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high. If the first factor is missing, then the problem can be simply considered as single-period FLP and if 
the second factor is missing, then the problem can be formulated as a series of disconnected single-
period FLP (Erlenkotter 1979). Different types of multi-period facility location problems have been studied 
by researchers to respond to the different situations and considerations. Marufuzzaman et al. 
(Marufuzzaman et al. 2016) formulated and solved an capacitated facility location problem DFLP to 
minimize the total costs incurred along the planning horizon including the costs of opening, closing or 
relocating facilities as well as the costs of transportation and operation of these facilities. Correia et al. 
(Correia and Melo 2017) presented an FLP model to account for two segments of customers with 
disparate sensitivity to delivery time, where one requires timely delivery and the other tolerate late 
deliveries. A penalty factor was introduced for demand served with delay. The problem of minimizing cost 
of locating the network of facilities throughout the time-periods was formulated using two alternative 
mixed-integer linear optimization. Azimi et al. (Azimi and Charmchi 2012) presented a dynamic facility 
location problem with budget constraints (DFLPB) as well as a heuristic algorithm to solve the proposed 
DFLPB using optimization through simulation techniques. Delmelle   et al. (Delmelle et al. 2014) proposed 
a model to optimize the location of schools in an urban network subject to changes in configuration and 
population density. A capacitated multi-period median model was used in selecting the location of the 
schools where the objective was to minimize the transportation costs, while functional costs were under a 
budget constraint. 

As shown above, the available literature on multi-period facility location problem tends to focus on 
minimizing the costs as the main objective of the problem (Azimi and Charmchi 2012) (Delmelle et al. 
2014) (Zhao et al. 2011). However, apart from the costs, the decision to locate public facilities should be 
made by considering the impact of selected facility on equity indicators including access to facilities, 
saturation of facilities, etc. (Marsh 1992). While not considered in multi-period facility location problem, the 
importance of accounting for such equity factors has been widely emphasized in literature on single-
period facility location problem and several models have been developed (Mumphrey et al. 1971). Zhao 
et al.  (Zhao et al. 2011) discussed the importance of fairness in the distribution and access to public 
facility location under limited resources. In this paper, a bi-criteria model was formulated where the first 
objective is to maximize the efficiency of the facility’s services, and the second objective is to minimize 
inequity between the different demand points using the Gini coefficient.  Bertsimas (Bertsimas et al. 
2011), studied the problem of decision makers allocating resources between multiple interested parties. 
Two notions of fairness were used: the proportional fairness and the max-min fairness. The price of 
fairness was studied through setting it equal to the efficiency loss resulting from the “fair” allocation of 
resources. The efficiency loss was compared with the fully efficient allocation which was the one that 
maximizes the total users’ services.  

The present paper aims to address the gap in the available literature in terms of lack of multi-period 
facility location optimization models that account for equity objectives. A multi-period facility location 
optimization model is developed to maximize coverage of facilities while balancing the excess flow at 
capacity-saturated facilities over multiple periods. The proposed model is applied to a case study aimed 
at identifying the optimal location of new schools in the network of public schools in the city of Sydney, 
Australia.  

 

MATHEMATICAL FORMULATION 

In this section, we propose and discuss a model that incorporates equity objectives in a multi-period 
facility location problem.  

The model is based on the following assumptions:  

 Fairness is defined to embrace two different components: i) the travel distance between the 
demand nodes, which represent the students, and the schools, and ii) the over-capacity demand 
for all supplying facilities, which affects the quality of education provided.  

 Prior to the network expansion design, a set of potential sites to locate new facilities have been 
defined.  

 A planning horizon with a finite number of discrete time periods is considered. Strategic decisions 
related to opening new schools at new sites can be made at every time period.  



 

   
 All existing and newly opened facilities will remain open during the planning horizon. The 

possibility of reducing and expanding the size of existing facilities is not modeled as part of this 
model.  

 The size and establishment costs of new facilities is considered to be predetermined at the 
beginning of the planning horizon and imputed to the model.  

