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Abstract: About $12.2 billion were estimated for repairs of approximately 17% of California’s bridges, at 

the beginning of 2018. This significant cost refers to the importance of preventive maintenance actions to 
reduce the deficient bridges. Deterioration models were widely used as a guide for identifying the 
maintenance priority and consequently reducing the cost of repairs. Prestressed concrete bridges represent 
about 24% of bridges in California. Thus, detecting damages and rating condition for these bridges is a 
contribution to the bridges maintenance system. This paper has utilized National Bridge Inventory (NBI) 
database for California State in order to develop four regression models for predicting the superstructure 
condition of four structure types (Slab ; Stringer / Multi Beam or Girder; T- Beam; and Box Beam or Girder). 
The developed models have investigated the significant variables on the superstructure deterioration using 
regression modeling. This research has come out with significant impact of eight variables with high 
coefficient of determination (R2=86%).   The developed models have been validated using average validity 
percentage method (AVP) with a satisfactory result “93%”. The developed models will help infrastructure 
agencies to prioritize the maintenance process for bridges, and support the inspected condition rating with 

objective opinion instead of subjective expert opinion only. 

1. INTRODUCTION 

Bridges represent the key component of the infrastructure system, therefore any disability of transportation 
because of its deterioration results in extensive and costly rehabilitation, as well as social and environmental 
impacts. Infrastructure agencies should have a maintenance plan to prioritize its actions and allocate 
available funds appropriately (TranSystems Corporation 2011). AASHTO (1993) has considered the 
deterioration models as one of the minimum requirements for managing the bridges systems. They take 
into account the inspection variables to track the physical deterioration of their bridge and consequently 
make the decisions for maintenance (Manafpour 2018, Chang et al. 2017, Saeed et al. 2017, Morcous & 
Hatami 2011, Morcous et al. 2002).  The Federal Highway Administration's National Bridge Inventory (NBI) 
database is one of the main data sources to be utilized in different techniques. The NBI database assembles 
reliable information of bridge inventory data and operating variables at the level of individual bridge 
elements (Deck, Superstructure, and Substructure) (Nieto et al. 2018, Nieto & Cristian 2017, Tolliver and 
Lu 2012, Veshosky 1994). The NBI have inspected different structure materials for bridges such as 
concrete, prestressed concrete, steel, and timber. ASCE infrastructure (2018) has reported that at the 
beginning of 2018, about 6.2% of California’s bridges are structurally deficient and approximately 17% of 
California’s bridges are estimated to cost about $12.2 billion for repairs. Prestressed concrete bridges have 
been built in California State since 1931 up to now, and represent about 24% of its bridge networks 
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(USDOT, 2017). Detecting damages and rating condition for these bridges contributes to the bridges 
maintenance system. “Predicting the Deck” condition has been studied more than the other components, 
although it has been found that the superstructure elements are considered as one of more critical elements 
to the bridge system deterioration compared to decks (Inkoom & Sobanjo, 2018). Therefore, this study 
focuses on modeling the superstructure condition for prestressed concrete bridges , through addressing 
four types of superstructure component; slab, Stringer / Multi Beam or Girder, T- Beam, and Box Beam or 
Girder. 

