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Abstract: Our built environment is threatened with ever-increasing risks of climate change and natural 
hazard- induced extreme events. Recent natural catastrophes especially extreme hydro-climatological 
hazards such as floods, forest fires, droughts, and heatwaves often times lead to cascading severe 
weather-induced power outages. These outages affect immense economic loss. In this research, we 
propose a strategic planning and decision-making framework to predict the inoperability of the utility in face 
of several types of natural disasters. Inoperability can indicate the level of system malfunction caused by 
the severe weathers. In this research, inoperability refers to the interruption in power supply, measured by 
the extents of peak demand due to power outage. The proposed framework consists of the three main 
phases: (1) natural hazard-induced major disaster selection, (2) relevant feature selection, and (3) identify 
the factors that influence the levels of inoperability in the utility sector due to power outage (i.e., lack of 
power supply). First, we propose to leverage Principal Component Analysis (PCA) for dimension reduction 
and feature selection; then, using the selected features we propose to develop advanced statistical learning 
models to identify the key factors that will increase the risk of inoperability in the electric power sector. In 
this paper, we establish our framework using generalized additive model (GAM), although the framework 
can be easily extended to include other models as well. The data on major power outage events in the 
continental U.S., ranging between 2000 and 2016, is available to validate our propose framework at the 
state level. Our proposed framework will allow the decision makers and stakeholders such as the utility 
companies and state regulatory commissions to understand the risks of inoperability of the regional 
electricity sectors, help minimize the risk of natural hazard-induced extreme outages in the electricity sector, 
and improve the security of the electricity sector as a whole. 
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1 INTRODUCTION 

Cascading outages happened due to physical damage or deviated patterns and shifts in electricity demand 
(Elsner et al., 2008; Elsner and Jagger, 2004; Jagger and Elsner, 2006; Knutson et al., 2010, Mukherjee et 
al., 2018a, 2018b). Recent natural catastrophes especially extreme hydro-climatological hazards such as 
floods, forest fires, droughts, and heatwaves resulted in severe weather- induced power outages. These 
massive outages caused by the natural disasters affect billions of dollars of economic loss (Elsner and 
Jagger, 2004; Jagger and Elsner, 2006; Mukhopadhyay and Nateghi, 2017; Nateghi and Mukherjee, 2017). 
Since the electric grid is a large, complex, geographically expanded overhead infrastructure system, highly 
interdependent with other critical infrastructure systems, a significant damage to this system can render the 
system to be inoperable to such an extent that it might take several weeks, months, or even years, to restore 
the system back to normal condition (Commission, 2011; Rudnick, 2011). For example, Southwest blackout 
in 2011 was considered to be the largest power failure in California's history causing a widespread blackout 
for about 12 hours affecting southern Orange County and several valleys, which affected 2.7 million people 
who were left without power for days (Ditler, 2011; Romero, 2011; Smith and Katz, 2013). Derecho, a 
severe thunderstorm, hit the Midwestern United States and the Mid-Atlantic region in 2012 causing major 
power failures; the power restoration in this case was very slow and the outages persisted for a long time. 
In West Virginia, the outages lasted longer than two weeks in most of the affected regions (Smith and Katz, 
2013; Todd et al., 2012). Inoperability of electricity sector, in this paper, is defined as a metric that evaluates 
the extent of failure in the electricity sector in terms of various levels of supply disruption. Various research 
studies focused on defining and measuring the inoperability of a system. Based on the construct of the 
Leontief’s economic input output (I-O) model introduced by Nobel Laureate Wassily Leontief (Leontief, 
1986, 1951a, 1951b), Haimes and Jiang developed a derived model named Inoperability Input-Output 
model (IIM) Model (Haimes and Jiang, 2001). The IIM models are used to analyze the potential cascading 
impacts of any type of inoperability in a system due to an external shock such as terrorism, natural disaster, 
or high-altitude electromagnetic pulse (HEMP) and help to identify the critical infrastructures that would be 
affected the most (in terms of their inoperability) due to such shocks. The IIM model can quantify the total 
economic loss due to reduction in system capacity caused by any type of external shock on the system 
(Haimes, 2008, 2008; Haimes et al., 2005). In other words, it can quantify changes in monetary value owing 
to specific levels of inoperability; for example it can answer the question: “how much of economic loss is 
occurred by 33.49% inoperability of transportation sector?” (Santos, 2006). Generally speaking, the term 
inoperability can be expressed as a percentage of the malfunction of system due to a disruption and as-
planned functioning of the system. Inoperability is expressed as a fraction ranging between 0 and 1, where 
0 corresponds to a fully operational system state and 1 corresponds to a completely inoperable system 
state. Table 1 depicts the previous studies that use the concept of inoperability; the table indicates the 
causes of inoperability for various cases and states the initial values for the inoperability that were used in 
the studies. Santos and Haines (2004) developed Input-Output Inoperability Model (IIM) due to terrorism.  
The study considered a nationwide terrorism-induced 10% demand perturbation. Santos (2006) also 
developed Inoperability Input-Output Modeling to quantify the disruptions within an interdependent 
economic systems under two scenarios: (a)  due  to  a  33.2%  reduction  in  air  transportation; and, (b) a 
19.2% reduction in hotel occupancy for the 9/11 case study. Haimes (2005) developed modeling impacts 
of intentional attacks on interdependent sectors. The case study applied high-altitude electromagnetic pulse 
(HEMP) attack scenarios by assuming 5% of inoperability of all computers. Crowther (2007) evaluated 
major impacts of hurricanes Katrina and Rita to demonstrate this use of the IIM. The inoperability of utility 
sectors including electricity, water, and natural gas, resulted from the disasters as estimated by Department 
of Energy (DOE) report. Crowther and Haimes (2005) also used supply-side perturbation of 10% to the 
electricity sector to develop systemic risk assessment and management of interdependent infrastructures 
on the supply-side. Leung (2007) developed IIM model for a bomb explosion at an airport. 

