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Abstract: This paper critically evaluates methods for computing long-term deflections due to creep and 
shrinkage described in the 4th Edition of the Cement Association of Canada Concrete Design Handbook. It 
also presents a mechanics-based approach for computing incremental deflections due to creep and 
shrinkage. The accuracy of both methods in predicting the total deflection of concrete beams under 
sustained loads is quantified by investigating test-to-predicted ratios. The method presented in the Concrete 
Design Handbook was found to be unconservative, with test-to-predicted ratios as large as 1.4, but can be 
improved by using more conservative creep coefficients and ultimate shrinkage strains. The mechanics-
based method was found to yield accurate and slightly conservative test-to-predicted ratios of 0.82-0.92. 

1 INTRODUCTION 

The instantaneous and long-term deflections of concrete flexural members are heavily dependent on the 
effective moment of inertia, Ie. Two equations for calculating Ie are described in the Concrete Design 
Handbook (CAC 2016). The empirical equation proposed by Branson is based on an incorrect mechanical 
model that overestimates the effect of tension-stiffening in lightly reinforced members and therefore 
underestimates deflection (Bischoff, 2007). The equation proposed by Bischoff (2007) is based on a correct 
mechanical model. Scanlon and Bischoff (2008) recommended that the cracking moment, Mcr, be 
calculated based on two-thirds the modulus of rupture, fr, when using the Bischoff Equation to account for 
the effect of restrained shrinkage. Using the Branson Equation with Mcr based on 0.5fr  yields similar results 
to using the Bischoff Equation with 0.67fr (CAC 2016). Additionally, Mancuso and Bartlett (2016) showed 
that the instantaneous deflection computed using the Branson Equation with Mcr based on 1.0fr  yields 
test/predicted ratios greater than 1 (unconservative) with a high coefficient of variation. They also showed 
that using either the Branson Equation with Mcr based on 0.5fr  or the Bischoff Equation with Mcr based on 
0.67fr provides conservative results with a mean test-to-predicted ratio between 0.82 to 0.84 and a 
significantly lower coefficient of variation.  

The current empirically based methods for computing long-term deflections due to creep and shrinkage, 
referenced in ACI318 (ACI 2014) and presented in the Concrete Design Handbook (CAC 2016), were 
originally proposed by Branson (1977). The creep deflection is proportional to the instantaneous deflection, 
and therefore inversely proportional to Ie. On the other hand, shrinkage deflection depends only on the 
ultimate shrinkage strain, the top and bottom reinforcement areas, and the overall depth of the member. 
Several researchers including Branson have developed analytical tools to calculate deflection due to 
shrinkage. However, these methods have been criticized due to uncertainties in quantifying the impact of 
creep on Young’s Modulus of concrete and uncertainties in computing Ie (Branson 1977). Bischoff’s 
Equation for computing Ie opens the door for calculating long-term deflections analytically. Moreover, 
Branson’s methods for computing long-term deflections were derived based on empirical methods for 
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computing Ie, and the compatibility of the Bischoff Equation with these methods must be revalidated. 
Therefore, the objectives of the research reported in this paper are to: 

1. Critically evaluate existing methods for computing long-term deflection increments due to creep 
and shrinkage. 

2. Propose mechanics-based methods for calculating long-term deflection increments due to creep 
and shrinkage. 

3. Assess the accuracies of existing and proposed methods by investigating test-to-predicted ratios 
for the total (i.e. immediate plus long-term) deflections. 

4. Outline any shortcomings with existing methods and propose improvements. 

2 METHODOLOGIES FOR COMPUTING INCREMENTAL DEFLECTIONS DUE TO CREEP AND 
SHRINKAGE 

2.1 Branson / Concrete Design Handbook 

Methods for computing deflections due to creep and shrinkage presented in the Concrete Design Handbook 
(CAC 2016) and referenced in ACI318 (ACI-318 2014) were developed by Branson (1977). The equation 
for computing creep deflection is founded on the fundamental assumption that the increase in curvature 
due to creep is smaller than the increase in external fibre compressive strain due to creep. This assumption 
is appropriate because the depth of the compression region increases when creep occurs. It is formulated 
as  

