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Abstract: Construction project productivity is affected by numerous factors that range from the micro level 
(i.e., activity, crew, and project levels) to the macro level (i.e., organizational, provincial, national, and global 
levels) and that may have either a direct or an indirect effect. Predictive models commonly map a set of 
inputs (i.e., influencing factors) to construction productivity but ignore the interrelationships between those 
different factors. The factors that influence construction productivity are, however, rarely independent from 
each other, and changes in certain factors may cause changes in other factors. It is therefore necessary to 
consider the interactions between factors in order to develop more comprehensive predictive models. This 
is a challenging problem due to the subjective uncertainties associated with the interactions between factors 
influencing construction productivity. In order to address these uncertainties, this paper combines fuzzy 
logic with the interpretive structural modeling (ISM) technique to create a fuzzy ISM approach for identifying 
the interrelationships between the factors that influence construction productivity. The proposed approach 
will assist in specifying the direction and degree of influence of the relationships between these factors, and 
it is also capable of categorizing factors based on their level of influence and dependency on other factors.  

1 INTRODUCTION 
The construction industry employs approximately seven percent of the world’s working-age population and 
is one of the largest sectors of the world’s economy, with $10 trillion spent on construction-related goods 
and services every year (Barbosa et al. 2017). On large-scale construction projects around the globe, 
improvements in project management and technological innovation can increase the chance of project 
success. Since construction productivity is an important factor in the profitability of construction projects, it 
is one of the most frequently used performance indicators for assessing the success of construction 
projects. Accordingly, productivity is a well-researched topic in the construction industry (Yi and Chan 
2014). Construction activities, depending on the resource that drives their productivity, can be categorized 
as either labour-intensive or equipment-intensive. Extensive research has been conducted on the 
construction productivity of labour-intensive activities (Dai 2006; Jarkas and Bitar 2012; Tsehayae and 
Fayek 2014; Tsehayae and Fayek 2016; Yi and Chan 2014), and a handful of research papers have recently 
been published on the productivity of equipment-intensive activities (Ok and Sinha 2006; Goodrum et al. 
2010; Gerami Seresht and Fayek 2018). The contributions of these papers include a critical review of 
previous works, a comprehensive list of factors influencing construction productivity, and an exploration of 
how these factors are used to predict productivity at the activity or project level. Predictive models 
developed for construction productivity commonly map a set of inputs (i.e., influencing factors) to 
construction productivity, but these models often ignore the interrelationships between those factors. Since 
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each construction project works as a system, it can be argued that any influencing factor within the system 
has both an individual impact on construction productivity and an impact on other factors within the system. 
Therefore, it is necessary to account for the interactions of factors influencing construction productivity in 
order to develop a comprehensive productivity model. 

The challenge in identifying the interrelationships between the factors that influence construction 
productivity lies in the uncertainty of each factor’s strength of impact and its direction of influence. To 
address these uncertainties, this paper proposes a fuzzy interpretive structural modeling (fuzzy ISM) 
technique. ISM is an effective approach that is widely used to identify the relationships between different 
variables by creating a comprehensive systematic model of directly and indirectly related factors (Khatwani 
et al. 2015). The integration of ISM with fuzzy sets allows decision makers the flexibility to determine the 
level of influence of one factor over another. This is achieved by describing the degree of influence between 
two factors using a set of linguistic terms (e.g., low, medium, high), each of which represents an uncertain 
range of values from [0, 1], rather than the binary values of 0 and 1 that are used in ISM to represent the 
non-existence and existence, respectively, of a relationship.  

The remainder of this paper is structured as follows: Section 2 presents a literature review of ISM and fuzzy 
logic; Section 3 illustrates the methodology for combining the two techniques to capture the relationships 
between the factors that influence construction productivity; Section 4 presents an application of the 
proposed methodology for the identification of relationships between a subset of those factors, which has 
been extracted from an illustrative data set; and Section 5 presents conclusions and future research 
directions. 