 

 

 

 



 

   
Table 1: Current studies for Inoperability analysis 

Authors Model Cause of Inoperability Source of Inoperability (Initial values) 

Santos and 
Haimes (2004) 

IMM nationwide terrorism 10% inoperability (Assumption) 

Santos (2006) IMM nationwide terrorism 33.2% reduction in air transportation and a 19.2% 
reduction in hotel (Data given) 

Haimes (2005) IMM high-altitude 
electromagnetic pulse 

5% of inoperability of all computers (Assumption) 

Crowther 
(2007) 

IMM Hurricanes Katrina and Rita Summary Table is given for three utilities from 
Sep. to Nov. (Data given) 

Crowther 

(2005) 

IMM combination of natural 
disasters and terrorists 

attack 

10% for national power outage (Data given) 

Leung (2007) IMM A bomb at an airport 20% of the total final output of the transport 
sector (Assumption) 

In this research, we develop a strategic planning and decision-making framework to evaluate the 

inoperability of the utility sector in face of several disaster types. A specific data set (Mukherjee et al., 

2018c) on major power outage events in the continental U.S. ranging between 2000 and 2016 is leveraged 

to establish the framework based on the nine regions in the U.S. as defined by North American Electric 

Reliability Corporation (NERC). As a final outcome, the proposed framework will be able to evaluate the 

total inoperability owing to power outage caused by different disaster types in a region in a particular year. 

2 METHODOLOGY 

2.1 Data mining 

The proposed framework consists mainly of two phases: (1) Data mining and (2) Disaster-induced utility 

inoperability prediction model as shown in Figure 1. The research uses the specific dataset on major power 

outages as described in (Mukherjee et al., 2018c). The data includes all the major power outage events in 

the U.S. occurred between 2000 and 2016; the dataset contains 55 variables and 1500 observations. 

Variable types include⎯ duration of power outage, the geographical location of power outages, date and 

time of outage, local climate information, land use characteristics, consumption patterns and economic 

characteristics, among others. 
 

 

Figure 1: Research Framework 



 

   
The first step of the proposed framework is for data mining including geographic classification and variable 

selection. The research categorized the disasters types from data set based on the NERC geographic 

classification (NERC, 2011). Natural disasters in the United States are affected by geographical 

characteristics. Federal Emergency Management Agency (FEMA) provides geographic classification with 

11 regions (FEMA, 2011). The most common natural disasters to occur in FEMA region 5 including 

Minnesota, Indiana, Iowa, Ohio, Illinois, and Michigan were reported as severe storms (111), floods (76), 

and tornadoes (31), whereas floods (57), typhoons (46), and severe storms (29) were the most frequent 

natural disasters in FEMA region11 including California, Nevada, and Arizona. The comparison of natural 

disasters depending on the region classification is needed to define the inoperability and develop the 

inoperability predictive model. Therefore. this research applies the geographic classification provided by 

North American Electric Reliability Corporation (NERC) with nine regional entities. NERC provides a 

geographic region map to improve the reliability of the bulk power system (NERC, 2011). The map provides 

each reginal entity: Florida Reliability Coordinating Council (FRCC), Midwest Reliability Organization 

(MRO), Northeast Power Coordinating Council (NPCC), Reliability First Corporation (RFC), SERC 

Reliability Corporation (SERC), Southwest Power Pool, RE (SPP), Texas Reliability Entity (TRE), Western 

Electricity Coordinating Council (WECC) and Hawaiian Islands Coordinating Council (HICC) shown in 

Figure 2. In addition, NECR has published yearly based reliability assessment report with each region’s 

total demand. This research will develop the prediction model of the utility failure for natural disasters that 

occurred in the designated region using the data set obtained from Imperial System of Measurement 

(Mukherjee et al., 2018c) and NERC reliability assessment reports (NERC, 2018a, 2018b). 