[1]	ψcr
ψi

=	kr
εcr
εi
	  

where kr is a dimensionless factor less than 1, εcr is the creep strain, εi is the instantaneous strain, ψcr is 
the curvature due to creep, and ψi is the instantaneous curvature. An equation for calculating kr for partially 
prestressed beams was derived theoretically by Shaikh and Branson (1970) and was later modified to fit 
test data for non-prestressed beams (Branson 1977). This modified empirical equation for kr is given as 

[2] kr=
0.85

1+50ρ’
 

where ρ’ is the compression steel reinforcement ratio. Moreover, the creep coefficient, Ct, is defined as the 
ratio of the creep strain εcr to the initial strain εi (ACI 2008). The ratio of creep deflection to initial deflection, 
∆cr ∆i⁄ , is given by  

[3] ∆cr
∆i

= kr
εcr
εi

 

Thus, combining Equations [2] and [3] and accounting for Ct yields: 

[4] ∆cr= &
0.85Ct
1+50ρ'

'∆i 

The Concrete Design Handbook recommends that Ct be computed as Ct=0.8St, where St, the long-term 
deflection factor under sustained loads specified in A23.3 (CSA 2014), has a maximum value of 2.0. The 
maximum value of Ct is therefore 1.6.  

Branson (1977) recommends computing shrinkage deflection from the curvature due to shrinkage, which 
is assumed to be directly proportional to the free shrinkage strain and an inversely proportional to the overall 
member depth. Branson’s method is as follows 

[5] ∆sh= Kshψshℓn
2 

where ∆sh is the deflection due to shrinkage, ℓn is the clear span length, Ksh is a coefficient that accounts 
for the displacement boundary conditions of the member, and ψsh is the curvature due to shrinkage, defined 
as 

[6] ψsh= Ashεsh
h
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where εsh is the ultimate free shrinkage strain, Ash is a factor to account for the ratio of top to bottom 
reinforcement, and h is the overall depth of the member.  

Branson recommended that the free shrinkage strain be taken as εsh=400×10-6µε in the absence of 
information on free shrinkage under local conditions. The Concrete Design Handbook recommends that εsh 
be computed as  

[7] εsh= St
2.0

400×10-6 

Since St £ 2.0, εsh computed using Eq. [7] cannot exceed 400×10-6.  

2.2 Proposed Analytical Approach  

Short-Term Deflection 

Mechanics-based methods for computing the instantaneous deflection are well-established. The procedure 
involves calculating the depth of the neutral axis, kd, using conventional mechanically derived equations 
(e.g., CAC 2016) and subsequently calculating the effective moment of inertia, Ie. The deflection can then 
be computed using standard methods. The deflection of a simply supported concrete member carrying a 
uniformly distributed load is 

[8] ∆i=5M ℓn
2 48EcIe- .  

where M is the maximum midspan moment and Ec is Young’s Modulus for concrete. If the member is 
subjected to uniform moment along its entire length, the deflection can be computed from the curvature, 
ψi= M EIe⁄ , which implies radius of curvature, R, of 1 ψi⁄ , and so 

[9] ∆i=R-.R2- /ℓn
2
0

2
 

Equation [8] is valid when curvature varies along the length of the member, and so can be used to compute 
instantaneous and creep deflections. Equation [9] can be used to compute shrinkage deflection because 
the shrinkage curvature is constant along the length of the member. 

Members that are exposed to prolonged drying experience shrinkage, and consequently develop tensile 
stresses in the concrete due to restraint of shrinkage by the reinforcing steel. These tensile stresses reduce 
the applied moment necessary to initiate flexural cracking. Scanlon and Bischoff (2007) showed that the 
effect of restrained shrinkage is most pronounced in members with reinforcement ratio less than 1%, and 
less pronounced in members with higher reinforcement ratios. As a result, A23.3-14 requires that Ie be 
calculated using the Branson Equation with Mcr computed using 0.5fr to account for the reduction in cracking 
moment due to shrinkage restraint, and for the impact of the equation being derived using the wrong 
mechanical model.  

