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Abstract: Focused on the problem of continuous real-time monitoring of aggregate distribution uniformity 
during asphalt pavement paving process, an asphalt mixture identification and segmentation method 
based on image processing technology was developed and a uniformity evaluation method based on 
static moment theory was proposed. Firstly, original true colour images were converted to binary images. 
And then the watershed segmentation method based on extended-maxima transform was developed, 
which could significantly eliminate the over-segmentation of particles. Seventy images of particles were 
tested, and experimental results showed that the segmentation was satisfactory by the improved 
algorithm; the accuracy of segmentation was as high as 98%. Considering the influence of aggregate size 

and distribution position on the uniformity, the computational model based on four-side static moment 

theory was established, and then the uniformity judging criteria was determined by analyzing 1,000 

randomly on-site collected images. The remaining 85 images were used to verify the plausibility of the 
uniformity judging criterion. The results indicated that when the value of UA is greater than or equal to 
0.91, loose asphalt mixtures could be considered as uniform, vice versa.  

1. INTRODUCTION 

Asphalt pavement is widely used in the world, and the long-term performance of pavement is content for 
researchers. However, most of the researches are to assess the existing problems, which are unable to 
be corrected quickly, even some detection methods would cause damages to roads. Furthermore, some 
methods need special professional equipment which is money-consuming. This paper aims at the rapid 
detection of the uniformity of loose asphalt mixtures (LAM) during the paving process based on digital 
image processing technique (DIP). The purpose is to find the problem of uniformity during the paving 
process and correct it in time. By this way, we can avoid the segregation and improve the durability of the 
asphalt pavement. 

DIP technique has been applied for the study of micro-structures of asphalt mixture since the 1990s 
(Masad 1999). At present, a large number of researches forces on DIP for two aspects, one is a two-
dimensional method (2-D), the other one is a three-dimensional method (3-D) (Al-Rousan 2007, Liu 2009, 
Fernlund 2005). And most of the research literature using 2-D method focuses on the samples prepared 
in the laboratory which have been compacted (Guo 2016, Zhang 2017, Hassan 2013, Moon 2014, Peng 
2014) and rarely applied to LAM. Compared to LAM, compacted asphalt mixtures, especially the cross-
section of cut sample, are more easily identified because the color of the aggregate (withe) contrasts 
sharply with the background color (black). However, these methods can only be used to detect if there 
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are problems with the sample, but they cannot take further remedial action because the samples have 
been compacted. 3-D DIP technique can be used to detect the internal structures in a non-destructive 
manner (Anochie-Boateng 2013, Xing 2019, Gao 2016, Liu 2014, Hu 2012, Erdem 2014), while in 
addition to the same problem as 2-D method, it also requires professional CT scanning equipment which 
is money-consuming and its algorithm is complex. So these methods are not suitable to detect the 
uniformity of LAM during the paving process. 

In this paper, we developed a new particle identification and distribution uniformity algorithm of asphalt 
mixture based on digital image processing technology, which realized the real-time uniformity detection of 
un-compacted asphalt mixture during the paving. In this method, two core issues need to be solved. The 
first one is the identification of aggregate particles, and another one is the algorithm of paving uniformity. 

2. IMAGE SEGMENTATION 

2.1 Watershed Segmentation Transform 

In order to apply watershed segmentation, the original true color images needed to be converted to the 
grayscale intensity images. During the process, the common technologies, such as filtering and 
Histogram Equalization, were used to enhance grayscale intensity images, which were the basis of the 
subsequent operations. Figure 1 shows the segmentation processing of untreated aggregate with 
different seizes. Figure 1 (a) shows the original RGB image taken by camera. And then, the image is 
converted to a grayscale image by forming a weighted sum of the R, G, and B components. After that, the 
image is binarized with a global threshold and gets the binary image (b). The result is subjected to a 
distance transform which can get a grayscale image as shown in image (c). And the grayscale image is 
equivalent to a topological map, with the maxima as peaks and the minima as valleys. The watershed 
algorithm obtains the watershed ridgelines and finally, the segmentation image (d) is obtained by 
overlaying image (c) with the watershed ridgelines. 

 
                  (a)                                     (b)                                       (c)                                      (d) 

Figure 1 Watershed segmentation steps: (a) original RGB image, (b) binary image, (c) distance-
transformed image, (d) final result of watershed segmentation. 