2 LITREATURE REVIEW 

2.1 Interpretive Structural Modeling (ISM)  
ISM, first introduced by Warfield (1974), is a well-established methodology for identifying the relationships 
between the different variables of a dataset, which is developed to define a problem (e.g., construction 
productivity) in a given domain (e.g., construction management). The existence of a relationship between 
variables is presented in the form of binary numbers, where 0 stands for the non-existence and 1 stands 
for the existence of the relationship. ISM represents the relationships between variables using either (1) a 
digraph (i.e., a directed graph), which is a set of elements connected by arrows, or (2) a matrix (Hwang and 
Lin 1987). Thus, the ISM technique models the overall structure of a real-world system in an abstract way 
by establishing the interrelationships between its different components, from which the complex patterns of 
system behavior stem. It can be also considered a modeling technique, since the specific relationships and 
overall structure are portrayed in a digraph model (Attri, Dev, and Sharma 2013).  

In spite of the capabilities of the ISM technique, it is challenging to use ISM to establish the interrelationships 
between the factors influencing construction productivity due to the uncertain nature of such relationships. 
More specifically, due to the subjective uncertainty of the factors that influence construction productivity, it 
is difficult to predict the magnitude of their impact on one another using binary values. Hence, the standard 
binary values used in the ISM technique may not be appropriate for measuring the interactions between 
these factors. Therefore, in this paper, fuzzy logic is hybridized with the ISM modeling technique to 
overcome this limitation.  

2.2 Fuzzy ISM 
The relationships that exist between the variables that define a problem in a given domain can be inherently 
uncertain, making it challenging to assign crisp numerical values to the magnitudes of those relationships. 
The concept of fuzzy logic was introduced to ISM to improve its ability to handle such uncertainties. Fuzzy 
logic is an appropriate technique for addressing the uncertain nature of the relationships between 
productivity factors, which are defined based on the subjective judgment of experts. First addressed by 
Zadeh (1965), fuzzy set theory, on which fuzzy logic is based, allows for a generalization of classical set 
theory that makes it possible to model complicated, uncertain, and ill-defined systems (Chan, Chan, and 
Yeung 2009). Fuzzy sets with non-sharp boundaries are typically able to use “linguistic variables and 
membership functions with varying grades to model uncertainty inherent in natural language” (Chan, Chan, 
and Yeung 2009).  
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Although fuzzy logic and ISM are both well-established concepts, the implementation of fuzzy ISM is a 
relatively new occurrence. Khatwani et al. (2015) used fuzzy ISM to determine the interrelationships 
between the different criteria taken into consideration when selecting vendors. By introducing fuzzy logic to 
ISM, it was possible to determine the degree of influence of one criterion over another. Bhosale and Kant 
(2016) used a methodology integrating fuzzy logic and ISM to inspect the interrelationships between supply 
chain knowledge flow enablers (SCKFEs). The ISM methodology analyzed the interactions between the 
SCKFEs, and fuzzy cross-impact matrix multiplication applied to classification (MICMAC) analysis was 
employed to obtain insights into the dependencies among the SCKFEs. Dube and Gawande (2015) used 
a fuzzy ISM-based methodology to identify the barriers to implementing a green supply chain and to 
understand their mutual relationships. Chaudhuri et al. (2016) proposed a fuzzy ISM-based methodology 
to identify the various risk drivers that affect a food processing supply chain and to map how those risk 
drivers propagate risks through the supply chain. Through the concept of fuzzy logic, the methodology 
proposed by Chaudhuri et al. (2016) can help to clarify the interrelationships between supply chain risks 
and between those risks and performance measures. Applications of fuzzy ISM-based approaches in 
construction management studies are even more recent. Etemadinia and Tavakolan (2016) and Tavakolan 
and Etemadinia (2017) used the fuzzy weighted ISM approach to establish a network of risk factor 
interactions on construction projects. Their work provided the necessary means for exploring the influence 
of a risk factor on project success and its dependence on others factors. In addition, it identified the key 
factors that drive the management of project risks and ranked the factors based on their degree of influence 
on project success. 