2. BACKGROUND 

Tolliver and Lu (2012) has referred to the subjectively record, which may vary from inspector to another.  
Therefore, the deterioration models are considered as a supportive tool from an empirical standpoint to the 
physical inspection. Moreover, they assist decision-makers in predicting the condition of facilities and 
consequently prioritize the allocation of the scarce resources for maintenance (Morcous et al., 2002).  The 
deterioration models have been classified into three categories: Deterministic, Stochastic approaches, and 
Artificial intelligence models (Inkoom& Sobanjo, 2018; Chang et al., 2017; Saeed et al. 2017, Moomen 
2016, Saeed et al. 2016, Bu et al. 2013, Morcous et al. 2002, Veshosky et al. 1994). Chang et al. (2017) 
and Smith & Saitta (2008) believed that the deterministic approach is still meaningful to investigate the 
bridge inventory classification according to explanatory variables. Deterministic models incorporate 
statistical relations for finding a correlation between a set of bridge variables and bridge conditions to 
establish a relationship between the functional properties of the bridge and the bridge element condition. 
Regression models are widely applied method for this approach for identifying the related significant factors 
to the response/predicted variable as well as the relation between them based on the observed data 
(Inkoom & Sobanjo 2018, Bektas et al., 2012).   
Database of NBI has been used in many studies with different approaches for different material structure 
to develope deterioration models (Nieto et al. 2018, Nieto & Cristian 2017, Saeed et al. 2017, Morcous & 
Hatami 2011, Veshosky 1994). These studies have used different approaches based on the available data 
in NBI. Within this context, several explanatory variables have been explored and examined to define their 
impact on the predicted condition rating.  Veshosky et al. (1994), have studied the deterioration rates of 
prestressed and steel concrete bridge superstructure using regression analysis, in terms of age and 
average daily traffic, as significant variables in seven selected states to represent diverse environments. 
The extracted models had coefficients of determination (R2) adjusted by about less than 50%.   Later, Kim 
& Yoon (2009), have studied the superstructure deterioration for the three material types (Concrete, 
Prestressed concrete, and steel), and classified for three structural types (Slab, Girder/beam, and truss); 
located in cold regions. They applied the approach of a combined of regression and Geographical 
information system. Their study come out with the significant factors; age, followed by the structural 
characteristics and traffic volumes. They referred to the service of water under the bridge that was critical 
to the deterioration in cold regions, and recommended the concrete bridges for cold region as more durable. 
Morcous (2011) has applied another approach using Markov transition probabilities based on NBI condition 
ratings for developing superstructure deterioration models for steel and prestressed concrete bridges in 
Nebraska. They classified the bridges in groups based on factors including deck type, wearing surface, 
deck protection, average daily traffic, average daily truck traffic, and highway district.  Saeed et al. (2017), 
have addressed the predictors for determining the service lives for presstressed concrete superstructure 
and how their influencing varies across four structure types (slab, stringer, T-BEAM, box-Beam). They used 
the exponential and polynomial functional forms as part of the modeling process.  They revealed that age, 
number of spans in one unit, and average daily truck traffic do significantly affect the bridge deterioration.     
Recently, Nieto et al. (2018) have estimated the probability of reaching deficiency for steel bridge 
superstructures. They applied the data mining techniques, which included the logistic regression, decision 
trees, neural networks, gradient boosting, and support vector machine using NBI database. The predictors 
of the developed model included age, average daily traffic, design load, maximum span length, owner, 
location, and structure length. Furthermore, Nabizadeh et al. (2018) have based on the statistical analysis 
for NBI records to incorporate the parameters of the type of bridge superstructure, bridge age, maximum 
span length and average daily traffic as potential risk factors in failure rate of bridge superstructures. The 
study results showed that maximum span length and average daily traffic could substantially affect the 
survival of bridge superstructures at various ages.  
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Based on the above literature review, it has been found that the operational and design variables have 

been studied more than others; such as Age, Average daily traffic (ADT), Percentage Average daily truck 

traffic, Structure length, and Max. Span length. While, other variables such as Deck with, Roadway width, 

Skew degrees, and Structural type have been examined in limited studies. Therefore, this paper has 

selected both of limited and common variables as potential predictors to examine how they affect together 

on prestressed bridge superstructure deterioration.  

3. METHODOLOGY 

This research has mainly focused on developing a model for predicting superstructure condition of 
prestressed concrete bridges. For achieving that goal, the literature review has come out with the candidate 
variables, then the regression approach has been used to identify the significant variables affecting the 
superstructure condition. The proposed methodology for the research is shown in Figure 1. This scheme 
has illustrated as well, the next processes of statistical analysis for testing significance, and Model 
validation, up to concluded results. 

Selected explanatory 

variables

Data Collection

Data Best Subset

Developing Regression 

model & statistical analysis

Model Validation

Results Analysis and 

Conclusions

NBI Database

Literature review

Explanatory 

Variables

 

Figure 1. Research Methodology  

4. DATA COLLECTION: 

The collected data based on the inspection and inventory data NBI of 2017 for prestressed concrete bridges 
in California State. At the beginning, the observations related to bridge reconstruction or rehabilitation were 
excluded in this study to avoid the conflict of reconstruction impacts. The collected data was mainly for 
urban roads, with length of maximum span (between 20 - 30m), and Aged from 30 to 39 years. These 
filtration and classification processes have narrowed the sample size to contain 30 bridges. The included 
structure types were four types: slab; Stringer / Multi Beam or Girder; T- Beam; and Box Beam or Girder. 
Where both of Stringer / Multi Beam or Girder, and Box Beam or Girder represent the majority bridges; 
about 93% of sample size. 
The dependent variable of the model was the superstructure condition rating. According to (FHWA 1995) 
ranges from zero to nine, where nine for the best condition and zero is the worst rating .While the 
independent variables have included quantitative and qualitative variables. Quantitative variables 
composed of estimated age, average daily traffic (ADT), percentage average daily truck traffic, structure 
length, deck width, roadway width, skew degrees, and max span length. While qualitative/category variable 
was the structure type. The description of these variables even integer or dummy variables were listed in 
Table1.  
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Table 1. List of Variables Used in This Study with description 

Variables in Study Code Description* 

Estimated AGE(years) AGE years since initial Construction of bridge up to 2017 

Average Daily Traffic (Vehicle/Day) ADT Average Daily Traffic (Vehicle/Day) 

Degree of skew (Degrees)  DS The angle between the centerline of a pier and a line 
normal to the roadway centerline. 