Comparing Figure1 (b) and (d), we can find many seriously over-segmented particles in image (d). The 
main reason is that there are more than one regional maximum in these particles, just like showing in 
Figure 2 (a) and (b). Figure 2 (a) shows the contours of particles with the regional maxima and ridgeline.. 
Figure 2 (b) is an enlarged region marked in Figure 2 (a), which can clearly show multiple regional 
maxima on several aggregate particles.  

Reducing the regional maxima is an effective way to restrict the over-segmentation. The Extended- 
Maxima Transform (E-MT) can be used to do so and eliminate over-segmentation. E-MT can change the 
regional maxima into one value for each particle so that an accurate segmentation result can be got. 
Figure 2 (c) and (d) show the optimized result of regional maxima. Image (d) is an enlarged region which 
can clearly show the regional maxima of particles. Comparing Figure 2 (c) and (d) with Figure 2 (a) and 
(b), we can see that, different from the results of Figure 2 (a) and (b), each particle in Figure 2 (c) and (d) 
contains only one corresponding region maximum value optimized by E-MT, which will ensure to get the 
accurate segmentation result. 
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                  (a)                                      (b)                                         (c)                                      (d) 

Figure 2 Segmented results: (a) regional maxima with ridgeline and contour of over-segmentation, (b) 
region enlarged image of over-segmentation, (c) regional maxima with contour of E-MT method, (d) 

region enlarged of E-MT method 

2.2 Watershed Segmentation Algorithm Based on Extended-Maxima Transform 

Intuitively, the maximum value of the grayscale image is 𝑀, and the threshold is ℎ. E-MT will convert all 
the intensity values which are higher  𝑀 − ℎ to 1, and others convert to 0, so the transformed result is a 

binary image. The key point of the E-MT algorithm is how to select the optimal threshold value ℎ, which 
can affect the accuracy of segmentation. Firstly, transform the binary image to grayscale image by 
Euclidean distance transformation, and then normalizing the intensity values of the obtained grayscale 
image into the range of [0, 1]. Choosing an initial threshold value ℎ0 and perform E-MT on the obtained 

grayscale image. Then increasing ℎ0 by an increment ∆ℎ  and repeat the entire algorithm until get the 

optimum value of ℎ. The optimal value of ℎ is determined by comparing the relationship between the 
number of particles, 𝑁1 , of the binary image and the number of particles, 𝑁2 , after the watershed 

segmentation based on E-MT. When an allowable range of the threshold parameter ℎ  is decreased, 
particles can be separated.  Experimental data show that the number of particles can be accurately 
predicted when ℎ is small enough. Taking the particles in Figure 1 as an example, setting different values 
of ℎ gives different values of both 𝑁1 and 𝑁2 as shown in Figure 3. The data represent a stepwise change 

to 𝑁1  with the increase of ℎ. When ℎ  is in a certain interval, [0.08-0.14], 𝑁1  is equal to 𝑁2 . 𝑁1  and 𝑁2 

decrease as ℎ increases. And the optimized segmentation threshold value is obtained in the threshold 
range. The correct segmentation result (𝑁1=𝑁2=50) can be obtained in the range [0.016, 0.043]. 

 
Figure 3 Curves of N1 and N2 

Figure 4 shows the effect of different ℎ  value. Image (a) is the result when ℎ  equals to 0.01, over-
segmentation occurs with the result 𝑁1 = 𝑁2 = 51; image (b) shows the lack-segmentation result whenℎ =
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0.1, and the segmentation result is 𝑁1 = 𝑁2 = 48. By analyzing Figure 4 (a) and (b), we can see that the 
value of ℎ has great influence on the segmentation result. When ℎ is relatively small, the particle, marked 
in Figure 4 (a), is wrongly divided into two, resulting the identification result is greater than the actual 
number. However, when ℎ is too large, the touching particles cannot be effectively segmented and the 
particles, marked Figure 4 (b), are wrongly identified as one particle. The number of particles obtained is 
smaller than the real number. Figure 4 (c) shows the correct-segmentation when ℎ equal to 0.02. The 
touching particles marked by red circle can be correctly identified and segmented and the identification 
result is equal to the actual number.  