 An available budget to open new schools is set for each time-period, which the model should 
abide by when opening new facilities.   

 All the demand must be served in each time-period, as schools are considered to be critical 
facilities; hence, all the demand must be served.  

1.1 Notations  

Below, is the introduction of the mathematical notion that is used throughout the paper.  

Indices and Sets  

𝑁  Set of Demand Nodes 

𝑁  Set of all Existing Supply nodes 

𝑁   Set of all potential sites for new Supply nodes 

𝑁   Set of all Supply Nodes; 𝑁   𝑁 ∪ 𝑁  

𝑇  Set of time periods 

 

Travel and Facilities Costs  

𝑑  Distance between demand node 𝑖 ∈ 𝑁  and supply node 𝑗 ∈ 𝑁  

𝑇𝐶 Constant; Travel cost per unit distance  

�̅� Constant; Maximum allowable travel distance 

𝑃 Constant; Cost associated with the percentage of demand allocated to supplying facilities above
 their optimum capacity 

𝑓  Opening cost of a new facility at supply node 𝑗 ∈  𝑁  in time period 𝑡 ∈ 𝑇 

Capacities and Additional Parameters  

𝐷  Demand at demand node 𝑖 ∈ 𝑁  at time period 𝑡 ∈ 𝑇 

𝐶  Maximum capacity of supply node 𝑗 ∈ 𝑁  

𝐶  Optimum capacity of supply node 𝑗 ∈ 𝑁  

𝐵  Budget in time period 𝑡 ∈ 𝑇 

𝐶 Constant; Capacity of the new facilities   

𝛼  Constant; weighing coefficient to be used for the weighted sum method of multi-objectives 
functions  

Variables  

𝑥  Demand allocated from node 𝑖 ∈ 𝑁  to node 𝑗 ∈ 𝑁  at time period 𝑡 ∈ 𝑇 

𝑦  Binary variable equal to 1 if a facility is open at potential site 𝑗 ∈ 𝑁   at time period 𝑡 ∈ 𝑇, 0 

otherwise 

Δ  Variable denoting the difference between the allocated demand to a facility 𝑗 ∈ 𝑁  and its 
optimum capacity at time period 𝑡 ∈ 𝑇, when that allocation exceeds its capacity 



 

   
 

 

1.2 Formulation of the Multi-period facility Location Problem Factoring the Equity Factor 

[1] minimize    𝐹 𝛼 𝐶 𝑥 𝑑
∈∈∈

1 𝛼
Δ
𝐶

∈∈

 
 

