
 

   

248-1 

 

CSCE Annual Conference 

Growing with youth – Croître avec les jeunes 

 

 

Laval (Greater Montreal) 

June 12 - 15, 2019  

 

LOCAL BUCKLING ANALYSIS OF MULTISIDED STEEL TUBE SECTIONS 

Zannatul Mawa Dalia1, and Anjan K Bhowmick2 

1 Graduate Research Assistant, Concordia University, Canada 
2 Associate Professor, Department of Building Civil and Environmental Engineering, Concordia University, 
Canada 

Abstract: Multisided steel tubular sections are commonly used in many structures such as light posts, road 
signpost, transmission and telecommunication towers etc. These sections are generally subjected to axial 
compression and bending.  From the design point of view, it is very important to make sure that these thin-
walled sections do not buckle locally before yielding.  While current AASHTO has provided slenderness 
limits to check for local buckling of eight, twelve and sixteen sided polygonal steel sections, very limited 
study has been conducted to evaluate these slenderness limits. This paper presents a finite element (FE) 
analysis based study of local buckling of multisided steel tubular sections. A nonlinear finite element model 
which includes both material and geometric nonlinearities is developed for this study. The finite element 
model is validated against experimental results from four stub columns of three different cross sections (i.e. 
Octagonal, Dodecagonal, and Hexadecagonal) tested under concentric compression. The validated finite 
element model is then used to analyze a series of multisided steel tubular sections under axial compression 
and pure bending. Three different geometry, namely, eight, twelve and sixteen sided polygonal sections 
are considered. Both linear buckling and nonlinear static analyses are conducted using ABAQUS. Results 
from FE analyses are compared with limits specified in different standards. 

1 INTRODUCTION 

Thin-walled multisided tubular steel sections are commonly used as light post, signposts, transmission, and 
telecommunication towers. Because of a smaller thickness, these thin-walled structures have a tendency 
to buckle locally if proper slenderness ratio is not maintained. This type of sections are generally subjected 
to both axial compression and bending. An adequate understanding of local buckling of the thin-walled 
multisided tube is necessary to ensure the effective service of these structures.  

Elastic buckling stress of thin-walled tubular multisided sections can be determined by considering them as 
an assembly of restrained plates. Using elastic analysis, elastic critical buckling stress of multisided steel 
tubular sections can be found from following equation 1 (Timoshenko 1961). 

[1] σcr =  
kπ2 E

12(1−ν2)(
b

t
)

2 

where k is called the plate buckling coefficient determined by theoretical critical-load analysis and is a 
function of plate geometry and boundary conditions. E, ν, 𝑏  and 𝑡  are the modulus of elasticity, poison’s 
ratio, plate width, and thickness, respectively. In case of the simply supported plate, the k value of 4 can be 
used. Several studies have been undertaken to find values of k for different geometry, loading, and support 
conditions.  
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Teng et al. (1999) investigated the elastic local buckling behavior of polygonal columns subjected to either 
axial compression or uniform bending. They have investigated the variation of elastic plate buckling 
coefficient k with a number of sides of section and nature of loading. K values are presented for a variety 
of width-thickness ratios. Among the square, pentagonal, hexagonal, heptagonal and octagonal shape; the 
pentagonal shape was found to be strongest under axial compression or bending. It was also reported that 
sections with an odd number of sides have higher buckling capacity as compared to sections having even 
number of sides (Teng et al. 1999). 

Aoki et al. (1991) studied the local buckling behavior of regular polygonal, short length steel columns. It 
was mentioned that polygonal sections having more faces among the thin-walled members with the same 
cross-sectional area, may become advantageous for local buckling strength. Equation 2 shows the 
empirical design formula to predict the local buckling strength of the polygonal section columns (Aoki et al. 
1991).   

[2]  
σmax

σy
= 1.35 −  0.55 R          (R >  0.636) 

where R is a width-thickness parameter of plate elements which can be obtained as R=√(σy/σcr), where σcr 

is elastic critical buckling stress with k=4. 

The elasto-plastic local buckling behavior of the polygonal thin-walled steel sections was investigated by 
Migita et al. (1997). It was found that, in spite of the various number of sides, the difference in the average 
buckling stresses is small for the same value of R, where R is a width-thickness parameter of plate 
elements. Based on the analytical and experimental results, two formulae were proposed to estimate the 
local buckling strength of polygonal sections (Migita et al.1997). 