Long-Term Deflection due to Creep 

Creep of concrete at time t is usually quantified in terms of creep coefficient, ∅(t,to), where to is the age at 
loading. Since the creep coefficient is defined as ∅(t,to)= εcr/εi, the creep strain at time t is given as 

[10] εcr(t,to)= ∅(t,to) σc(to)
Ec(to)

  

where Ec(to) is Young’s Modulus and σc(to) is the maximum compressive concrete stress at the to.  

The effect of creep on a flexural member is analogous to a gradual and uniform change in Young’s Modulus 
of concrete (Gilbert and Ranzi 2011) that causes a change in the modular ratio, n, and consequently a 
change in kd, Ie, and the maximum compressive stress in the concrete. Creep in cracked reinforced 
concrete beams causes a lowering of the neutral axis and therefore a reduction in the external fibre 
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compressive stress (Gilbert and Ranzi 2011, Branson 1977). The time-dependent Young’s Modulus, Ec222, is 
defined as  

[11] Ec222 = Ec(t)
[1+χ(t,to)∅(t,to)]

 

where χ(t,to) is an aging coefficient used to account for the age of concrete at the time of loading. It generally 
ranges between 0.4 and 1.0 and is commonly taken as 0.8 for most practical cases (e.g., Scanlon and 
Bischoff 2008, Gilbert 1988). Therefore, a value of 0.8 will be assumed for the remainder of this paper. 
Theoretically-derived equations for computing χ(t,to) are presented in Gilbert and Ranzi (2011) and Bazant 
(1972).  

The age-adjusted modular ratio, n2, is therefore  

[12] n2=Es/ Ec222	=	n[1+ χ(t,to)∅(t,to)] 

where the modular ratio for short-term loading, n, equals Es/Ec 

The depth of the neutral axis after creep, kd222, can be computed using the adjusted modular ratio, n2, in place 
of n in conventional equations for calculating kd found in the CAC Concrete Design Handbook. The change 
in the depth of the neural axis requires computing modified Icr and Ie values, denoted as Icr9  and Ie9 
respectively. The stress in the concrete after creep has taken place can be calculated as  

[13] σ(t,to)= Mkd222

Ie9  
  

The curvature due to creep at time t after loading can be obtained by substituting Equation [13] in Equation 
[10] to yield:  

[14] ψcr(t,to) = εcr(t,to) 
kd222

  

The deflection due to creep for a simply supported beam subjected to a uniformly distributed load can be 
calculated from Equation [8] as  

[15] ∆cr=
5ψcr(t,to)

:;
 

Long-Term Deflection due to Shrinkage 

Shrinkage-induced curvature in reinforced concrete beams is primarily due to shrinkage restraint by the 
reinforcing steel. As concrete shrinks, it imposes a compressive force on the reinforcing steel, which in turn 
imposes an equal and opposite tensile force on the concrete. In cases where the top and bottom 
reinforcement are not symmetrical the resulting non-uniform strain distribution causes warping and 
therefore deflection. Symmetrically-reinforced members such as columns have a uniform shrinkage strain 
distribution across the concrete cross section and therefore do not undergo shrinkage warping. Most 
available methods, including Branson’s (1977) and Gilbert’s (1999) empirical methods, compute shrinkage 
curvature assuming the section to be uncracked. This is justifiable because: 

1. The curvature caused by shrinkage restraint depends on the size of the uncracked section (Gilbert 
and Ranzi 2011) since shrinkage shortening occurs only in the uncracked regions (Branson 1977). 
Therefore, the effect of restrained shrinkage may not be significantly influenced by the presence of 
cracks.  

2. The majority of shrinkage occurs in the first few weeks after casting, before the application of the 
design live loads and before cracking (Branson 1977). However, this may be questionable because 
construction loading often exceeds twice the self-weight of the member (Zhou and Kokai 2010).   