Max. Span Length(m) ML Length of Maximum Span. 

Structure Length(m) SL The length of roadway, which is supported on the 
bridge structure; from back to back of the abutments. 

Roadway width(m) RW It is the most restrictive minimum distance between 
curbs or rails on the structure roadway.  

Deck Width (m) DW Deck width, out-to-out 

Percent Average Daily Truck Traffic 
(%) 

PT Percent Average Daily Truck Traffic. 

Structure Type (Integer) ST (Slab ; Stringer / Multi Beam or Girder; T- Beam, and 
Box Beam or Girder ) 

*The Description from NBI coding guide (FHWA 1995). 

5. MODEL DEVELOPMENT 

5.1.  Best subset and Regression model  

About 80% of the collected data (24 bridges 80%) were selected and included for model building process 
and the remaining data are excluded for later validation processes. Minitab 18 as statistical software has 
been used for developing the regression model and statistical analysis. Best subset analysis identifies the 
best fit regression model that can be conducted with the specified number of variables with regard to the 
highest R2 values. Consequently, many iterations have been done to get the highest R2 and these trials 
included additional factors based on literature review in addition to that listed in Table 1. These include, 
frequency of inspection, service type on the bridge, service under the bridge, and surface type, but these 
earlier iterations have come out with low R2 (R2< 70%). Based on the analysis of data in hand, the final list 
of significant variables have been prepared for developing regression models.   

5.2. Model building and statistical analysis: 

As a result of best subset analysis the regression models were conducted for further analysis. The 
regression equations for the developed models were listed in Table 2, where the models were classified 
according to the included four structure types.  

Table 2. Developed Regression model for Predicting Superstructure condition for Prestressed 
Bridges 

Structure Type Regression Model for predicting superstructure condition rating  Points 

slab 
7.51 - 0.0733 AGE - 0.000003 ADT+ 0.00457 DS - 0.0275 ML- 0.00392 SL  
+ 0.1249 RW- 0.0984 DW+ 0.0048 PT 

1 

Stringer / Multi 
Beam or Girder 

11.17 - 0.0733 AGE - 0.000003 ADT+ 0.00457 DS - 0.0275 ML- 0.00392 SL  
+ 0.1249 RW- 0.0984 DW+ 0.0048 PT 

10 

T- Beam 
11.20 -0.0733 AGE - 0.000003 ADT+ 0.00457 DS - 0.0275 ML- 0.00392 SL  
+ 0.1249 RW- 0.0984 DW+ 0.0048 PT 

1 

Box Beam or 
Girder 

10.87 -0.0733 AGE - 0.000003 ADT+ 0.00457 DS - 0.0275 ML- 0.00392 SL  
+ 0.1249 RW- 0.0984 DW+ 0.0048 PT 

12 

According to the Minitab output for the developed model, The R2 is 86.13%, which indicates that the 
predictors explain 86.13% of the variance in “response variable- superstructure condition rating”. The P-
value is asked for testing the significance results for the developed models.  P-value (statistical 
significance) for the developed model is 0.001(P-value<0.05), meaning that that the estimated model is 
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sound and significant at α-level of 0.05 and 0.01, and the null hypothesis is rejected. This means that none 
of the regression coefficients is zero.  

5.3. Residual analysis 

Figure 2 shows the normal probability and frequency plots for the residuals of the developed models. The 
normal probability plot shows that error terms are nearly normal. Where a small shift from normality do not 
cause serious problems (Kutner et al., 2005). Consequently, the results could be satisfied and could be 
interpreted by the possibility of outliers. In addition to Figure 3, it shows the residuals vs. the order of data 
plot for the model under consideration, where points around the regression line should be independent for 
each value of predictors. The results show the residuals are at inner bands of X values, except for some 
points of outliers such as two points 7&13 that lies on the outer negative and positive bands respectively. 

 

 

Figure 2. Normal probability of residual plots for 
super structure condition model 

 

Figure 3. Residual vs. order of data plot for 
superstructure condition model 

6. MODEL IMPLEMENTATION AND VALIDATION  

To demonstrate the applicability and validity of the developed models in this paper, the validation processes 

were implemented using approximately 20% of collected data (6 bridges  20%) that have been picked 
randomly and excluded earlier from model building. The validation data have included two types (two 
models), which represented 93% of collected data. 