 subject to  

[2] 𝑥 𝐷
∈

 ∀𝑖 ∈ 𝑁 , ∀𝑡 ∈ 𝑇 

[3] 𝑥 𝐶
∈

 ∀𝑗 ∈ 𝑁 , ∀𝑡 ∈ 𝑇 

[4] 𝑥 𝐶
∈

 ∀𝑗 ∈ 𝑁 , ∀𝑡 ∈ 𝑇 

[5] 𝑦 𝑓 𝐵
∈

 ∀𝑡 ∈ 𝑇 

[6] 𝑦 𝑦  ∀𝑗 ∈ 𝑁 , ∀𝑡 ∈ 𝑇 ∶ 𝑡 |𝑇| 

[7] Δ 𝑥
∈

𝐶  ∀𝑗 ∈ 𝑁 , ∀𝑡 ∈ 𝑇 

[8] Δ 0 ∀𝑗 ∈ 𝑁 , ∀𝑡 ∈ 𝑇 

[9] 𝑥 0 ∀𝑖 ∈ 𝑁 , ∀𝑗 ∈ 𝑁 , ∀𝑡 ∈ 𝑇 ∶ 𝑑 �̅� 

[10] 𝑥 0 ∀𝑖 ∈ 𝑁 , ∀𝑗 ∈ 𝑁 , ∀𝑡 ∈ 𝑇 

[11] 𝑦 ∈ 0,1  ∀𝑗 ∈ 𝑁 , ∀𝑡 ∈ 𝑇 

The objective function (Eq. 1) aims to minimize the total travel costs of the users and minimize the 
percentage of over-capacity in the schools. Travel costs are calculated by summing the total travel 
distance of all users by a unit travel cost. The excess flow costs are calculated by introducing a penalty 
factor and multiplying it by the sum of the percentage of over-capacity in all the schools. Since our 
approach entails multiple objectives, we have decided to use the weighted sum method in our 
formulation. This method allows the multi-objective optimization problem to be cast as a single-objective 
mathematical optimization problem wherein α is the weighing coefficient. Eq. 2 ensures that the sum of 
the supplied demand in all the supplying facilities is equal to the total demand, at each and every time-
period. Since schools are considered to be critical facilities, all the demand must be served. Eq. 3 
ensures that the sum of demand allocated to any facility j does not exceed the maximum capacity 𝐶  of 
that facility. Eq. 4 stipulates that the sum of demand allocated to any new facility 𝑗 ∈ 𝑁 , does not exceed 
the maximum capacity 𝐶 of the new facilities. Eq. 5 constraints that the sum of the opening costs of new 
facilities at potential sites, at each time period t, does not exceed the yearly allocated budget at that time 
period. Eq. 6 guarantees that when a new facility is open at any potential site 𝑗 ∈ 𝑁 , at any time period t, 
it remains open until the end of the planning horizon. Equations 7 and 8 are introduced to represent the 
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Facilities Capacity Capacity Sites  

A1 E1 230 350 P1 
A2 E2 230 350 P2 
A3 - - - P3 
A4 - - - P4 
A5 E5 230 350 P5 
A6 E6 300 400 P6 
A7 E7 300 400 P7 
A8 E8 300 400 P8 
A9 E9 300 400 P9 
A10 - - - P10 
A11 E11 300 500 P11 

2.1.2 Time-dependent Data  

Table 2 presents the demand for each sub-area and for each of the four time-periods considered.  

Table 2: Demand in the Different Sub-Areas at Each Time-Period 

Sub-Area  
Demand in each Time Period 

t:1 t: 2 t: 3 t: 4 
A1 200 220 250 290 
A2 160 200 250 290 
A3 270 275 260 280 
A4 230 250 280 310 
A5 210 260 300 320 
A6 315 320 320 320 
A7 323 330 330 330 
A8 350 357 364 371 
A9 230 237 244 251 
A10 250 257 264 271 
A11 290 297 304 311 

The generated demand data in Table 2 reflects how the demand changes irregularly from one time-period 
to another and from one sub-area to another. Data regarding the opening cost of new facilities and the 
available budgets in each time-period were simplified and assumed to be all equal to 1 in each period. 
This means that the available budget, which was set to be equal to 1, would be sufficient to open only one 
new facility, as the cost of opening a new facility was set equal to 1 as well. Hence, the available budgets 
in all 4 time-periods would allow the opening of 4 new facilities in any potential site.   

2.1.3 Sets and Parameters 

Table 3 presents the distance data. Data is colour-coded to categorize the distances between the 
different nodes and to highlight the ones that exceed the maximum travel distance (in red). The following 
rules were used to colour-code the distances: i) 0-15 km (Green); ii) 15-30 km (Yellow), and iii) >30 km 
(Red).  

Table 3: Distances from Demand Nodes to Existing Facilities and Potential Sites 

Existing 
schools / 

Potential Sites 

Demand Nodes 

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11

P1 0 15 25 15 15 25 25 40 40 40 40 
P2 15 0 15 15 25 35 40 40 40 45 60 
P3 25 15 0 15 35 15 35 20 15 35 50 
P4 15 15 15 0 15 15 35 35 40 35 50 
P5 15 25 35 15 0 20 15 40 40 40 60 



 

   
P6 35 29 15 15 20 0 15 15 15 15 40 
P7 40 50 35 35 15 15 0 25 35 15 15 
P8 50 45 20 35 45 15 29 0 15 15 29 
P9 60 35 15 35 40 20 35 15 0 25 35 