 

Figure 2: Geographic Map (NERC, 2011) 

In order to develop the proposed inoperability model for the major power outages induced by severe 

weather events, variable selection was conducted using Principal component Analysis (PCA) to reduce the 

dimensionality of the data. PCA is performed based on the linear combination of the original variables using 

eigenvectors. The detailed fundamental concept of PCA as explained in detail in previous studies 

(Tabachnick et al. 2001, Noori et al. 2007, Nouri et al. 2008), transforms the input variables to principal 

components (PCs). For example, let the random vector X = [𝑋1, 𝑋2 ···· 𝑋𝑝]T have the covariance matrix with 

eigenvalues 𝑎1, 𝑎2 ···· 𝑎𝑡 ≥ 0. Consider the linear combinations, defined by Equation 1and 2 (Jolliffe et al. 

2002, Shlens 2014). 

[1] 𝑌𝑖 = 𝑎1 𝑋1 + 𝑎2 𝑋2 + ···· + 𝑎𝑝 𝑋𝑝                                            

[2] 𝑌𝑖 = 𝑎1
𝑇 𝑋                                                                              

Hawaii (HICC) 



 

   
where  𝑌𝑖=principal components (PCs), 𝑎𝑝= eigenvector, 𝑋𝑝 = input variables. The first principal component 

selects a vector value with the largest variance in the data set. This calculation continues until a total of p 

PCs have been calculated, which is equal to the original number of variables. One of the results of PCA is 

an eigenvalue chart and loading plot. The summation of the percentage of eigenvalues reaching at least 

80% can help the determination of the numbers of PCs the eigenvalue chart (Lam et al. 2010) shown in (a) 

Eigenvalue Bar-chart in Figure 3. A loading plot is used to determine the correlations among the input 

variables. The angle between the two vectors in the loading plot is an approximation of the correlation 

between the two variables (Wold et al. 1987, Kamal-Eldin et al. 1997, Yoon et al. 2018). The two variables 

with 180 degrees indicate the strong negative correlation shown in (b) Loading plot shown in Figure 3. 

 

 

        (a) Eigenvalue Bar-chart                                        (b) Loading plot 

Figure 3: PCA Interpretation 

2.2 Multi-hazard induced Inoperability Model 

Step 2 of our proposed framework is to develop a multi-hazard induced inoperability model. The 
original definition of inoperability (q) is the level of a system’s disfunction expressed as a percentage of its 

‘as-planned’ production capacity (Santos & Haimes, 2004). The equation of inoperability is given as: 

[3] 𝑞 =  
(𝑎𝑠 _𝑝𝑙𝑎𝑛𝑛𝑒𝑑 𝑡𝑜𝑡𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 − 𝑟𝑒𝑑𝑢𝑐𝑒𝑑 𝑙𝑒𝑣𝑒𝑙 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛)

𝑎𝑠_𝑝𝑙𝑎𝑛𝑛𝑒𝑑 𝑡𝑜𝑡𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡
                                  

Inoperability that is assessed using an Inoperability Input Output Model (IIM) reflects the risk of service 

disruption of the infrastructure that might result from various types of failures owing to complexity of the 

system, accidents, acts of terror, or natural disasters. This research focuses on the inoperability of the 

electricity sector caused by natural disaster impacts. Inoperability in our research is defined as: 

[4]𝑄 ( 𝐼𝑛𝑜𝑝𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑝𝑜𝑤𝑒𝑟𝑜𝑢𝑡𝑎𝑔𝑒) = 

    
Amount of peak demand lost during an outage

Amount of peak demand of the Region
                                        

Where, 𝑅𝑒𝑑𝑢𝑐𝑒𝑑 𝑙𝑒𝑣𝑒𝑙 𝑜𝑓  𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 : Amount of peak demand lost during an outage (MW), and 

𝐴𝑠 _𝑝𝑙𝑎𝑛𝑛𝑒𝑑 𝑡𝑜𝑡𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 :  Amount of peak demand for the Region (NERC, 2018a, 2018b) (MW).   