Godat et al. (2011) investigated the local buckling behavior of polygonal tubular sections having 8, 12 and 
16 number of sides.  It was reported that thin-walled polygonal tubular sections having the same cross-
sectional area and smaller plate slenderness ration may become advantageous. Furthermore, it was found 
that the number of faces was not influencing parameter in local buckling capacity when plate width to 
thickness ratio is kept constant. It was observed that the ASCE (ASCE/SEI-48-05 2006) tends to 
overestimate the experimental results for plate slenderness parameter lower than 1.5. The Eurocode 3 (EN 
1-1, 2005, EN 1-3, 2006, EN 1-5, 2006) overestimates greatly the capacity for high width-to-thickness ratios. 
Design equation for critical buckling capacity has been proposed for the tubular polygonal section with a 
different form of cross-sections (Godat et al. 2011).  

Current AASHTO (AASHTO 2015) has provided width-thickness limits for eight, twelve and sixteen sided 
polygonal steel sections. However, very limited study has been conducted to evaluate these limits. ASCE 
(ASCE/SEI-48-11 2011) provides design equations for local buckling capacity of eight, twelve and sixteen 
sided polygonal steel sections of transmission line. Eurocode 3 (EN 1-1, 2005, EN 1-3, 2006, EN 1-5, 2006) 
has design equation for plate elements. In this study, multisided steel tubular section has been considered 
as a collection of individual longitudinal plate strip to find the resistance using Eurocode 3. The objective of 
this study is to observe the local buckling behavior of multisided steel tubular section under compression 
and pure bending by developing Finite Element Models (FEM). Finite Element Models have been compared 
with existing codes. Three different geometry, namely, eight, twelve and sixteen sided polygonal sections 
are considered. The behavior of other Hollow Structural Sections is out of the scope of this paper. 

2 FINITE ELEMENT MODELING 

2.1 Elements and Properties 

A nonlinear finite element model is developed using ABAQUS software. Both material and geometric 
nonlinearities have been considered in modelling. Thin-walled members of three different cross-sections 
(i.e. Octagonal, Dodecagonal, and Hexadecagonal) have been modelled using 4-node shell elements with 
reduced integration (S4R from ABAQUS element library). To apply the compressive load, a top plate was 
modelled with 10-node tetrahedral element C3D10 (ABAQUS 2014). 
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2.2 Boundary Conditions  

All the specimens were kept simply supported along the reaction surfaces but effectively restrained against 

the radial movement. 

1. Bottom end was restrained against X, Y and Z- axis deflection (U1= U2= U3= 0) and rotation about 

Z-axis (UR3=0). Rotation about X and Y-axis was kept unrestrained. 

2. Top end was restrained against X and Y- axis deflection (U1= U2= 0) and rotation about Z-axis 

(UR3=0). Rotation about X and Y-axis and deflection in Z-axis were kept unrestrained. 

 

Figure 1: Octagonal Hollow 
Section 

 

Figure 2: Dodecagonal Hollow 
Section 

 

Figure 3: Hexadecagonal Hollow 
Section 

2.3 Analysis Type 

Both elastic buckling analysis and nonlinear static analysis were performed to estimate the critical buckling 

load and flexural capacity of the multi-sided tube. First, an eigenvalue analysis was performed using the 

linear perturbation buckling analysis. From the eigenvalue analysis, eigenvalues of corresponding 

eigenmodes were extracted. In this study, three eigenvalues for each member were obtained. 

Finally, Static RIKS method (ABAQUS 2014) was used to conduct the nonlinear buckling analysis. RIKS 

method is suitable for predicting buckling, post-buckling, or collapse of certain types of structures. RIKS 

method is based on Arc-length method and a form of Newton-Raphson iteration method. It uses an 

additional unknown, named load proportionality factor. RIKS method provides solutions for load and 

displacement simultaneously. From the nonlinear buckling analysis, maximum Load Proportionality Factor 

(LPF) was extracted to estimate the critical buckling load. All the finite element results presented in this 

paper is from nonlinear static analysis. 

2.4 Load Application 

Finite element models were analyzed for axial compression and pure bending. To simulate the practical 

condition, the load was applied through a solid top plate. The uniformly distributed load was applied over 

the top surface of the top plate. To transfer the load from the top plate to the hollow column, tie constraint 

was introduced between the top surface of the plate and the top nodes of the hollow column. The load was 

applied in the negative Z-direction to create a compressive load to the hollow column. A constant bending 

moment along the length of the member was applied about X-axis. To apply moment, two reference points 

were created at the center of the hollow section at both ends of the member. 