P10 45 45 29 29 35 15 15 15 25 0 15 
P11 70 70 55 55 29 29 15 25 35 15 0 
E1 0 15 25 15 15 25 25 45 45 45 45 
E2 15 0 15 15 25 35 40 40 40 45 60 
E5 15 25 35 15 0 20 15 40 40 40 60 
E6 35 29 15 15 20 0 15 15 15 15 40 
E7 40 50 35 35 15 15 0 25 35 15 15 
E8 50 45 20 35 45 15 29 0 15 15 29 
E9 60 35 15 35 40 20 35 15 0 25 35 

E11 70 70 55 55 29 29 15 25 35 15 0 

For all the cases where the distance between the school and the demand node exceed the maximum 
allowable travel distance, the cells are highlighted in red indicating that no allocation can be possible in 
this situation. The cells coloured in yellow indicate that the allocation of demand is possible in these 
situations; however, it is costly. The cells coloured in green indicate that these positions fall within a close 
proximity and are favourable from a travel distance perspective. 

2.2 Numerical Results  

The problem was modelled using AMPL and solved using CPLEX’s mixed-integer linear programming 
solver. Table 4 summarizes the potential sites selected to open new schools.  

Table 4: Selected Potential Sites to Open the New Facilities 

Potential 
Sites 

Time-Periods 
t: 1 t: 2 t: 3 t: 4 

P1 0 0 0 0 
P2 0 0 0 0 
P3 0 0 1 1 
P4 0 1 1 1 
P5 0 0 0 1 
P6 0 0 0 0 
P7 0 0 0 0 
P8 0 0 0 0 
P9 0 0 0 0 

P10 1 1 1 1 
P11 0 0 0 0 

Table 4 shows that, to reach the optimum solution, the model selected to open the first new facility, at 
time-period one (t:1), in potential site 10 (P10); the second new facility at t:2 in P4; the third new facility at 
t:3 in P3; and the fourth one at t:4 in P5.  

Table 5: Demand Allocation to the Existing and New Facilities at Time-Period 1 

Existing Facilities 
/ Potential Sites 

Demand Nodes
∆jt 

D1  D2  D3 D4 D5 D6 D7 D8 D9 D10  D11 

E1  200  0  0 150 0 0 0 0 0 0  0  120 

E2  0  160  130 60 0 0 0 0 0 0  0  120 

E5  0  0  0 20 210 0 0 0 0 0  0  0 

E6  0  0  0 0 0 315 0 0 0 0  0  15 

E7  0  0  0 0 0 0 313 0 0 0  0  13 

E8  0  0  0 0 0 0 0 350 0 0  0  50 

E9  0  0  140 0 0 0 0 0 230 0  0  70 



 

