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Abstract: In view of budget limitations and inadequate investment in civil infrastructure, concrete bridges 
are deteriorating; raising concern for public safety. This state of affairs necessitates the development of a 
smart and efficient integrated method for optimized bridge intervention plans at the project and network 
levels. The present study focuses on modelling deterioration of concrete bridge decks. A reliable 
deterioration model enables transportation agencies to optimize their maintenance, repair, and 
rehabilitation (MR&R) plans, and consequently address needed maintenance works effectively. This 
paper presents a hybrid Bayesian-optimization method to calibrate transition probabilities of the 
developed Markovian model. These probabilities are demonstrated in the form of posterior distributions, 
whereas the transition from a condition state to the next lower state is represented by a function that 
captures the severity of defects such as corrosion, delamination, cracking, spalling, and pop-out. The 
Bayesian belief network is utilized to investigate the severity of these defects. The proposed method 
incorporates Markov chain Monte Carlo (MCMC) Metropolis-Hastings algorithm to derive the posterior 
distributions of transition probabilities. Finally, a stochastic optimization model is designed to build a 
variable transition probability matrix for each five-year zone in an effort to speed up the computational 
effort. 
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1 INTRODUCTION 

Infrastructure systems refer to systems that support the prevailing of the society. Infrastructure systems 

are divided into: bridges, highways, dams, waste water systems, sewer water systems, etc. Existing 

infrastructure is vulnerable to high levels of deterioration. Therefore, billions of dollars should be invested 

every year in order to maintain the desired levels of standards to the customers. The deterioration in 

Canada’s infrastructure systems is mainly because of two main reasons: 1) the decrease in the 

investment of the infrastructure systems, and 2) most of the infrastructure systems were constructed 

relatively a long time ago. Bridges are subjected to aggressive influences such as overloading, chloride 

ingress, cycles of the freeze and thaw, earthquakes, etc. Thus, they are more likely to deteriorate 

significantly. The overall condition of the bridges and roads in Canada is “Good” where 57% of the 

bridges are in “Good” condition, and 22% of the bridges are in “Fair” condition (Felio 2016). The number 

of highway bridges in Canada is 75,000 where their average age is 24.5 years in 2007 compared to a 

mean service life of 43.3 years (Statistics Canada 2009a). This means that the bridges in Canada have 

passed 57% of their useful lifetime (Statistics Canada 2009a). Bridges in Quebec have the highest 

average age of 31 years followed by Nova Scotia with an average age of 28.6 years (Statistics Canada 

2009b). 

Bridge Management Systems (BMSs) have become a necessity nowadays in order to provide a tool for 

the government agencies to manage a large network of bridges under some constraints such as limited 

resources (budget). AASHTO defined Bridge Management System (BMS) as “a system designed to 

optimize the use of available resources for inspection, maintenance, rehabilitation and replacement of 

bridges”. There are five main components of BMS which are (Czepiel 1995): 1) database for data 

storage, 2) condition rating model, 3) deterioration model, 4) cost model, and 5) optimization model for 

running the system. Deterioration model is one of the main pillars of the BMS because it enables the 

asset managers to forecast the future condition of bridge elements. A cost-effective MR&R activity is 

highly dependent on the capability of the deterioration model to predict the future time-dependent 

performance of the bridge element, whereas a reliable deterioration curve is needed in order to obtain 

information about the need and timing of maintenance activities for a certain planning horizon. This paper 

presented a hybrid Bayesian-based model that is capable of predicting the future performance of 

concrete bridge decks. 

2 OVERVIEW OF DETERIORATION MODELS  

A deterioration model can be defined as a relationship between the condition of the bridge element and a 

vector of explanatory variables, which represent a group of variables that affect the performance of the 

bridge element such as age, environmental conditions, applied loads, material properties, etc. The 

deterioration model can be divided into two categories which are: deterministic and stochastic models. 

Deterministic models assume that the future performance of the bridge elements is certain over time 

based on mathematical and statistical approaches such as linear and non-linear regression, artificial 

neural network, support vector machines, straight-line extrapolation, and curve-fitting. 

The main limitation of the deterministic models is that they fail to consider the randomness and 

uncertainty of the deterioration process of bridges due to the existence of un-observed explanatory 

variables and in-accurate inspection procedures (Agrawal, 2010). Stochastic models define the 

deterioration process in the form of one or more random variables, which can be modeled using 

probability density functions. Markov-based model is considered one of the most common stochastic 

models. Stochastic models can be classified into: state-based models and time-based models. State-

based model is based on calculating the probability that an element will deteriorate to the next lower state 

over a unit of time. On the other hand, time-based model is based on defining the probability of the time 

taken by an element to deteriorate to the lower state (Morcous et al., 2010).  