Although the capacity of a fuzzy ISM approach to identify the interrelationships between different factors of 
a system has been proven in previous research, there is no study implementing such an approach to model 
the interrelationships between factors affecting productivity. This paper aims to address that knowledge 
gap. In order to implement the fuzzy ISM approach, a set of fuzzy membership functions needs to be defined 
to represent the different levels of influence between the factors affecting construction productivity. In this 
paper, fuzzy triangular membership functions are used because according to Pedrycz and Gomide (2007), 
these membership functions are one of the most common membership functions in engineering 
applications. The triangular membership function is defined by a lower limit a, an upper limit c, and the core 
value b, where a≤b≤c, to represent linguistic variables. The points a, b, and c represent the x coordinates 
of the three vertices of the triangular membership function (µA(x)) in a fuzzy set A. A triangular fuzzy number 
A is shown as a triplet (a, b, c) in Figure 1.  

Figure 1: Fuzzy number with triangular membership function 

The membership function µA(x) is defined by Equation 1. 
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3 PROPOSED FRAMEWORK FOR EVALUATING RELATIONSHIPS BETWEEN FACTORS 
INFLUENCING CONSTRUCTION PRODUCTIVITY 

The proposed framework establishes the direction and degree of influence between factors influencing 
productivity. In addition, it distinguishes between direct and inverse types of causal relationships. The 
methodology is depicted in Figure 2, and the details of the steps involved are discussed in Section 3.1. 

   

Figure 2: Flow chart for the integrated fuzzy ISM methodology 

3.1 Methodology for Identifying Interrelationships between the Factors Influencing Productivity   
Step 1. Identify factors:  

Identify the factors that affect the productivity of a construction activity and categorize the 
factors based on their source (e.g., foreman-related factors, location-related factors, etc.) 
(Gerami Seresht and Fayek 2018). The factors that influence construction productivity are 
identified through a literature review and validated by expert knowledge using surveys or focus 
groups. 

Step 2. Establish directional relationships between factors and develop a structural 
self-interaction matrix: 

To analyze factors, a directional relationship of the influence type is chosen. This means that 
one factor influences another factor. For this purpose, experts should be surveyed to identify 
the directional relationships between any given pair of factors. The survey collects the experts’ 
knowledge of: 
­ The direction of the relationship between two factors using the four designated symbols 

V, A, X, and O, where V stands for the relation from factor i to factor j (i.e., factor i will 
influence factor j); A stands for the relation from factor j to factor i (i.e., factor i will be 
influenced by factor j); X stands for relations in both directions (i.e., factors i and j will 
influence each other); and O stands for no relation between the factors (i.e., factors i and 
j are unrelated). 
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­ The type of relationship between the factors as direct or inverse. A direct relationship 
implies that as factor i increases, factor j also increases, and an inverse relationship 
implies that as factor i increases, factor j decreases. 

­ The degree of influence of one factor on the other using five linguistic terms: very low, low, 
medium, high, and very high. 

Based on the directional relationships, the structural self-interaction matrix (SSIM) is 
developed. The elements of the SSIM represent the relationships between the different 
factors, which are determined by the four symbols V, A, X, and O. The symbols indicate 
whether or not a relationship exists between two factors and, if a relationship does exist, what 
its direction is.  

Step 3. Develop a reachability matrix:  
By transforming the information of each cell of the SSIM (i.e., V, A, X, and O) into binary values 
(i.e., 0 or 1), an initial reachability matrix is obtained. This establishes a link between factors 
for the final fuzzy ISM network. The link does not represent the degree of influence between 
the factors. The rules for this transformation are (Attri, Dev, and Sharma 2013):  

a) If the (i, j) entry in the SSIM is V, then the (i, j) entry in the reachability matrix is 1 and 
the (j, i) entry is 0.  

b) If the (i, j) entry in the SSIM is A, then the (i, j) entry in the matrix is 0 and the (j, i) entry 
is 1.  

c) If the (i, j) entry in the SSIM is X, then the (i, j) entry in the matrix is 1 and the (j, i) entry 
is also 1. 

d) If the (i, j) entry in the SSIM is O, then the (i, j) entry in the matrix is 0 and the (j, i) entry 
is also 0. 