   
E11  0  0  0 0 0 0 10 0 0 0  290  0 

P1  0  0  0 0 0 0 0 0 0 0  0  ‐ 

P2  0  0  0 0 0 0 0 0 0 0  0  ‐ 

P3  0  0  0 0 0 0 0 0 0 0  0  ‐ 

P4  0  0  0 0 0 0 0 0 0 0  0  ‐ 

P5  0  0  0 0 0 0 0 0 0 0  0  ‐ 

P6  0  0  0 0 0 0 0 0 0 0  0  ‐ 

P7  0  0  0 0 0 0 0 0 0 0  0  ‐ 

P8  0  0  0 0 0 0 0 0 0 0  0  ‐ 

P9  0  0  0 0 0 0 0 0 0 0  0  ‐ 

P10  0  0  0 0 0 0 0 0 0 250  0  0 

P11  0  0  0 0 0 0 0 0 0 0  0  ‐ 

Table 5 presents the allocation of the demand to the existing and new facilities, at time-period one, that 
served the set objective function. Based on the generated results, it is clear that the model allocated the 
demand in any sub-area to an existing facility located in the same sub-area or within a close vicinity of it. 
For the demand nodes D1 and D2, the whole demand was directly allocated to the existing supplying 
facility located in the same sub-area, as it was possible in this case. For the demand nodes D3 and D4, 
which are located in sub-are where there are no supplying facilities, the demand was allocated to the 
closest sub-areas trying to reduce the travel costs and the over-capacities, while abiding by the maximum 
allowable travel distance. The new facility was opened at the potential site P10 located in a sub-area with 
no existing facilities and having the highest demand volume between all the sub-areas that does not have 
any of the existing facilities located in them. It is noticeable that E1 and E2 are highly over-capacitated 
during this time-period resulting significant additional costs due to the penalties incurred. Given the 
limitation of allocating demand to distant facilities due to the maximum travel distance constraint, the 
model had no other choice but to allocate a large volume of demand from D3 and D4 to E1 and E2, 
resulting in this over-capacity. 

Table 6: Demand Allocation to the Existing and New Facilities at Time-Period 2 

Existing Facilities 
/ Potential Sites 

Demand Nodes
∆jt 

D1  D2  D3 D4 D5 D6 D7 D8 D9 D10  D11 

E1  220  0  10 0 0 0 0 0 0 0  0  0 

E2  0  200  150 0 0 0 0 0 0 0  0  120 

E5  0  0  0 0 260 0 0 0 0 0  0  30 

E6  0  0  52 0 0 320 0 0 0 0  0  72 

E7  0  0  0 0 0 0 330 0 0 0  0  30 

E8  0  0  0 0 0 0 0 357 0 0  0  57 

E9  0  0  63 0 0 0 0 0 237 0  0  0 

E11  0  0  0 0 0 0 0 0 0 7  297  4 

P1  0  0  0 0 0 0 0 0 0 0  0  ‐ 

P2  0  0  0 0 0 0 0 0 0 0  0  ‐ 

P3  0  0  0 0 0 0 0 0 0 0  0  ‐ 

P4  0  0  0 250 0 0 0 0 0 0  0  0 

P5  0  0  0 0 0 0 0 0 0 0  0  ‐ 

P6  0  0  0 0 0 0 0 0 0 0  0  ‐ 

P7  0  0  0 0 0 0 0 0 0 0  0  ‐ 

P8  0  0  0 0 0 0 0 0 0 0  0  ‐ 

P9  0  0  0 0 0 0 0 0 0 0  0  ‐ 

P10  0  0  0 0 0 0 0 0 0 250  0  0 

P11  0  0  0 0 0 0 0 0 0 0  0  ‐ 

As represented in Table 6, in time-period t:2, the new facility was opened at potential site P4 supplying 
the demand in sub-area D4. The opened facility expunged the over-capacity in the existing facility E1, 



 

   
which was previously supplying some 150 students from D4. This brought down the over-capacity in E1 
from 120 to 0. Moreover, this addition reduced the travel costs, since the demand in D4, which was 
previously allocated to nearby sub-areas, is now being allocated in P4. In time-period t:3, a new facility is 
opened at potential site P3, supplying demand in sub-areas D3 and D4. Observe that D3 did not initially 
have an existing school. This addition not only reduced the travel costs incurred from the demand in D3, 
but also reduced the over-capacity in E2 which was supplying 150 students from D3. It is noticeable from 
Table 7 that P3 does not fully supply the demand in D3, but supplied demand from D4, driving 40 
students from D3 to be allocated to E9.  