2.5 Geometric Imperfection 

Geometric imperfection was applied to trigger the buckling of the models. An imperfection value of 20% of 

the thickness of the specimen was used for all the models. Since lowest eigenvalue refers to the load which 

initiates the buckling of a structure, geometric imperfection has been applied to the buckling mode obtained 

from the lowest eigenvalue from eigenvalue analysis (Trahair 1993).  

3 VALIDATION OF FINITE ELEMENT MODEL 

The finite element model is validated against the experiment conducted by Godat et al. (2011). Four stub 

columns of three different cross sections (i.e. Octagonal, Dodecagonal, and Hexadecagonal) were tested 

under concentric compression. Columns were simply supported and 780mm long. To simulate the 
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experimental results, all the geometric and mechanical properties of specimens were kept the same in EFM 

as the experiment. Both linear and nonlinear buckling analysis has been performed to estimate the critical 

buckling load. Imperfection values that were measured in the experimental results have been introduced in 

the first mode of buckling. Table 1 shows number of faces (n), plate thickness (t), width of plate (b), tensile 

yield stress (Fy), Modulus of Elasticity (E), yield strain (εy), ultimate strain (εu), critical buckling loads from 

finite element models (PFEM) for nonlinear analysis and experiment (PExperiment) for the validated models. 

Table 1: Geometric and Mechanical Properties of Validated Specimen 

Specimen n t 

(mm) 

b 

(mm) 

Fy 

(Mpa) 

E 

(GPa) 

εy 

X10^-3 

εu 

(%) 

PFEM 

(KN)  

PExperiment 

(KN) 

% 

Difference 

OCT-1-A 8 1.897 95 279 200 1.4 0.26 324.7 327 0.7 

DODE-2-A 12 1.897 75 305 218 1.4 0.25 462.8 515 10 

HEXA-1-A 16 1.519 52 277 199 1.4 0.26 315.4 317 0.5 

HEXA-4-A 16 1.897 60 302 200 1.5 0.26 502.3 508 1.1 

4 MULTISIDED TUBE UNDER AXIAL COMPRESSION AND BENDING  

4.1 Analysis of Multisided tube for axial compression   

The validated FE model has been used to perform more analysis with different width-thickness ratios (b/t). 

Thirteen models of 780mm length have been developed to see the effect of axial compression on multisided 

steel sections. For all the models, Modulus of elasticity, E=200Gpa, Yield Stress, Fy=300Mpa, poisons’ 

ratio, υ=0.3 and εu= 0.026 was considered. Table 2 shows the results of nonlinear analysis of models 

locally buckled under axial compression. The notations A and Fcr indicate the cross-sectional area and 

critical buckling stress respectively. 

Table 2: Finite Element Results for Axial Compression 

Specimen n 
b 

(mm) 
t 

(mm) 

PFEM 

(KN) 

A 

(mm2) 

Fcr 

(Mpa) 

OCTA-1 8 95 1.897 373.3 1556 239.9 

OCTA-2 8 75 1.367 202.7 880 230.3 

OCTA-3 8 95 1.5 233.6 1207 193.5 

OCTA-4 8 95 0.7 69.9 547 128.0 

OCTA-5 8 95 0.93 107.7 733 147.0 

DODE-1 12 76 1.367 301.1 1307 230.4 

DODE-2 12 75 1.897 471.0 1814 259.6 

DODE-3 12 76 1 164.5 941 174.8 

DODE-4 12 76 1.3 256.7 1235 207.9 

HEXA-1 16 52 1.519 383.7 1333 287.9 

HEXA-2 16 60 1.897 557.0 1918 290.4 

HEXA-3 16 60 1.5 397.5 1504 264.2 

HEXA-4 16 60 0.9 183.1 887 206.4 
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4.2 Analysis of Multisided tube for Pure Bending 

More analysis was conducted on multisided tube members for pure bending. Twenty-two (22) models were 

developed in ABAQUS. Among these 22 models, 13 were compact and 9 were non-compact sections. 