                           
                       (a)                                                        (b)                                                    (c) 

Figure 4 Segregation Result (a) over-segmentation, (b) lack-segmentation, (c) correct-segmentation 

Observation and analysis of Figure 3 and Figure 4, in order to obtain the optimized segmentation 
threshold,  𝑁1  and 𝑁2  need satisfy two conditions: the first one is 𝑁1 = 𝑁2 .when 𝑁1  equals 𝑁2 , an 
approximate range which includes the optimal threshold can be got. Another condition is the cumulative 
quantity, 𝑁, when both 𝑁1 and 𝑁2 are equal to a certain value. This value is a statistical result, obtained by 
statistical analysis of a large number of results.  By 𝑁, the range can be further narrowed and obtain the 

optimal threshold. We choose the first value of ℎ as the selection criterion where 𝑁1 is equal to 𝑁2 and the 

cumulative quantity 𝑁 is greater than or equal to 5.  

2.3 Experiment and Analysis 

 

Figure 5 Segmentation results 
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70 images, which are content different sizes and numbers of particles, were segmented and the accuracy 
of the algorithm is calculated and the result shows that the average segmentation accuracy rate of each 
group is greater than or equal to 98%,. Figure 5 shows the segmentation results of particles with the 
same size and the segmentation results of mixtures with different size. For the samples with the same 
size, the identification accuracy is greater as the particle size increases; for the mixtures with different 
sizes, the identification accuracy of the coarser mixtures is higher than that of the fine mixtures. 
Experimental data show that, within the optimal range of the threshold value, particles can be effectively 
segmented by the proposed algorithm, and the correct number of particles can be obtained. 

            
                                                   (a)                                                         (b)  

Figure 6 Segmentation results with RGB image (a) E-MT method, (b) Directly watershed method 

The algorithm is also suitable for the identification of LAM and the recognition results overlaid with RGB 
images are shown in Figure 6. Unlike the over-segmentation of particles in Figure 6 (b), which is the result 
of directly using watershed method, over-segmentation is effectively suppressed, especially the adhesion 
particles, and the accurate number of LAM particles can be counted in Figure 6 (a), which is the result of 
using an improved watershed method base on E-MT. 

3. ALGORITHM OF LOOSE ASPHALT MIXTURE AGGREGATE DISTRIBUTION UNIFORMITY 

How to evaluate the distribution uniformity according to the binary image of LAM are the major issues. In 
this paper, a new method is developed to calculate the uniformity of LAM based on the static moment 
theory. In the new method, particle size and distribution position are taken into account as two key factors 
which affect the decision to the uniformity. After preliminary verification, the method has better recognition 
accuracy to the uniformity and has a good computational efficiency either. 

3.1 Computational Model 

In order to simplify the model and facilitate the subsequent analysis, some assumptions are made: 

(1) The shapes of the aggregate are circular and do not overlap each other; 
(2) The shapes of aggregate remain unchanged after image processing; 
(3) Only the distributions of coarse aggregates are considered (greater than or equal to 4.75mm); 

  
                      (a)                                                   (b)                                                        (c) 

Figure 7 Distribution models (a) Ideal distribution, (b) Actual distribution, (c) Least uniform distribution 
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According to the above assumption, three submodules are built: the actual distribution, ideal distribution 
and least uniformity distribution, as shown in Figure 7. Figure 7 (a) is the ideal distribution, and all the 
aggregates are of the same size and the gaps between aggregate are uniform. In the actual distribution 
image, Figure 7 (b), the size of the aggregates is different, and the location of particles is random. In the 
least uniform distribution image, Figure 7 (c), all aggregates are with the same size and tightly packed on 
one side of the image. 

3.1.1 Actual Distribution  

Static moment of particles is defined to consider the effects of both factors of the size and location 
simultaneously. Area of particle, 𝐴, denote the effect of particle size, and distance to the edge of image 

(shown in Figure 7 (a)), 𝑙, denote the effect of location. The static moment is defined as Equation (1) 

𝑆 = 𝐴 × 𝑙                                                                                                                                              (1) 

𝑆𝑗 =  ∑ 𝐴(𝑖)  ×  𝑙𝑗(𝑖)              𝑗 = 1,2,3,4

𝑛

𝑖=1

                                                                                    (2) 

Equation (2) is the sum of static moment of all the particles to a specific edge. Where 𝑖 is the index 

number of particles, 𝑗 is the index number of the image edge, 𝑆 is the total static moment of all particles to 

a special edge, 𝐴 is the area of each particle, and 𝑙 is the distance from the particle to a particular edge. 