Thereafter, the concept of transitivity is applied, some of the cells of the initial reachability 
matrices are adjusted for, and the final reachability matrix is obtained. The transitivity of the 
relationships is a basic assumption made in the ISM method which indicates that if element X 
is related to element Y, and element Y is related to element Z, then element X is necessarily 
related to element Z. 

Step 4. Partition the reachability matrix into different levels: 
Level partitions are made to determine the factors’ hierarchy, which helps to establish the 
levels of the driving factors within the productivity model. In other words, it forms a structure 
starting from the most independent factor to the most dependent factor in the model. The 
levels are partitioned from the final reachability matrix by first forming the reachability set and 
the antecedent set for each productivity factor. The reachability set includes the factor itself 
and all other factors that it influences, and the antecedent set includes the factor itself and all 
other factors that it is influenced by. Then, the intersection set is formed from these two sets 
for all factors. The intersection is the set of elements common to both the reachability set and 
the antecedent set of the same factor. Next, the factors for which the reachability set and the 
intersection set are equal are assigned as the top-level factors in the ISM hierarchy. The 
top-level factors are then removed from the set and the reachability and intersection sets are 
recalculated for all remaining factors. The process is repeated to ascertain the elements in the 
next level of the hierarchy. The identified levels aid in building the final model of fuzzy ISM. 
This process is repeated until the ISM hierarchy level of each factor is determined. 

Step 5. Draw the interaction digraph and ISM model: 
Factors and their interdependencies are represented in terms of nodes and arrows. If there is 
a relationship between factors i and j, this is shown by an arrow that points from node i to node 
j or vice versa, based on the SSIM. These graphs are called directed graphs or digraphs. Once 
the ISM-based digraph is constructed, it should be reviewed to check for consistency with the 
established directional relationship (step 2) and make any necessary modifications. 

Step 6. Develop a linguistic assessment direct reachability matrix: 
Based on the collected expert knowledge about the degree of influence of one factor over the 
other factors (referring to step 2), the binary values of the relationship matrices that represent 
the existence and non-existence of relationships are replaced with the triangular fuzzy 
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numbers (TFNs) representing the degree of influence of one factor over another factor 
(Bhosale and Kant 2016). The linguistic terms representing the degree of influence and their 
corresponding triangular fuzzy membership functions are adopted from Tavakolan and 
Etemadinia (2017) and Khatwani et al. (2015) (Table 1 and Figure 3).  

 Table 1: Linguistic terms for the degree of influence 

Linguistic Term Triangular Fuzzy Number (TFN) 
Very low [0.0, 0.0, 0.25] 

Low [0.0, 0.25, 0.5] 
Medium [0.25, 0.5, 0.75] 

High [0.5, 0.75, 1.0] 
Very high [0.75, 1.0, 1.0] 

Figure 3: Triangular fuzzy numbers for linguistic terms 

To this end, the SSIM is converted into a fuzzy reachability matrix by replacing the binary 
values with the fuzzy numbers that represent the strength of the relationships.  

Step 7. Assign a fuzzy number to each interaction: 
Each expert’s opinion regarding the degree of influence of each relationship is transformed to 
a TFN according to Table 1 (see step 6). To assign a single fuzzy number for each interaction, 
the average of the fuzzy numbers is calculated.  