Each model had a length of 1500mm. For all models, same material properties were used (i.e. E=200GPa, 

Fy= 300 MPa, Ultimate stress, Fu=410MPa and εu=0.029). Each model was analyzed for both linear and 

nonlinear analysis (RIKS method) to find the Critical value of bending moment. Moreover, AASHTO 

provides equations to estimate the critical moment. Table 3 shows bending strength (M) of multisided steel 

sections according to AASHTO (AASHTO 2015). In Table 3, plastic moment and plastic section modulus 

have been denoted by Mp and Zx respectively. 

Table 3: Bending Strength of Multisided Steel Sections According to AASHTO 

Shape Compact Non-compact 

Hexadecagonal M = Mp = Zx × Fy 

𝑀 = 𝑀𝑝[2.59 −
1.43 (

𝑏
𝑡

)

√𝐸/𝐹𝑦
] 

Dodecagonal M = Mp = Zx × Fy 

𝑀 = 𝑀𝑝[1.77 −
0.69 (

𝑏
𝑡

)

√𝐸/𝐹𝑦
] 

Octagonal M = Mp = Zx × Fy 

𝑀 = 𝑀𝑝[1.5 −
0.45 (

𝑏
𝑡

)

√𝐸/𝐹𝑦
] 

For each section, bending strength was calculated according to AASHTO and then compared with FEM 

results of nonlinear analysis. All the multisided tubular sections were locally buckled. Table 4 and Table 5 

show the geometric properties and bending strength according to the nonlinear analysis of FEM (MFEA) and 

AASHTO (MAASHTO). In Tables 4 and 5, λ' and λr indicates width-thickness ratio for compact and non-

compact limits respectively as per AASHTO. The FE results will be discussed in the next section. 

Table 4 Geometric Properties of Compact Sections and FEM results 

Specimen n 
b 

(mm) 
t 

(mm) 
λ' b/t 

MAASHTO 

(KN-m) 
MFEM 

(KN-m) 
% 

Difference 

OCT-1-B 8 100 4.5 28.92 22.22 107.3 114.4 6.6 

OCT-2-B 8 100 3.6 28.92 27.78 81.0 78.6 3.0 

OCT-3-B 8 100 3.8 28.92 26.32 86.6 86.2 0.5 

OCT-4-B 8 100 4 28.92 25.00 92.4 93.5 1.3 

OCT-5-B 8 100 3.46 28.92 28.90 77.1 74.2 3.7 

DODE-1-B 12 95 5 28.92 19.00 239.5 245.0 2.3 

DODE-2-B 12 95 3.4 28.92 27.94 151.3 138.9 8.2 

DODE-3-B 12 95 3.29 28.92 28.88 145.7 132.1 9.3 

HEXA-1-B 16 60 4 28.92 15.00 136.8 132.5 3.2 

HEXA-2-B 16 60 2.1 28.92 28.57 64.7 58.8 9.1 

HEXA-3-B 16 60 2.5 28.92 24.00 78.8 74.0 6.1 

HEXA-4-B 16 60 2.8 28.92 21.43 89.7 86.5 3.7 

HEXA-5-B 16 60 3 28.92 20.00 97.2 94.3 3.0 
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Table 5: Geometric Properties of Non-compact Sections and FEM results 

Specimen n b 
(mm) 

t 
(mm) 

λ' λr b/t MAASHTO 

(KN-m) 
MFEM 

(KN-m) 
% 

Difference 

OCT-1-B-N 8 100 2.9 28.92 39.5 34.48 57.5 56.5 1.8 
OCT-2-B-N 8 100 2.6 28.92 39.5 38.46 43.6 47.8 9.5 
OCT-3-B-N 8 100 2.54 28.92 39.5 39.37 45.9 46.6 1.5 

DODE-1-B-N 12 95 3 28.92 36.41 31.67 121.0 119.9 0.9 
DODE-2-B-N 12 95 2.61 28.92 36.41 36.4 89.2 93.7 5.0 
DODE-3-B-N 12 95 2.8 28.92 36.41 33.93 104.6 103.9 0.6 
HEXA-1-B-N 16 60 2 28.92 32.53 30 56.9 54.9 3.5 
HEXA-2-B-N 16 60 2.07 28.92 32.53 28.99 62.7 58.0 7.5 
HEXA-3-B-N 16 60 1.85 28.92 32.53 32.43 44.6 48.7 9.1 

Figure 4 and Figure 5 shows the failure of sections due to local buckling under axial compression and pure 

bending respectively. 