The average of 𝑆 values of the four edges of the image, denote 𝑆, is defined as  

𝑆  =  
(𝑆1 + 𝑆2 +  𝑆3 + 𝑆4)

4
= =

(𝑚 + 𝑛)

4
× ∑ 𝐴(𝑖)

𝑛

𝑖=1

                                                                (3) 

Where 𝑚  and 𝑛  are the length and width of the image, and the meaning of other parameters are 

consistent with the preceding. Equation (3) shows that 𝑆 is only related to the total area of particles and 

the geometric size of the image. Hence, for the same binary image,  𝑆 is a constant which can be used to 
simplify the calculation.  

3.1.2 Ideal Uniform Distribution 

The ideal uniform distribution is an imaginary ideal state. In this case, all the particles have the same size 
and distance between each other, as shown in Figure 7 (a). And the 𝑆 values to each edge of the image 
can be calculated, which are shown in Equation (4) and (5): 

𝑆𝑖𝑑𝑒𝑎𝑙_1 =  𝑆𝑖𝑑𝑒𝑎𝑙_3 =  ∑ 𝐴(𝑖)  ×  𝑙1(𝑖)

𝑛

𝑖=1

=   
1

2
× 𝑚 × ∑ 𝐴(𝑖)

𝑛

𝑖=1

                                               (4) 

𝑆𝑖𝑑𝑒𝑎𝑙_2 =  𝑆𝑖𝑑𝑒𝑎𝑙_4 =  ∑ 𝐴(𝑖)  ×  𝑙2(𝑖)

𝑛

𝑖=1

 =  
1

2
× 𝑛 × ∑ 𝐴(𝑖)

𝑛

𝑖=1

                                                (5) 

The average of 𝑆 values of four edges in the ideal case, 𝑆𝑖𝑑𝑒𝑎𝑙, can be derived: 

𝑆𝑖𝑑𝑒𝑎𝑙  =  
(𝑆𝑖𝑑𝑒𝑎𝑙_1 + 𝑆𝑖𝑑𝑒𝑎𝑙_2 +  𝑆𝑖𝑑𝑒𝑎𝑙_3 +  𝑆𝑖𝑑𝑒𝑎𝑙_4)

4
=  

(𝑚 + 𝑛)

4
× ∑ 𝐴(𝑖)

𝑛

𝑖=1

                    (6) 

Comparing Equation (5) and Equation (3), we find that  𝑆𝑖𝑑𝑒𝑎𝑙 = 𝑆 because of the same total particle area. 

The standard deviation (SD) is used to characterize the deviation between the actual case and the ideal 
case of LAM. The 𝑆 values to each edge in the ideal case is the expected values, and a low SD value 
means particles are more close to the uniformity state, and vice versa. The SD value of static moment, 
denoted 𝑆𝐷𝑠𝑡𝑎𝑡𝑖𝑐_𝑚𝑜𝑚𝑒𝑛𝑡, is defined as 
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𝑆𝐷𝑠𝑡𝑎𝑡𝑖_𝑚𝑜𝑚𝑒𝑛𝑡 =  √∑ (𝑆𝑖 − 𝑆𝑖𝑑𝑒𝑎𝑙_𝑖)
24

𝑖=1

4
                                                                                     (7) 

Where,  𝑆𝑖 is the sum of static moment of all the particles to the edge 𝑖 in actual case and 𝑆𝑖𝑑𝑒𝑎𝑙_𝑖 is the 

total static moment to the edge 𝑖 in the ideal case. 

3.2 Algorithm of Distribution Uniformity 

The value of 𝑆𝐷𝑠𝑡𝑎𝑡𝑖𝑐_𝑚𝑜𝑚𝑒𝑛𝑡  is extremely large, and its order of magnitude can reach 109 , so it is 

inconvenient and not intuitive to evaluate the distribution uniformity using 𝑆𝐷𝑠𝑡𝑎𝑡𝑖𝑐_𝑚𝑜𝑚𝑒𝑛𝑡  directly. The 

values of 𝑆𝐷𝑠𝑡𝑎𝑡𝑖𝑐_𝑚𝑜𝑚𝑒𝑛𝑡 need to be normalized firstly, before that, its extremum values have to be found. 

