degrees) Hoisting (feet) 

Lower Limit 0 10 13 

Upper Limit 360 80 251 

Table 2: Module 9 result of A* and RRT 

 
Iteration 

Process 
Time (s) 

Distance   
(ft) 

Movements Cycle time  
(min) S L H Total 

A* - 8552 185.54 7 3 1 3 6.91 

RRT Distance 10 41.14 251.18 13.5 7.4  13.5 34.4 27.30 

Angle 10 67.59 266.65 13.5 9.8 14.8 38.1 30.39 

In A*, a total of 7 crane operation steps are required to move module 9 from the pick point to the set point. 
The processing time to find the path was 2.38 hours, the total travelling distance of the module was 185.54 
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ft, and the total crane operation time (cycle time) was 6.91 minutes. There are two possible ways to proceed 
the RRT in terms of expanding the tree; one is based on the distance to the set point coordinates, and the 
other one is based on the angular difference to the set point movement. Each approach was iterated 10 
times to determine the method that drew a better result. As Table 2 shows, expanding the tree based on 
the distance is better in all aspects. At the average result of RRT, the process time was 41 seconds, total 
travelling distance was 251.18 ft, total number of movements was 34, and total operation time was 27.3 
minutes.  

Table 3: Module 9 result of GA 

Generation Log 
Process 
Time (s) 

Distance 
(ft) 

Movements 
Cycle 

time (min) 
Fitness 

Success 
rate (%) 

10 1.0 6.54 200.59 23.8 18.629 0.044 0 

20 1.3 16.19 213.85 21.9 18.057 200.049 20 

40 1.6 46.80 244.52 25.7 20.812 200.067 20 

100 2.0 133.38 231.00 19.4 16.637 600.097 60 

200 2.3 230.77 221.91 13.8 12.169 900.099 90 

500 2.7 553.52 202.79 10.6 9.959 1000.115 100 

1000 3.0 1456.07 201.70 8.9 8.547 1000.140 100 

2000 3.3 2249.20 205.00 6.7 6.573 1000.180 100 

4000 3.6 6142.66 203.17 6.3 6.394 1000.188 100 

8000 3.9 9590.26 199.07 5.7 5.949 1000.216 100 

 

Figure 7: Module 9 GA result by generation 

GA was tested with generations of 10, 20, 40, 100, 200, 500, 1000, 2000, 4000, and 8000 to observe the 
result tendency of increasing the generation number. Each generation was iterated 10 times to monitor the 
reliable outcomes. Table 3 and Figure 6 show the improved result by generations. For example, with 100 
generations, the average process time was 133.38 seconds, the average module distance was 231 ft, the 
average number of movements was 19.4, and the average operation time was 16.6 min. Also, among 10 
iterations, the success rate to find the solution was 60%. 
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In Figure 7, the X axis represents a log value of generations to display the result more effectively. The 
number of total movements, operation time, and module distance tend to decrease when increasing 
generations. In GA with 2000 generations, the total movements were 7, same as the A* result. The process 
time was 2249 seconds, 3.8 times faster than A* with 8551 seconds. As it is observed in Figure 6, the 
results at generation 500 tend to be stable and the success rate of 100%. Therefore, it is reasonable to use 
the result with 500 generations to compare GA with the other algorithms. 

 

Figure 8: Path results in 3Ds Max 

Figure 8 shows the visualized images of the path planning results for module 9 with the three algorithms in 
3Ds Max. All the three algorithms succeeded in finding the solution path with different movement 
configurations. A*’s process time is the longest but results in the least amount of movements and the least 
operation time (cycle time). RRT only took 41 seconds to run, but the movements and cycle time were 5 
times longer than A*. GA with 500 generations took 553 seconds while resulting similar quality solution as 
A*. Also, by increasing the generations, GA has a potential to generate a more optimal solution than A* 
while taking less process time. 

4 CONCLUSION AND FUTURE WORK 

Lift path planning is a critical process in the modular-based heavy industrial projects in terms of achieving 
the safety and productivity by reducing potential errors. In this respect, this paper has developed three path 
planning algorithms in mobile crane path optimization problem to execute the comprehensive comparison 
using Python. It is observed that A* search found the near optimal solution with comparatively higher 
computational time while RRT resulted in low quality outcome with the shortest computational time. GA 
resulted the most reasonable results with a flexibility to apply multiple constraints; however, applying 
constraints into the fitness equation is difficult with the increased complexity. Since this paper examined 
one case sample with low difficulty, more case studies with higher difficulty are required. In future research, 
more complicated DOF and constraints of the crane operations can be considered to reflect realistic 
environments. Furthermore, combined hybrid algorithm with the advantages of three algorithms can be 
suggested in the future works for the mobile crane path planning. 
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