The force in the concrete at the level of the steel due shrinkage strains in an uncracked section can be 
calculated using fundamental principles of mechanics (e.g., Scanlon and Bischoff 2008). For a rectangular 
section, the force at the level of the bottom reinforcement is, Fc, 
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[16] Fc = -EsAsεsh

1+n2ρ(dh)(1+12/d
h	- 0.50

2
)
 

where εsh is the shrinkage strain, As is the area of the bottom steel, ρ is the reinforcement ratio, d is the 
effective depth, h is the overall depth of the member and n2 is as defined in Equation [12]. 

Similarly, the force at the level of the top reinforcement, Fc
' , is 

[17] Fc
'  = -Es As

' εsh

1+n2ρ'(dh)(1+12=0.5	-	d
'

h>
2
)

  

where As
'  is the area of the top steel, and d' is the depth of the top reinforcement from the top fibre. 

The residual stress at the top and bottom fibres,	σsh,T and σsh,B, respectively, can be calculated as 

[18] σsh,T= Fc

Ag
+ Fc(d-0.5h)(-0.5h)

Ig
+ Fc

'

Ag
+ Ag(d'-0.5h)(-0.5h)

Ig
  

 and  

[19] σsh,B= Fc

Ag
- Fc(d-0.5h)(0.5h)

Ig
+ Fc

'

Ag
+ Ag(-0.5h+d')(0.5h)

Ig
  

The strain at the top fibre and bottom fibres at time t, εsh,T and εsh,B, respectively, are therefore  

[20] εsh,T= σsh,T
Ec2222 

   

and   

[21] εsh,B= σsh,B
Ec2222 

  

and the net curvature (i.e., the curvature that causes warping) is 

[22] ψsh=  εsh,B	-	εsh,T
h

 

Finally, the deflection due to shrinkage,	∆sh, can be calculated using Equation [9]. 

3 COMPARISON WITH EXPERIMENTAL DATA 

Table 1 shows a comparison between deflections obtained from long-term tests on 30 simply supported 
beams and slabs, and deflections predicted using the proposed analytical method and methods reported 
in the Concrete Design Handbook. There is a lack of long-term tests on beams and slabs under sustained 
loading, and few studies report all data needed to carry out a comprehensive analysis (Kilpatrick and Gilbert 
2017). Only tests on simply-supported rectangular beams made of normal weight concrete are considered 
in the present study.  

Experimental values for creep coefficients and shrinkage strains were reported by Gilbert and Nejadi (2004) 
and can be deduced from data reported by Washa and Fluck (1952). Concrete properties such as the 
compressive strength at age of loading, fc

' (to), and Young’s Modulus at age of loading, Ec(to), were explicitly 
reported in both studies. The experimental program by Washa and Fluck spanned 926 days and involved 
curing the specimens for 5 days (tc = 5 days) and loading them at 14 days after casting (to = 14 days), 
meaning that they were left to dry for nine days prior to loading. The load duration, t, was 912 days. Gilbert 
and Nejadi’s specimens were not left to dry prior to loading (tc=to), and the load was sustained for 380 days.  

Instantaneous deflections were computed using the Branson Equation with Mcr based on 0.5fr to maintain 
consistency with the requirements of CSA A23.3-14 and the Concrete Design Handbook (CAC 2016). 
Analytical predictions were carried out using experimental creep coefficients and shrinkage strains, while 
predictions based on the Concrete Design Handbook were conducted using values suggested therein.  
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4 DISCUSSION 
4.1 Branson / Concrete Design Handbook 

The method presented in the Concrete Design Handbook was found to yield a highly unconservative test-
to-predicted ratio of 1.34 for the results reported by Washa and Fluck (1952), but a significantly more 
accurate and slightly conservative ratio of 0.97 for the results reported by Gilbert and Nejadi (2004). The 
discrepancy can be attributed, in varying degrees, to: 

1. Degree of conservatism of Ie computed based on a reduced modulus of rupture. 
2. Oversimplification of Branson’s creep coefficient, Ct, in the Concrete Design Handbook method. 
3. Underestimation of ultimate shrinkage strains, εsh, in the Concrete Design Handbook method. 