The maximum and minimum value of 𝑆𝐷𝑠𝑡𝑎𝑡𝑖𝑐_𝑚𝑜𝑚𝑒𝑛𝑡 separately correspond the  𝑆𝐷𝑠𝑡𝑎𝑡𝑖𝑐_𝑚𝑜𝑚𝑒𝑛𝑡 values of 

least uniform distribution and ideal uniform distribution. Obviously, its minimum value is zero, and only the 
maximum value need to be calculated, which is equivalent to solving the value of 𝑆𝐷𝑠𝑡𝑎𝑡𝑖𝑐_𝑚𝑜𝑚𝑒𝑛𝑡 in the 

case of least uniform distribution.  

The least uniform distribution of LAM manifests that the particles concentrate in some specific areas. 
There are many possibilities for uneven distribution, while it is not easy, and also unnecessary to 
determine the most uneven state. The possibility that the distribution of particles reaches the least 
uniform state during construction is almost nonexistent, and most of cases is in an approximately uniform 
state, which is far from the extremum. It is sufficient to choose a less uniform state as the least uniform 
state, of course, the more uneven, the better. In this study, the case when particles are concentrated on 
the long edge is selected as the least uniform state, as shown in Figure 7 (c). The least uniform 
distribution state is specified as follows: 

(1) The length of image is 𝑚 (in pixels) and width is 𝑛 (in pixels); 
(2) The index numbers of four edges are 1,2,3, and 4 (corresponding to the right, upper, left and 

lower side);  
(3) The area of single ideal particle is 𝐴𝑖𝑑𝑒𝑎𝑙 = 𝑆 𝑁⁄  (where S is the total area of the particles and N is 

the total number of particles); 

(4) The radius of ideal particle is  r =  √𝐴𝑖𝑑𝑒𝑎𝑙 𝜋⁄ ; 

(5) The particles in the row which are not completely filled  are equally spaced, and the number of 
which is: 

𝑡𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑎𝑟𝑦 = N − 𝑛ℎ𝑜𝑟𝑖𝑧𝑖𝑜𝑛 × 𝑛𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙  

Where 𝑛ℎ𝑜𝑟𝑖𝑧𝑖𝑜𝑛 is the particles number in one complete row, and 𝑛𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 is the number of complete rows. 

It has been proven that the final expression is the same regardless of the number of rows or particles 
being odd or even, and the following derivation is explained by taking an odd case as an example. As the 
symmetry of the left and right distributions, the static moments of the particles to the left and right edges 
are the same, while the static moments to the upper and lower edges need to be considered separately. 

To calculate the total static moment of right edge and left edge: firstly, the sum of the static moments of 
all particles of complete rows is considered, which can be calculated by Equation (8); and then the sum of 
the static moments of particles of the incomplete row is calculated by Equation (9). Finally, the sum of the 
two cases is the final result of the total static moment, which can be calculated by Equation (10). 

𝑀𝑖𝑛𝑡𝑎𝑐𝑡 =  ∑ 𝑀𝑖

𝑛𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙

𝑖=1

=  𝑛𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 ×   (𝐴𝑖𝑑𝑒𝑎𝑙  ×  
𝑛ℎ𝑜𝑟𝑖𝑧𝑖𝑜𝑛

2
 × 𝑚)                                                                         (8) 

Where, 𝑀𝑖 is the sum of the static moments of all the particles in one complete row, and 𝑖 is the index 

number of the row; 𝑛𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 is the number of complete rows. The following is an example to illustrate the 
solution process of  𝑀𝑖  using the first row which closest to the lower edge and the meanings of the 
parameters that have appeared are consistent with the preceding. 
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𝑀𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑎𝑟𝑦 =  ∑ (𝐴𝑖𝑑𝑒𝑎𝑙  ×  𝑙𝑖)   

𝑡𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑎𝑟𝑦

𝑖=1

=  𝐴𝑖𝑑𝑒𝑎𝑙  ×  
𝑡𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑎𝑟𝑦

2
 × 𝑚                                                   (9) 

Where, 𝑡𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑎𝑟𝑦 is the number of particles of incomplete row. 