 

   
3 LITERATURE REVIEW  

In the recent years, several studies have been conducted to model the deterioration of the concrete 

bridges. Zambon et al. (2017) compared between a group of stochastic models which are:  Markov chain 

with exponentially-distributed and Weibull-distributed sojourn times, and gamma process. They concluded 

that the gamma process has better prediction capabilities when compared to the Markov chain models. 

Mašović and Hajdin (2014) utilized expectation maximization (EM) to estimate the transition probabilities 

of the Markov chain model. The developed model was applied to data from the Serbian Bridge 

Information Database to improve the deterioration of the bridge elements. They highlighted that the 

introduced developed model can be used when limited inspection records are available. Shim and Lee 

(2016) modeled the deterioration of the bridge decks based on stochastic Markov decision process. They 

estimated the transition probabilities as a function of the median duration years. 

Le and Andrews (2015) modeled the deterioration of the bridge elements based on the two-parameter 

Weibull distribution. Anderson Darling test is used to compare between a group of probability 

distributions. The parameters of the Weibull distribution were defined based on the rank regression. 

Muñoz et al. (2016) presented a methodology to predict the deterioration of the bridges using both 

Markov chain and regression analysis in the case of small sample size. They illustrated that the proposed 

methodology provided conservative estimates for the future condition ratings as well as similar estimates 

to the traditional methods in calibrating the Markovian models and regression analysis. Son et al. (2010) 

incorporated both time delay neural network (TDNN) and backward prediction model (BPM) to predict the 

future bridge condition rating. The backward prediction model was used to determine the missing 

historical records, which subsequently improves the prediction accuracy. M.Abdelkader et al. (2019) 

modeled the deterioration of bridge decks using semi-Markov decision process and Latin hypercube 

sampling. The sojourn time of each condition state is fitted to a certain probability distribution based on 

some goodness of fit tests. The parameters of the probability distribution functions are obtained using 

maximum likelihood estimation. They highlighted that the semi-Markovian model outperformed the time-

based Markovian model in addition to the weibull and gamma distribution models.     

However, deterministic models such as artificial neural network and multiple regression, often fail to 

capture the uncertainty and randomness of the deterioration process, whereas there is no certainty 

associated with the condition state the bridge element will enter within the next period of time. Moreover, 

sate-based models do not consider the sojourn times (waiting times). Thus, it is more realistic to model 

the deterioration in terms of a function of the time spent in a certain condition state (Ravirala and Grivas, 

1995). 

4 PROPOSED METHOD  

The proposed method has five modules 1) data processing, 2) conditional probabilities module, 3) 

Bayesian belief network (BBN) module, 4) Metropolis-Hastings module, and 5) stochastic optimization 

module (see Figure 1). The proposed method is a five-stage process, whereas it is divided into five main 

modules which are: The output of the data processing stage is a group of censored events. The purpose 

of the second module is to calculate the conditional probabilities. The conditional probabilities can be 

either known or unknown. For the known conditional probabilities, the Anderson-Darling test is performed 

for each probability distribution to select the best-fit distribution. The best-fit distribution is the one 

associated with the smallest Anderson-Darling statistic. Then, the parameters of the probability 

distribution are defined using maximum likelihood estimation (MLE). The unknown conditional 

probabilities are calculated based on the maximum entropy (ME) principle. The conditional probabilities 

are calculated based on a single objective function that maximizes entropy. The decision variables are 

the conditional probabilities, whereas the optimization problem is solved via genetic algorithm. Genetic 

algorithm is a method that is used to solve problems based on genetic processes of biological organisms, 

whereas it is based mainly on two operators which are: mutation and crossover. More details about the 

genetic algorithm can be found in M.Abdelkader et al. (2019).  



 

   
In the third module the likelihood of the in-state probabilities is calculated accounting for the uncertainties 

associated with the transition time, and uncertainty associated with the transition probability. Thus, the 

conditional probabilities and the marginal probabilities are expressed in the form of probability 

distributions rather than discrete values. The developed computerized tool enables users to select the 

number of samples, the type, and parameters of both conditional and marginal probabilities. The 

probability distributions are generated using stratified sampling technique called “Latin hypercube 

sampling” in order to overcome the limitations of Monte Carlo sampling. Bayesian belief network (BBN) is 

used to analyze the relationship between the extent of defect severity and the value of in-state probability. 