 
Figure 4: Failure Mode of Model under axial 

compression 

 
Figure 5: Failure mode of Model under bending 

5 DISCUSSION ON FEM RESULTS 

5.1 Effect of Plate Width-Thickness Ratio 

Plate width-thickness ratio plays a vital role in local buckling capacity. Figure 6 shows the effect of plate 

width-thickness ratio (b/t) on the buckling capacity of sections under axial compression of this study. To 

investigate the effect of parameter b/t ratio, a wide range of b/t has been selected. Fcr has been divided by 

corresponding Fy to convert into a dimensionless term. Figure 6 shows the relationship between buckling 

capacity and plate width-thickness ratio. As expected, with an increase in the width-thickness ratio, the 

buckling capacity of the axially loaded multisided tube decreases. 

 

Figure 6: Effect of Plate Width-Thickness Ratio 

 

Figure 7: Effect of Number of Faces 

 

5.2 Effect of Number of Faces 

Figure 7 shows the variation of buckling capacity with the number of the faces of multisided steel tubular 



 

   

248-7 

 

sections under axial compression. Though DODE-2 and HEXA-3 have a similar plate width-thickness ratio, 

but different cross-sections. It has been observed that HEXA-3 has nearly 2% more critical buckling stress 

as compared to DODE-2. Moreover, HEXA-4 has more b/t ratio than OCTA-3. But it has been found that 

HEXA-4 has 6.7% more critical buckling stress than OCTA-3.  Thus, FEM results indicate that local buckling 

capacity increases with an increase in number of faces.  

6 COMPARISON WITH CODES 

Both the results of compression tests and bending tests have been compared with codes to see the 

compatibility of FE results with Codes. 

6.1 Multisided Tubes under Compression 

Eurocode 3 (EN 1-1, 2005, EN 1-3, 2006, EN 1-5, 2006) has design equation for plate elements. Multisided 

steel tubular section has been considered as a collection of individual longitudinal plate strip to find the 

resistance using Eurocode 3. Design equation of EC is based on the effective area concept. According to 

Eurocode, the effective area can be found from Equation 3, Equation 4 and Equation 5.  

[3] Aeff =  Ag  

[4]  = {
1, λp ≤ 0.5 + √(0.085 − 0.055ψ)

λp−0.055(3+ψ)

λp^2
≤ 1, λp > 0.5 + √(0.085 − 0.055ψ)

 

where ψ= Stress ratio and λp = plate width-thickness parameter 

[5] λp = √
Fy

σcr
 

σcr= Elastic critical plate buckling stress from Equation 1 

ASCE relies on the effective stress concept supported by the total cross section. Its equations depend on 

the number of faces (ASCE/SEI-48-11 2011). 

Table 6: ASCE Design Equations for Local Buckling Capacity of Multisided Tubular Column 

No of Faces Bend Angle 

(Degree) 

Limit Compressive Resistance Permitted 

4,6 or 8 ≥45 

b/t ≤ 260Ω/√Fy Fa = Fy 

260Ω/√Fy < b/t ≤ 351Ω/√Fy Fa = 1.42Fy(1 − 0.00114
1

Ω
√Fy

b

t
) 

b/t > 351Ω/√Fy 
Fa = 104980/ (

b

t
)

2

 

12 30 

b/t ≤ 240Ω/√Fy Fa = 1.45Fy(1 − 0.00129
1

Ω
√Fy

b

t
) 

240Ω/√Fy < b/t ≤ 374Ω/√Fy Fa = Fy 

b/t > 374Ω/√Fy 
Fa = 104980/ (

b

t
)

2

 

16 22.5 

b/t ≤ 215Ω/√Fy Fa = Fy 

215Ω/√Fy < b/t ≤ 412Ω/√Fy Fa = 1.42Fy(1 − 0.00137
1

Ω
√Fy

b

t
) 

b/t > 412Ω/√Fy 
Fa = 104980/ (

b

t
)

2

 

where b= width of one side, Fa is compressive stress permitted, =6.9 and Ω= 2.62 for Fy and Fa in MPa 
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To make a homogenous comparison between FEM results and Codes, 
b√Fy

t
 of ASCE equations can be 

converted to 850λp, which is found using equation 1 and equation 5 for E=200GPa. 

According to AASHTO, compressive strength of multisided tubular column shall be calculated using 

Equation 6 to Equation 9 (AASHTO 2015).  