Step 8. Classify factors into four categories: 
The driving power and dependence power for each factor are determined so the factors can 
be classified into four groups. The driving power accounts for the total number of factors a 
given factor influences, and the dependence power accounts for the total number of factors 
that influence a given factor. The driving power of a factor is derived by summing all the values 
of the final reachability matrix (step 3) in its corresponding row; its dependence power is 
determined by summing all the values of the matrix in its corresponding column. Based on 
their driving power and dependence power, factors are classified into four groups (Tavakolan 
and Etemadinia 2017): 
­ Autonomous factors: These factors have a weak driving power and a weak dependence 

power, which means they have the lowest number of links with other factors in the 
established fuzzy ISM model. 

­ Linkage factors: These factors have a strong driving power as well as a strong 
dependence power. In other words, they have the largest number of links of both 
influencing and influenced by factor types. These factors are considered unstable because 
any action directed toward or exerted on these factors will have a subsequent influence 
on a number of factors. These changes in the remaining factors are in return reflected 
back on themselves. 

­ Dependent factors: These factors have a weak driving power but a strong dependence 
power. They have the least effect on the other factors. 

­ Independent factors: These factors have a strong driving power but a weak dependence 
power. They have the most effect on the other factors. 
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4 APPLICATION OF THE PROPOSED FRAMEWORK 
This section presents an example of how the proposed framework can be used to establish the 
interrelationships between a subset of seven location-related factors that influence productivity. The factors 
were identified by Gerami Seresht and Fayek (2018), and the interrelationships were established through 
the eight steps presented in Section 3.1. 

Step 1. Factor identification: The seven location-related factors selected in this example are 
spaciousness of working area (PF1), site restrictions (PF2), soil type (PF3), soil moisture (PF4), 
groundwater level (PF5), underground facilities (PF6), and hauling/delivery distance (PF7). 

Step 2. Establish directional relationships between factors and develop the SSIM: Based on the 
results of pairwise comparisons conducted by four experts, the relationships between the factors are 
established. Next, the consolidated SSIM and the relationship types are determined as presented in Table 
2. 

Table 2: Final SSIM and type of relationship 

SSIM PF
1 

PF
2 

PF
3 

PF
4 

PF
5 

PF
6 

PF
7 Type of 

relationship PF
1 

PF
2 

PF
3 

PF
4 

PF
5 

PF
6 

PF
7 

PF1   A A O O A X PF1   I I N/A N/A D I 
PF2     A O A A V PF2     I N/A D D D 
PF3       V O O O PF3       D N/A N/A N/A 
PF4         A O O PF4         D N/A N/A 
PF5          V O PF5           I N/A 
PF6             O PF6             N/A 
PF7               PF7               

Step 3. Develop the reachability matrix: In this step, the elements of the SSIM matrix (i.e., V, A, X, and 
O) are transformed into binary values (i.e., 0 or 1) and the initial reachability matrix is constructed. The final 
reachability matrix (Table 3) is obtained by applying the concept of transitivity to the initial reachability matrix 
in order to determine the indirect relationships that exist between factors. 

Table 3: Final reachability matrix with driving power and dependence calculation 

Final Reachability Matrix  

PF
1 

PF
2 

PF
3 

PF
4 

PF
5 

PF
6 

PF
7 Driving power 

PF1 1 0 0 0 0 0 1 2 
PF2 1 1 0 0 0 0 1 3 
PF3 1 1 1 1 0 0 1* 5 
PF4 0 0 0 1 0 0 0 1 
PF5 1* 1 0 1 1 1 1* 6 
PF6 1 1 0 0 0 1 1* 4 
PF7 1 0 0 0 0 0 1 2 

Dependence power  6 4 1 3 1 2 6 23 

 

Step 4. Partition the reachability matrix into different levels: In order to determine the hierarchy of 
factors and construct the ISM network model, the factors are categorized into different levels using the 
reachability and antecedent sets. Accordingly, four levels are identified as shown in Figure 4, with PF1, 
PF4, and PF7 occupying the top level and PF5 occupying the bottom level.  
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Figure 4: Digraph of the ISM model 

Step 5. Draw the interaction digraph and the ISM model: Using the final reachability matrix developed 
in step 3 and the level partitions developed in step 4, the ISM network digraph is generated, as shown in 
Figure 4. 
Step 6. Develop the linguistic assessment of the direct reachability matrix: In this step, the linguistic 
terms used by the experts to determine the strength of the relationships between factors are represented 
by fuzzy numbers (refer to Table 1), and the fuzzy reachability matrix is developed for each expert.  