 

Figure 1: Framework of the overall research methodology 

The term “in-state probability” refers to the probability that a certain element remains in a certain condition 

state  , varying from 1 to 4, for a certain period of time. The direct links denote the dependencies among 

the five bridge defects considered in the paper. In addition, it depicts the dependency between each 

defect and related in-state probability. The proposed model is concerned with five types of bridge defects 

which are: corrosion, delamination, cracking, spalling, and pop-out. The in-state probability include:    , 

   , and    . The next step is to define a set of mutually exclusive states for each node. For each one of 



 

   
the five bridge defects, there are four condition states which are: “Good”, “Medium”, “Poor”, and “Very 

poor”. For the in-state probability, there are two states which are: “Yes”, and “No”.   

The fourth module is the Metropolis-Hastings algorithm. Metropolis-Hastings is employed to generate the 

posterior distribution of each in-state probability. The computerized tool enables the user to define the 

following parameters to calculate the posterior probabilities: 1) type and parameter of the prior 

distribution, 2) type and parameter of the proposal distribution, 3) number of samples, 4) number of burn-

in samples, and 5) acceptance rate. The previous modules are repeated for each of the three transition 

events (   ):        ,        , and        , whereas the output of the four modules is the three 

posterior distributions    ,    , and    . A stochastic optimization model is designed in order to address 

the variability associated with each decision variable. A variable transition matrix is employed because it 

is not reasonable to assume the same deterioration pattern for the whole service life of the bridge deck. A 

transition probability matrix is calculated for each zone. The decision variables are the transition 

probabilities for each zone, whereas they are calculated based on a single objective function that 

maximizes the joint probability. The transition probabilities are computed using genetic algorithm by 

sampling from the posterior distributions. Via the transition probabilities, the future performance of the 

bridge element can be forecasted. 

5 BAYESIAN INFERENCE  

Statistical inference can be defined as “theory, methods, and practices of building judgments about 

parameters of a population commonly using random sampling, which helps in drawing conclusions from 

the data that are subjected to random variation (Garfield and Ben-Zvi, 2008). There are two broad 

categories of interpreting the probabilities in the statistical inference which are: Bayesian inference and 

frequentist inference. The main significant feature between the Bayesian inference and frequentist 

inference is the capability of the Bayesian inference to include additional information in the form of prior 

distribution (Rudas, 2008). In the Bayesian inference, there are two sources of information about the 

unknown parameter which are: prior distribution and likelihood function. The prior distribution is mainly 

based on previous studies. Consequently, the prior distribution and the likelihood function are used to 

generate the posterior distribution. Prior probability is the probability of the parameter of interest before 

the current data is examined while likelihood function represents the likelihood of the parameter of 

interest given the current data is observed. Finally, the posterior probability is the probability after the 

current data is examined. In other words, the Bayesian inference provides a compromise between the 

likelihood data and prior knowledge.    

Assume                       represents a set of condition ratings for a group of bridge decks. 

Bayesian inference is used to estimate the unknown parameter   of the probabilistic model   as follows 

(Micevski et al., 2002). 
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Where; 

      denote the unknown parameters of the model which are the transition probabilities in the present 

study.        |     denotes the posterior distribution.               indicates the likelihood function 

and it is obtained as a result of a combination of BBN, Latin hypercube sampling, and genetic algorithm. 

   |   is the marginal likelihood function, whereas it is independent of  . Therefore, the posterior 

distribution can be expressed as follows.    |   is a normalizing constant to ensure that the posterior 

distribution is integrated to one over all its possible values.  
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Where; 

The posterior distribution is proportional to the likelihood function multiplied by the prior distribution. The 

definition of prior probabilities requires special attention, whereas it is based on knowledge and feedback 

of the experts. Prior distribution is assumed non-informative distribution. Consequently, the posterior 

distribution is proportional to the likelihood distribution. Non-informative distribution is chosen because 

there is no available previous information about the unknown parameters, whereas all the values of the 

unknown parameters are assumed to be of equal probability. The prior distribution is assumed to be a 

uniform distribution within the interval[   ]. As the prior distribution becomes more informative, it will have 

a greater influence on the posterior distribution.    

6 PERFORMANCE METRICS  

The proposed model utilizes three performance indicators to compare between the three deterioration 

models. The three performance indicators are: root-mean square error (    ), mean absolute error 

(   ), chi-squared statistic (  ).     ,    , and    can be calculated using Equations 3, 4 and 5, 

respectively (Nazari et al., 2015; Ranjith et al., 2013). For the chi-squared statistic, the model is based on 

the null hypothesis that the observed condition rating of the bridge deck is consistent with the predicted 

condition rating of the bridge deck. The chi-squared test is applied to the three deterioration models at a 

confidence level 95%.  If the chi-squared test statistic is larger than the critical chi-squared test statistic at 

  degrees of freedom and α (significance level) equals to 0.05 (confidence level is 95%). Then, the null 

hypothesis is rejected, otherwise the null hypothesis is accepted.  
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Where; 

   indicates the observed condition of the bridge deck.    indicates the predicted condition of the bridge 

deck.    represents the number of observations (bridge decks).  