[6] Pnc = AgFcr 

when 
KL

r
 ≤ 4.71√

E

QFy
 

[7] Fcr = Q(0.658)(
QFy

Fe
)Fy 

when 
KL

r
 > 4.71√

E

QFy
 

[8] Fcr = 0.877Fe, Where Fe= π2E/(KL/r)2 

If λ≤ λr, Q=1 

If λ>λr, Q=AEFF/Ag, where, AEFF is calculated from the sum of parts using effective widths, be 

[9] be = 1.92t√
E

f
[1 −

0.34
b

t

√
E

f
] ≤ b 

where f = Fcr using Q=1 

Design equations of EC and ASCE are plotted in the graph against plate width-thickness parameter λp in 

Figure 8. To get a dimensionless quantity, critical buckling stress has been divided by yield stress to plot in 

the comparison graph. 

 

Figure 8: Comparison of FEM results with Eurocode and ASCE 

Comparison between FEM results and ASCE shows that for eight faces, ASCE is overestimating the 

capacity for plate width-thickness parameter (λp) below 1.02 and underestimating for λp more than 2.0. 

However, for eight faces, ASCE and FEM show good agreement at λp around 1.12 and 1.3. Again for 

twelve faces, ASCE is overestimating the capacity for λp value of 0.8 and underestimating for λp value of 

1.55 as compared to FEM results. ASCE and FEM show good agreement for twelve faces sections having 

λp between 1.13 and 1.2. Figure 8 shows that ASCE and FEM results are close for λp value below 0.81 for 

sixteen faces. However, ASCE is estimating a very low capacity for λp value of 1.36 as compared to FEM 
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results for sixteen faces. FEM result shows good agreement with EC for λp value between 0.64 and 1.6.  

However, FEM result shows higher capacity for λp value more than 2. 

For AASHTO critical loads were calculated using given Equations 6 to Equation 9 and then plotted against 

the corresponding value of b/t in Figure 9. It is observed that Fcr/Fu for FEM and AASHTO are pretty close 

for b/t ratio less than 80. 

 
Figure 9: Comparison between FEM Results and AASHTO 

6.2 Bending of Compact and Non-compact Sections 

According to AASHTO, a compact multisided tubular section would reach plastic moment. From Figure 10, 

it is observed that most of the compact sections couldn’t reach plastic moment. However, the ratios of 

MFEA/MAASHTO are close to 1, which indicates a good agreement with AASHTO.  

 

Figure 10: MFEA/MAASHTO ratio for Compact Section 

 

Figure 11: MFEA/MAASHTO ratio for Non-compact Section 

Figure 11 shows that two Octagonal, one Dodecagonal and one Hexadecagonal non-compact section could 

reach the moment capacity indicated by AASHTO. However, for the remaining non-compact sections ratio 

of bending strength is close to 1. Since all the ratios of MFEA/MAASHTO are close to 1, it indicates good 

agreement of FEM results with AASHTO. 

7  CONCLUSION 

This paper presents a finite element (FE) analysis based study of local buckling of multisided steel tubular 

sections. Nonlinear finite element model has been developed to analyze a series of multisided steel tubular 

sections under compression and pure bending. Three different geometry, namely, eight, twelve and sixteen 

sided polygonal sections, are considered. Both linear buckling and nonlinear static analyses are conducted 

using ABAQUS. A parametric study was conducted to investigate the effect of width-thickness ratio and the 

number of faces on local buckling capacity. FEM results indicated an increase in local buckling capacity 

with an increase in number of faces. However, this increase is not that significant. FE results for multisided 

tube under compression have been compared with EC, AASHTO, and ASCE. ASCE provides different 

design equations depending on number of faces of the section. ASCE shows agreement with FEM results 
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for some of the sections. However, for other sections, ASCE is either overestimating or underestimating 

the buckling capacity as compared to FEM results. ASCE provides smaller buckling capacity for all the 

sections having λp more than 1.36 as compared to EC and FEM results. FEM result shows good agreement 

with EC for λp value between 0.64 and 1.6.  However, FEM result shows higher capacity for λp value more 

than 2. AASHTO and FEM results are pretty close for b/t ratio less than 80. Effect of bending on compact 

and non-compact sections has been studied by developing Finite Element Models. FEM results show that 

the ratio of bending strength from FE analysis and AASHTO is close to 1 for all the Octagonal, Dodecagonal 

and Hexadecagonal compact and non-compact sections, indicating good agreement with AASHTO. 
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