𝑀𝑡𝑜𝑡𝑎𝑙_1 = 𝑀𝑡𝑜𝑡𝑎𝑙_3  =  𝑀𝑖𝑛𝑡𝑎𝑐𝑡 +  𝑀𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑎𝑟𝑦 =  
1

2
× 𝑚 × 𝑆                                                                           (10) 

Using a similar method, the total static moment to the upper and lower edge can be calculated. The 
derivation process is no longer given here, and only the final excretion is listed: 

𝑀𝑡𝑜𝑡𝑎𝑙_2 =  𝐴𝑖𝑑𝑒𝑎𝑙 × 𝑛ℎ𝑜𝑟𝑖𝑧𝑖𝑜𝑛 × 𝑛𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 × (𝑛 − 𝑟 × 𝑛𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙)

+  𝐴𝑖𝑑𝑒𝑎𝑙 × (𝑛 − (2 × 𝑛𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 + 1) × 𝑟) × 𝑡𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑎𝑟𝑦                                                    (11) 

𝑀𝑡𝑜𝑡𝑎𝑙_4 =  𝐴𝑖𝑑𝑒𝑎𝑙 × 𝑟 × (𝑛ℎ𝑜𝑟𝑖𝑧𝑖𝑜𝑛 ×  (𝑛𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙) 2 + (2 × (𝑛𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙  + 1) − 1) × 𝑡𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑎𝑟𝑦)           (12) 

Where, 𝑛ℎ𝑜𝑟𝑖𝑧𝑖𝑜𝑛  is the number of particles of one complete row,  𝑟  is the radius of ideal particle, 

𝑡𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑎𝑟𝑦 is the number of particles of incomplete row and 𝑛𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 is the number of complete rows. By 

substituting Equations (10), (11) and (12) into Equation (7), the value of SD in the least uniform 
distribution case can be obtained, which is defined as 𝑆𝐷𝑠𝑡𝑎𝑡𝑖𝑐_𝑚𝑜𝑚𝑒𝑛𝑡_𝑚𝑎𝑥. 

In this paper, the feature scaling is adopted to normalize 𝑆𝐷𝑠𝑡𝑎𝑡𝑖𝑐_𝑚𝑜𝑚𝑒𝑛𝑡 data, and the result is defined as 

the uniformity of particles distribution, denoted as  𝑈𝐴.  

𝑈𝐴 =  
𝑆𝐷𝑠𝑡𝑎𝑡𝑖𝑐_𝑚𝑜𝑚𝑒𝑛𝑡_𝑚𝑎𝑥 − 𝑆𝐷𝑠𝑡𝑎𝑡𝑖𝑐_𝑚𝑜𝑚𝑒𝑛𝑡_𝑎𝑐𝑡𝑢𝑎𝑙

𝑆𝐷𝑠𝑡𝑎𝑡𝑖𝑐_𝑚𝑜𝑚𝑒𝑛𝑡_𝑚𝑎𝑥 −  𝑆𝐷𝑠𝑡𝑎𝑡𝑖𝑐_𝑚𝑜𝑚𝑒𝑛𝑡_𝑚𝑖𝑛

= 1 −
𝑆𝐷𝑠𝑡𝑎𝑡𝑖𝑐_𝑚𝑜𝑚𝑒𝑛𝑡_𝑎𝑐𝑡𝑢𝑎𝑙

𝑆𝐷𝑠𝑡𝑎𝑡𝑖𝑐_𝑚𝑜𝑚𝑒𝑛𝑡_𝑚𝑎𝑥

                                          (13) 

Where 𝑈𝐴  is the uniformity of particles distribution; 𝑆𝐷𝑠𝑡𝑎𝑡𝑖𝑐_𝑚𝑜𝑚𝑒𝑛𝑡_𝑎𝑐𝑡𝑢𝑎𝑙 , 𝑆𝐷𝑠𝑡𝑎𝑡𝑖𝑐_𝑚𝑜𝑚𝑒𝑛𝑡_𝑚𝑎𝑥  and  

𝑆𝐷𝑠𝑡𝑎𝑡𝑖𝑐_𝑚𝑜𝑚𝑒𝑛𝑡_𝑚𝑖𝑛 respectively denote the SD values of actual distribution, least uniform distribution and 

ideal uniform distribution states, and the value of 𝑆𝐷𝑠𝑡𝑎𝑡𝑖𝑐_𝑚𝑜𝑚𝑒𝑛𝑡_𝑚𝑖𝑛 is zero. According to Equation (13), 

the range of 𝑈𝐴 is [0, 1] and the larger  𝑈𝐴 is, the more uniform particles distribution is, and vice versa. 