Step 7. Assign a fuzzy number to each interaction: In this step, the five fuzzy reachability matrices 
developed in the previous step are aggregated by averaging the opinions of the experts regarding the 
strength of each relationship using fuzzy arithmetic operations. As a result, the aggregated strength of each 
relationship in the ISM model (Figure 4) is determined by a fuzzy number, as shown in Table 4.  

Table 4: Averaged TFNs of each relationship in the fuzzy ISM model 

Relationship Influence Factor (Fuzzy Number) 

PF5-► PF6 [0.35, 0.60, 0.80] 
PF6-► PF2 [0.65, 0.90, 1.0] 
PF2-► PF7 [0.50, 0.75, 0.95] 
PF3-► PF2 [045, 0.70, 0.90] 
PF3-► PF4 [0.00, 0.05, 0.30] 
PF5-► PF6 [0.45, 0.70, 0.90] 

PF1◄-► PF7 [0.15, 0.40, 0.65] 

Step 8. Classify factors into four categories: Based on the driving power and dependence power of each 
factor, as computed in step 3 (refer to Table 3), the factors are classified into four categories (i.e., 
autonomous, linkage, dependent, or independent). The driving–dependence power diagram is plotted to 
show the grouping of these factors in Figure 5. The break lines forming the four grouping quadrants are 
established by computing the break point coordinates, which are the average of the driving power and the 
average of the dependence power. 

 
Level 1 

 

Level 4 
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Figure 5: Driving–dependence power diagram 

The diagram indicates that soil type (PF3), groundwater level (PF5), and underground facilities (PF6) are 
the main drivers of the model (independent factors), whereas spaciousness of working area (PF1), site 
restrictions (PF2), and hauling/delivery distance (PF7) are the most dependent factors. Soil moisture (PF4) 
is found to be an autonomous factor, and there are no linkage factors (unstable factors).  

5 CONCLUSIONS AND FUTURE STEPS 
Due to the significance of productivity for the successful delivery of construction projects, construction 
productivity is one of the most researched topics in the construction domain. Predictive models developed 
for construction productivity commonly map a set of inputs (i.e., influencing factors) to productivity, but they 
often ignore the interrelationships between the factors that influence productivity. Since construction 
projects work as a system, it can be argued that any influencing factor in such a system has an individual 
impact on construction productivity as well as an impact on the other factors within the system. In this paper, 
a new framework is introduced to identify the interrelationships between the factors that influence 
productivity by integrating fuzzy logic with the ISM approach. The use of the ISM approach makes it possible 
for this framework to be used to identify the interrelationships between the factors that influence productivity, 
and the use of fuzzy logic allows the user to subjectively determine the degree of influence between any 
two factors using linguistic terms rather than the binary numbers (1 or 0) used in a conventional ISM 
approach. Determining the interrelationships between the factors influencing productivity helps construction 
practitioners identify the most influential factors in their projects and helps researchers develop more 
accurate predictive models of construction productivity. The proposed framework categorizes the factors 
influencing productivity based on the level of influence they have on other factors and the level of influence 
they receive from other factors. This categorization supports the development of predictive models of 
productivity using the system dynamics technique by identifying the dynamic and auxiliary variables of the 
system.  

In future research, the proposed framework will be used to identify the interrelationships between a 
comprehensive list of the factors influencing productivity, and the results will be used to develop predictive 
models of construction productivity at the project level using the fuzzy system dynamics modeling 
technique.  
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