7 MODEL IMPLEMENTATION  

The proposed methodology utilizes 181 inspection records from the Ministry of Transportation in Quebec 

(MTQ), Canada. One hundred fifty six are used for training the model, while the remaining twenty five 

records are used for testing the model. Out of the 156 inspection records, there are 104 transition events 

and 52 censored events, whereas the number of events for the        ,        , and         are 55, 19 

and 30, respectively. There are four condition states covering the three transition events. The four 

condition states are: Good (1), medium (2), poor (3), and very poor (4).The posterior distributions for each 

of the three in-state probabilities are computed using the Metropolis-Hastings algorithm interface, 

whereas the user is able to define the number of samples, number of burn-in samples, optimum 

acceptance rate, parameters of the proposal distribution, and the lag of the autocorrelation function. The 

proposed model utilizes a multi-variate normal distribution as a proposal distribution and a uniform 

distribution as a prior distribution. The model output is the posterior probabilities of the in-state 

probabilities, values of the convergence diagnostics, and a set of plots. The interface of the Metropolis-



 

   
Hastings algorithm module is shown in Figure 2. The posterior distributions of     is shown in Figure 3. 

The values of the mean of three posterior distributions of    ,    , and     are: 0.9552, 0.9597 and 

0.9211, respectively. The values of the standard deviation of the three posterior distributions are small, 

whereas the values of the standard deviation of the three posterior distributions of    ,    , and     are: 

0.01348, 0.01328 and 0.01361, respectively. 

 

Figure 2: Interface of the Metropolis-Hastings algorithm model 

As shown in Figure 2, the acceptance rate is 0.2306, Z-score is 1.7706, and final autocorrelation 
coefficient is -0.00114 for the in-state probability   . If the calculated probabilities satisfy the three tests, a 
message box will appear indicating that the current chain has converged. Otherwise, a message box will 
appear indicating that the current chain did not converge. As shown in Figure 2, the constructed chain of 
    satisfies the three convergence diagnostics, which means that the current chain has converged. 
Since, the Markov chains fulfill the convergence diagnostics. Thus, the type and parameters of the prior 
and proposal distributions are correctly defined.  

A comparison between different deterioration models is shown in Table 1. The proposed method is 
denoted as    . The chi-squared critical values at 180 degrees of freedom and a significance level of 

5% equals to 212.304. In terms of     ,     achieved the lowest      (     0.  16). On the 
other hand, gamma distribution achieved the highest      (     1.45 4). Thus,     achieved the 

best performance based on     . For    ,     provided the lowest     (    0.5401). On the 

other hand, gamma distribution achieved the highest     (    0.9 99). Thus,     provided the 

best performance according to    . The gamma and weibull distributions fail to pass the chi-squared 
test because the chi-squared critical value is larger than the chi-squared statistic.     provided the best 

performance according to        46.05   . Based on the previous statistics,     outperformed other 

models in terms of      ,    , and   .  



 

   

 

Figure 3: Posterior distribution of the in-state probability     

Table 1: Comparison between deterioration models  

Deterioration model               

Hybrid Bayesian 
model 

0.7716 0.5401 46.0583 

Weibull distribution 1.4527 0.9834 356 

Gamma distribution 1.4584 0.9889 356.6667 

 

8 SUMMARY and CONCLUSION  

This paper presented a hybrid Bayesian-based model capable of predicting future performance of 

concrete bridge decks. The proposed method utilizes regular inspection records provided by the Ministry 

of Transportation in Quebec (MTQ). The probability distributions of the developed likelihood functions 

needed in the Markov Chain combine both Latin hypercube sampling and Bayesian belief network to 

address the stochastic nature of the transition probabilities used in the developed method. The results 

demonstrate that Bayesian belief networks enable the impact assessment of the identified defects 

severities on the overall bridge deck condition. Five bridge defects are considered: corrosion, 

delamination, cracking, spalling and pop-out. Metropolis-Hastings algorithm is employed to calculate the 

posterior distributions of the in-state probabilities of    ,    , and    . A computerized tool is developed to 

facilitate the use of the proposed method by the user. The proposed method outperformed the commonly-

utilized weibull distribution, whereas the proposed model achieved an improvement in the         , 

and    equal to 46.885%, 45.078% and 87.062%, respectively. Based on the conducted comparison, the 

proposed method provides promising results in terms of the prediction accuracy. Thus, the developed 
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model helps in providing a reliable depiction of the future performance of the bridge decks which 

consequently helps in determining the optimal maintenance, repair and rehabilitation activities in a proper 

manner as well as decision making for both project level and element level.           
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