4. CALCULATION AND ANALYSIS OF PARTICLES DISTRIBUTION UNIFORMITY OF LAM  

Applying the above algorithm, the uniformity of LAM during the paving process can be calculated and 
evaluated. 1,000 images randomly selected from 1085 images collected at the construction site were 
processed to determine the uniformity judging criterion. The remaining 85 photos are used to verify the 
plausibility of the uniformity judging criterion. All these images were taken at the height of 60cm and were 
shot vertically. The dimensions of all the pictures are 3264 × 2448 pixel (length × width) and the gradation 
of test loose asphalt mixture is AC-25. 

Figure 8 shows the frequency distribution and cumulative distribution diagram of 𝑈𝐴. It can be seen that 

the most of values of 𝑈𝐴 are concentrated in the range of (0.91, 1], a total of 979 samples, accounting for 
97.9% of the total samples. Among them, most of the samples, with a total of 767 samples, are 
concentrated in the range of (0.95, 1], accounting for 76.7% of the total samples; there are fewer samples, 
27 samples, with the uniformity value in the range of (0.90, 0.92], accounting for 2.7% of the total samples; 
only 11 samples of which the uniformity value is less than 0.90, accounting for 1.1% of the total samples. 
This is consistent with the actual situation during the construction that most of loose asphalt mixtures 
meet the requirements of uniformity. Based on the above analysis, the approximate starting 𝑈𝐴 value of 
criterion can be determined, which is likely to be around 0.90. We selected representative positions (𝑈𝐴 
take the minimum value, 0.9, 0.91, 0.92, 0.94, 0.96, 0.98, and the maximum value), and the 
representative images are shown in Figure 9. 
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Figure 8 Frequency distribution and cumulative distribution of 𝑈𝐴 

 

Figure 9. Comparison of different 𝑈𝐴  

Observing Figure 9, when 𝑈𝐴 < 0.91, the distribution of particles is obviously uneven, and coarse particles 
are concentrated in the upper right corners; when 𝑈𝐴 ≥ 0.91 , the uniformity of particles distribution 
satisfies the requirements, and there is no obvious concentration of particles. We also find that as the 
value of 𝑈𝐴 increases, the uniformity of particle distribution is better. Based on the above analysis, it is 
reasonable to select 𝑈𝐴 = 0.91 as the value of the uniformity criterion during the paving process. The 
demarcation criterion is used to analyze the remaining 85 images to verify the correctness of the criteria. 
By calculation, there is only one image with uniformity problem. The  𝑈𝐴 value of the sample is equal to 

0.895 and less than criterion value 0.91. Moreover, there are two samples of which the  𝑈𝐴 values are 
slightly larger than 0.91.The original images of the representative point are shown in Figure 10 to test the 
division accuracy. 

 
Figure 10 Original image of the representative verification images 

Figure 10 shows that the particles of the verification image, No.1046, relatively concentrated in the upper 
left corner under visual conditions. For the image, No.1024, of which the value of 𝑈𝐴 is 0.911 and which 
just meet the requirement value, 0.91, although there is a concentration of coarse aggregate in the middle 
part of the sample, the overall uniformity is good. The 𝑈𝐴 values of No.1027 and No.1013 are far greater 
than the cutoff value of 0.91, and the uniformity of particles distribution is good. It can be seen that the 
demarcation criteria of uniformity, 𝑈𝐴 = 0.91, is reasonable, and can be used to correctly distinguish 
uniform and uneven samples. 

5. Conclusion 
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It is feasible to use the image processing technique to detect the uniformity of particles distribution during 
asphalt pavement paving process, and the key to success depends on the successful identification and 
segmentation of particles, the proper algorithm of particles distribution uniformity and reasonable 
demarcation criteria. 

The improved watershed segmentation method based on extended-maxima transform is proposed, which 
can effectively restrict the over-segmentation and achieve successful segmentation of adhesion particles. 
The accuracy of segmentation is as high as 98%. 

Based on the theory of static moment, considering the effect of particle size and position on uniformity, 
computational model of distribution uniformity is built. The demarcation criterion of uniformity is 
determined by analyzing the field data. when 𝑈𝐴 ≥ 0.91, the paving uniformity is good, and vice versa. 
And the correctness of the standard was verified by the remaining 85 photos analysis. 
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