Instantaneous deflections predicted using Ie based on a reduced modulus of rupture were found to 
overestimate Gilbert and Nejadi’s (2004) observed deflections, with a mean test-predicted ratio of 0.67. On 
the other hand, the same method provided significantly more accurate, yet slightly unconservative ratios 
for the results of Washa and Fluck (1952), where the mean test-to-predicted ratio is 1.09. This inconsistency 
may be due to Gilbert and Nejadi’s specimens not being exposed to drying, and consequently not shrinking 
significantly before loading (to=tc). In this case, using one-half the modulus of rupture to account for 
reduction of the cracking moment due to restrained shrinkage is an overly conservative assumption. 
Conversely, Washa and Fluck’s (1952) test specimens were left to dry for nine days prior to loading and 
therefore were likely to have experienced significant shrinkage. Using a reduced modulus of rupture is 
clearly appropriate in this case. The overestimation of instantaneous deflection for Gilbert and Nejadi’s 
specimens contributed to the overall accuracy in predicting the total deflection through compensating for 
shortcoming in methods for predicting creep and shrinkage deflections. On the other hand, the reasonable 
accuracy in predicting instantaneous deflections for Washa and Fluck’s specimens, emphasized the 
deficiencies in methods for computing incremental deflections. 

Table 2 shows values recommended by Branson (1977) for computing creep and shrinkage deflections. 
For a typical concrete member in the interior of a building where the age at loading is between 3 and 14 
days and relative humidity is approximately 50%, Ct has a minimum value of 2.00. Similarly, εsh varies 
between 506 and 795×10-6. However, the Concrete Design Handbook suggests a simplified method for 
computing Ct and εsh where their respective maximum values are 1.6 and 400×10-6.  Ct and εsh were 
computed, using this technique, to be 1.4 and 349 ×10-6 for Washa and Fluck’s test specimens and 1.15 
and 287 ×10-6 for Gilbert and Nejadi’s specimens respectively. These values appear to be smaller than 
those obtained from Table 2, and the creep and shrinkage deflections are therefore likely to be 
underestimated.  

Using creep coefficients and shrinkage strains presented in Table 2 is likely to yield more conservative 
creep and shrinkage deflections and therefore more accurate test-to-predicted ratios for Washa and Fluck’s 
specimens, and more conservative results for Gilbert and Nejadi’s specimens. Preliminary calculations 
show that a mean test-to-predicted ratio of 1.11 for Washa and Fluck’s (1952) specimens and 0.69 for 
Gilbert and Nejadi’s (2004) specimens can be achieved using this approach. These ratios can be further 
improved (i.e. made to approach 1.0) if more accurate methods for predicting Ie based on the drying period 
before loading are developed and the creep deflection is uncoupled from instantaneous deflection. 
However, these topics are beyond the scope of this study and will not be explored further in this paper. 
Moreover, Table 2 does not provide creep coefficient values for concretes loaded at ages less than 7 days, 
while current construction practice may cause concrete members to be loaded at 3 days (Zhou and Kokai 
2010). 
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Table 2: Creep Coefficients and Shrinkage Strains Suggested by Branson (1977) 

Age at 
Loading 

(days) 

Average Relative Humidity, Ultimate Creep Coefficient or Shrinkage Strain 

³90% 80% 70% 60% 50% £40% 

Ct εsh 
 

(×10-6) 

Ct εsh 
 

(×10-6) 

Ct εsh 
 

(×10-6) 

Ct εsh 
 

(×10-6) 

Ct εsh 
 

(×10-6) 

Ct εsh 
 

(×10-6) 

1 - 281 - 562 - 655 - 749 - 842 - 936 

7 1.57 234 1.72 468 1.88 546 2.04 624 2.21 702 2.35 780 

10 1.50 182 1.63 364 1.79 425 1.94 485 2.10 546 2.23 607 

20 1.37 149 1.49 298 1.64 347 1.78 397 1.92 447 2.05 496 

28 1.32 130 1.44 260 1.58 303 1.72 347 1.86 390 1.97 433 

60 1.21 86 1.32 172 1.45 201 1.57 230 1.70 259 1.81 287 

90 1.17 66 1.27 131 1.39 153 1.51 175 1.63 197 1.74 218 

 