Table 7: Demand Allocation to the Existing and New Facilities at Time Period 3 

Existing 
Facilities / 

Potential Sites 

Demand Nodes 
∆jt 

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 

E1 220 0 10 0 0 0 0 0 0 0 0 0 
E2 0 200 150 0 0 0 0 0 0 0 0 120
E5 0 0 0 0 260 0 0 0 0 0 0 30 
E6 0 0 52 0 0 320 0 0 0 0 0 72 
E7 0 0 0 0 0 0 330 0 0 0 0 30 
E8 0 0 0 0 0 0 0 357 0 0 0 57 
E9 0 0 63 0 0 0 0 0 237 0 0 0 
E11 0 0 0 0 0 0 0 0 0 7 297 4 
P1 0 0 0 0 0 0 0 0 0 0 0 - 
P2 0 0 0 0 0 0 0 0 0 0 0 - 
P3 0 0 0 0 0 0 0 0 0 0 0 - 
P4 0 0 0 250 0 0 0 0 0 0 0 0 
P5 0 0 0 0 0 0 0 0 0 0 0 - 
P6 0 0 0 0 0 0 0 0 0 0 0 - 
P7 0 0 0 0 0 0 0 0 0 0 0 - 
P8 0 0 0 0 0 0 0 0 0 0 0 - 
P9 0 0 0 0 0 0 0 0 0 0 0 - 
P10 0 0 0 0 0 0 0 0 0 250 0 0 
P11 0 0 0 0 0 0 0 0 0 0 0 - 

Table 8: Demand Allocation to the Existing and New Facilities at Time Period 4 

Existing 
Facilities / 

Potential Sites 

Demand Nodes 
∆jt 

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 

E1 250 0 0 0 0 0 0 0 0 0 0 20 
E2 0 250 0 0 0 0 0 0 0 0 0 20 
E5 0 0 0 0 300 0 0 0 0 0 0 70 
E6 0 0 0 0 0 320 0 0 0 0 0 20 
E7 0 0 0 0 0 0 330 0 0 0 0 30 
E8 0 0 0 0 0 0 0 362 0 0 0 62 
E9 0 0 40 0 0 0 0 2 244 14 0 0 
E11 0 0 0 0 0 0 0 0 0 0 304 4 
P1 0 0 0 0 0 0 0 0 0 0 0 - 
P2 0 0 0 0 0 0 0 0 0 0 0 - 
P3 0 0 220 30 0 0 0 0 0 0 0 0 
P4 0 0 0 250 0 0 0 0 0 0 0 0 
P5 0 0 0 0 0 0 0 0 0 0 0 - 
P6 0 0 0 0 0 0 0 0 0 0 0 - 
P7 0 0 0 0 0 0 0 0 0 0 0 - 
P8 0 0 0 0 0 0 0 0 0 0 0 - 



 

   
P9 0 0 0 0 0 0 0 0 0 0 0 - 
P10 0 0 0 0 0 0 0 0 0 250 0 0 
P11 0 0 0 0 0 0 0 0 0 0 0 - 

Table 8 shows that, in time period t:4, the new facility was opened in potential site P5, supplying demand 
from D5 and D1. The model selected to open a new facility in the sub-area where the existing facility E5 
was the most over-capacitated between all the other existing supplying facilities. The results presented in 
column ∆jt, in Table 8, show that, at time period t:4, almost none of the existing facilities is significantly 
over-capacitated when compared to time-period t:1.  

3 Conclusion 

In this paper, we developed a multi-period facility location model aiming at maximizing equity in access 
and capacity-saturation, by locating new facilities among a series of potential sites. To satisfy this 
objective, we proposed to minimize the sum of demand-weighted travel distance to schools and the total 
excess flow at supplying facilities. A series of constraints were introduced in the model, including a 
budget constraint at each time period, a maximum travel distance, a full satisfaction of all the demand at 
each time-period, and maximum capacities for the existing facilities. An illustrative case study on 
Sydney’s public school network with four time periods was presented to test the proposed model.  

The proposed model is based on a series of assumptions that constitute limitations and present 
opportunities for future enhancements. These assumptions included: i) defining the notion of equity to 
being only related to travel distance and over-capacity of the facilities, ii) assuming that strategic decision 
of opening new facilities can be made at the beginning of each time-period, iii) requiring that all the 
existing and newly opened facilities remain open during the planning horizon, and iv) predetermining the 
size and establishment costs of new facilities. Future research will be focused on enhancing the model by 
catering for the abovementioned assumption and including them in our formulation.  
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