Validation processes are comparing the predicted results of the models with actual data (observed 
conditions in NBI) for checking its capability for predicting the condition rating. Fares et al.(2012), and 
Zayed& Halpin (2005) have used two terms for model validation : 1)The Average Invalidity and Validity 
Percent for the prediction error (AIP , AVP%) in Equations (1&2) which shows the validation as a percentage 
; and 2) the Root Mean Square Error (RMSE) in Equation (3). If the value is closer to zero, the model is 
sound; and a value closer to one shows that the model is not appropriate. 

 
[1] AIP  =

∑ |1−(𝐸𝑖/𝐶𝑖|
𝑛
𝑖=1

𝑛
 

[2] AVP= 1 − 𝐴𝐼𝑃 

[3] RMSE= √∑ (C𝑖 − E𝑖)
2𝑛

𝑖=1 /𝑛 

Where, Ei:  Predicted value for case i; Ci: Actual value; and N:  Number of bridges for validation. 

Table 3. Validation summary results 

No. Structure  Type Actual  Predicted  AIP RMSE 
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SUPER. COND. SUPER COND. 

1 Box Beam or Girder 7 7.68 0.097 0.462 

2 Stringer / Multi Beam or Girder 8 7.45 0.067 0.293 

3 Box Beam or Girder 8 7.75 0.031 0.062 

4 Stringer / Multi Beam or Girder 7 8.15 0.165 1.340 

5 Stringer / Multi Beam or Girder 8 7.96 0.004 0.001 

6 Stringer / Multi Beam or Girder 8 7.57 0.052 0.179 

 AIP =6.98%  0.624 

AVP =93.02%   

Table 3 summarizes the estimated values for these terms for model validation based on the randomly 
selected data for validation (6 bridges =20% of collected data). Where it shows that, the AVP=93%, and 
RMSE=0.624<1; as satisfied values to prove that the proposed models were able to forecast the 
superstructure condition. Figure 4 represented the actual and predicted superstructure condition in a scatter 
diagram where most of actual and predicted points are close, except for point 4.  

 

Figure 4. Actual and predicted superstructure condition for developed models 

7. RESULTS  

Based on the developed regression models; the following findings have been revealed for all four models: 
i. The early best subset processes revealed that some candidate factors were not significant such as 

frequency of inspections, service under the bridge, service on the bridge, and surface type. Further 
research with different classification of collected data is recommended to examine these factors on 
the superstructure condition.    

ii. The developed regression models shown in Table 2 have indicated the same impact of the eight 
explanatory variables on the superstructure condition for all of four superstructure types. Therefore, 
in order to generalize this result, it is recommended to apply this methodology for collected data 
with unlimited superstructure types for prestressed bridges. 

iii. Increasing age and ADT are associated with poorer condition. This correlation agreed with the 
findings of Nabizadeh et al. (2018) and Saeed et al. (2017). Where they found the same effect for 
both of these variables in case of a prestressed concrete box-beam single superstructure. 

iv. Max span length, structure length, deck width have a negative correlation with superstructure 
condition, which give attention that those bridges with high related values for mentioned variables 
should be inspected in nearly frequencies. 
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8. CONCLUSIONS AND RECOMMENDATIONS 

Four regression models have been developed using regression analysis and best subset to find the 
variables that have the most significant impact on superstructure condition based on NBI database for 
California State. The developed models have reflected the impact of eight significant variables on the 
superstructure deterioration with high Coefficient of determination (R2=86%). Two models that represented 
the majority of collected data have been validated with satisfactory results “93%” using average validity 
percentage method. The developed models are limited by specific structure types (Slab; Stringer / Multi 
Beam or Girder; T- Beam, and Box Beam or Girder. It is concluded that there are variables correlated 
negatively with the superstructure condition such as age, average daily traffic, max span length, structure 
length, and deck width. Others correlated positively with degree of skew, roadway width, and percent 
average daily truck traffic. Regarding the positive impact of degree of skew and percent average daily truck 
traffic, it needs more research where these results contradicted with the previous studies.  The predicted 
condition rating helps engineers and infrastructure agencies to support the inspected condition rating 
objectively instead of subjective expert opinion only. It also helps them for prioritizing the maintenance. 
Further research is recommended to include more of structure types with different range of age. The model 
could be improved if some factors that were not available for currently collected data are studied in further 
researches, such as bridge maintenance records and weather variables. Furthermore, regarding the other 
two structure types (Slab , and T- Beam) , it is recommended for further validation  to be generalized. 
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