4.2 Consideration of Proposed Analytical Approach by Others 

The proposed analytical approach for computing long-term deflections due to creep is inspired by “the 
increased ‘n’” approach described in numerous references, including Pauw and Meyers (1964) and Branson 
(1977), where creep deflections are obtained by computing a neutral axis depth based on an age-adjusted 
modular ratio. Branson pursued the “increased ‘n’” approach with great interest but was unsuccessful in 
obtaining satisfactory agreement with experimental data, including that reported by Washa and Fluck 
(1952), likely due to uncertainties in computing kd and Ie. Methods available for computing kd for doubly 
reinforced beams were iterative and fairly complex, which created room for uncertainties (e.g., Pauw and 
Meyers (1964)). Additionally, Branson computed Ie using an empirical equation based on an incorrect 
mechanical model and the impact of Icr based on an increased ‘n’ may have been misrepresented. The 
“increased ‘n’” approach when implemented using appropriate, mechanics-based methods for computing 
kd and Ie was found to yield satisfactory test-to-predicted ratios, and the effect of compression 
reinforcement, creep coefficients, and shrinkage strains on the total deflection can be accurately 
represented.  

Final creep deflections were computed based on the concrete stress at time t, after creep has taken place. 
Since creep causes a lowering of the neutral axis (i.e., kd222 > kd), the concrete stress at time t is smaller in 
magnitude than the instantaneous stress at time to. More conservative creep deflections (approximately 1.5 
times those presented in Table 1) could be obtained by computing creep deflections based on the 
instantaneous concrete stress. This might be a practical consideration if creep deflections at time t1 < t are 
of interest but appears to be overly-conservative when only the final deflection is of interest. 

Deflections due to shrinkage were computed for an uncracked section due to reasons outlined in Section 
2.2. The net curvature was computed based on residual strains at the top and bottom fibres caused by 
shrinkage restraint by the top and bottom steel areas. This reflects the efficiency of compression 
reinforcement in markedly reducing the deflection due to shrinkage warping.  
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5 CONCLUSIONS 

This study presents an overview of the method described in the CAC Concrete Design Handbook for 
computing incremental deflections due to creep and shrinkage, which is based on empirical methods 
proposed by Branson (1977). It also presents a mechanics-based approach for computing long-term 
deflections due to creep and shrinkage, while outlining discrepancies between the two methods. The 
accuracy of both methods in predicting long-term deflections obtained from test data was investigated. The 
conclusions of this study are as follows:  

1. Instantaneous deflections computed using Ie based on a reduced modulus of rupture were 
overestimated for Gilbert and Nejadi’s (2004) test specimens because specimens were not 
exposed to drying before loading and the effects of restrained shrinkage were likely slight. On the 
other hand, instantaneous deflections were more accurately predicted for Washa and Fluck’s 
(1952) test specimens that were exposed to drying prior to loading and so experienced restrained 
shrinkage.  

2. Methods for computing incremental deflections due to creep and shrinkage described in the CAC 
Concrete Design Handbook are based on empirical methods proposed by Branson (1977). 
However, the Concrete Design Handbook provisions for computing ultimate shrinkage strains and 
creep coefficients are simplifications of the values tabulated by Branson (1977). The CAC Concrete 
Design Handbook method yielded an unconservative mean test-to-predicted ratio of 1.34 for 
Washa and Fluck’s (1952) test specimens. More accurate and slightly conservative test-to-
predicted ratios were obtained for Gilbert and Nejadi’s (2004) test specimens, and the mean test-
to-predicted ratio was 0.97. This is due to the overestimation of the instantaneous deflection for 
Gilbert and Nejadi’s test specimens, which compensated for the underestimation of incremental 
deflections due to creep and shrinkage.  

3. Incremental deflections due to creep and shrinkage can be more accurately predicted using the 
method described in the Concrete Design Handbook using creep coefficients and ultimate 
shrinkage strains recommended by Branson (1977). 

4. A more detailed analytical approach for computing creep deflection based on an increased modular 
ratio and a lowered neutral axis, and shrinkage deflection based on strains due to forces imposed 
by the top and bottom reinforcing steel on the concrete, was found to yield accurate and slightly 
conservative test-to-predicted ratios with Washa and Fluck (1952) and Gilbert and Nejadi’s (2004) 
test specimens. The mean test-to-predicted ratio computed using this approach is 0.82 for Washa 
and Fluck’s (1952) specimens and 0.92 for Gilbert and Nejadi’s (2004) specimens. The coefficient 
of variation of test-to-predicted ratios are 4.98% for Gilbert and Nejadi’s (2004) specimens and 
14.32% for Washa and Fluck’s (1952) specimens. 

 

6 REFERENCES 

ACI Committee 209. 2008. 209.2R-08 Guide for Modeling and Calculating Shrinkage and Creep 
in Hardened Concrete. Farmington Hills: American Concrete Institute. 

ACI Committee 318. 2014. Building Code Requirements for Structural Concrete and 
Commentary. Farmington Hills: American Concrete Institute. 

Bazant, Z. P. 1972. "Prediction of Concrete Creep Effects Using Age-Adjusted Effective 
Modulus Method." ACI Journal 69 (4): 212-219. 

Bischoff, P. H. 2007. "Rational Model for Calculating Deflection of Reinforced Concrete Beams 
and Slabs." Canadian Journal of Civil Engineering 34 (8): 992-1002. 

Branson, D. E. 1977. Deformation of Concrete Structures. McGraw-Hill. 



 GEN213-10 

CSA A23.3 Technical Committee. 2016. Concrete Design Handbook – 4th Edition. Mississauga: 
Canadian Standards Association. 

Gilbert, R. I. 2012. "Creep and Shrinkage Induced Deflections in RC Beams and Slabs." Special 
Publication (American Concrete Institute) 284: 1-16. 

Gilbert, R. I. 1999. "Deflection Calculation for Reinforced Concrete Structures—Why We 
Sometimes Get It Wrong." ACI Structural Journal 96 (6): 1027-1032. 

Gilbert, R. I. 1988. Time Effects in Concrete Structures. Amsterdam: Elsevier Science 
Publishers. 

Gilbert, R. I., and Ranzi, G. 2011. Time-Dependent Behaviour of Concrete Structures. Oxon: 
Spon Press. 

Gilbert, R. I., and Nejadi, S. 2004. "An experimental study of flexural cracking in reinforced 
concrete members under sustained loads." University of New South Wales, Sydney. 

Kilpatrick, A. E., and Gilbert, R. I. 2018. "Simplified Calculation of the Long-Term Deflection of 
Reinforced Concrete Flexural Members." Australian Journal of Structural Engineering 19 
(1): 34-43. 

Mancuso, C, and Bartlett, F. M. 2016. "ACI 318-14 Criteria for Computing Instantaneous 
Deflections." ACI Structural Journal 114 (5): 1299-1310. 

Pauw, A., and Meyers, P. L. 1964. "Effect of Creep and Shrinkage on the Behavior of 
Reinforced Concrete Members." ACI Special Publication 9: 129-158. 

Scanlon, A., and Bischoff, P. H. 2008. "Shrinkage Restraint and Loading History Effects on 
Deflection of Flexural Members." ACI Structural Journal 105 (4): 498-506. 

Shaikh, A. F., and Branson, D. E. 1970. "Non-Tensioned Steel in Prestressed Concrete 
Beams." Journal of the Prestressed Concrete Institute 9 (23): 14-36. 

Washa, G. W., and Fluck, P. G. 1952. "Effect of Compressive Reinforcement on the Plastic 
Flow of Reinforced Concrete Beams." Journal of the American Concrete Institute 49 
(10): 89-108. 

Zhou, W., and Kokai, T. 2010. "Deflection Calculation and Control for Reinforced Concrete 
Flexural Members." Canadian Journal of Civil Engineering 37: 131-134. 

 

 

 