Generally speaking, inoperability can be explained as the ratio of the amount of peak demand during the 

period of reduced production (due to the disaster impact) to the total amount of peak demand of the region 

in a normal day. The estimated peak demand of a region in a blue-sky day refers to the “as-planned total 

output” of the region. NERC has estimated and evaluated the total amount of peak demand for the summer 

and winter for nine regions. The total amount of peak demand is estimated based on average weather 

conditions and assumed forecasted economic activity at the time of submittal (NERC, 2018a, 2018b). This 

research considers the given total amount of peak demand in 2017 or 2018 for each region as “as-planned 



 

   
total output”. The numerator of the equation is a reduction in system capacity caused by natural disaster. 

The reduced level of production is expressed by the amount of peak demand lost during an outage which 

is one of variables obtained from the data set used in this research as described before. Therefore, the 

inoperability in the electricity sector resulting from a severe weather induced power outage is defined as a 

percentage of the amount of peak demand lost during an outage to the total peak demand of the region in 

a blue-sky day as shown in the Equation 4. 

Next we propose to develop a Generalized additive model (GAM) to estimate and predict the hazard-

induced inoperability in the electricity sector. GAM is semiparametric learning algorithm that generalizes 

linear models (Buja et al., 1989; Hastie and Tibshirani, 1990). The model can be applied to solve the 

regression problems and classification problems (James et al., 2013). The multilinear regression model is 

needed to explain as follows: 

[5] 𝑦𝑖  =  𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2  + ⋯ +  𝛽𝑚𝑥𝑖𝑝 +  𝜀𝑖                                               

Where 𝑦𝑖 stands for the dependent variable, 𝑥1 through 𝑥𝑚 stand for the independent variables (predictive 

variables), and 𝛽0 through 𝛽𝑚 are the regression coefficients estimated by multiple regression. In the 

dependent variable 𝑦𝑖 on the basis of several predictors, 𝑥1 through 𝑥𝑚, the generalized additive model 

(GAM) extends traditional linear by allowing unspecified (non-parametric) functions to be considered as 

each predictor. The formulation of GAM is given as follows: 

[6] 𝑦𝑖 = 𝛽0 + ∑𝑗=1 𝑓𝑗 (𝑥𝑖𝑗) + 𝜀𝑖 

        = 𝛽0 + 𝑓1(𝑥𝑖1) + 𝑓1(𝑥𝑖1) + ⋯ + 𝑓𝑝(𝑥𝑖𝑝) + 𝜀𝑖                                                                      

The smoothing function, 𝑓𝑖 for each predictor variable 𝑥𝑖𝑗, is estimated nonparametrically like regression 

splines and tensor product splines. Various functions including local regression, polynomial regression, or 

any combinations can be used, while implementing a GAM. In the case of this research, the GAM is applied 

to assess the hazard - induced inoperability for any disaster type depending on the NERC regions in the 

U.S. Equation 7 illustrates our proposed model: 

[7] Q(𝐼𝑛𝑜𝑝𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐷𝑖𝑠𝑎𝑠𝑡𝑒𝑟)   = 

    𝛽0  +𝑓1 (𝑝𝑜𝑤𝑒𝑟𝑜𝑢𝑡𝑎𝑔𝑒 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛) + 𝑓2 (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑) + 𝑓3 (𝑑𝑒𝑚𝑎𝑛𝑑 𝑙𝑜𝑠𝑠) + ……+      

    𝑓3 (𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒) + ε𝑖                                     

Here, Q(𝐼𝑛𝑜𝑝𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐷𝑖𝑠𝑎𝑠𝑡𝑒𝑟) is expressed as a summation of various smoothing functions of the predictor 

variables such as power outage duration, number of customers affected, demand loss, etc. based on the 

results of the variable selection process in Step 1. Individual inoperability models’ response variables - 

𝑄1 (𝐼𝑛𝑜𝑝𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐸𝑎𝑟𝑡ℎ𝑞𝑢𝑎𝑘𝑒)  , 𝑄2 (𝐼𝑛𝑜𝑝𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑇ℎ𝑢𝑛𝑑𝑒𝑟𝑠𝑡𝑜𝑚)  , 𝑄3 (𝐼𝑛𝑜𝑝𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐹𝑙𝑜𝑜𝑑) , etc. indicate the 

levels of inoperability in the electricity sector that are caused by earthquakes, floods or thunderstorms, 

respectively. The last process of the framework is to estimate the total inoperability of the electricity sector 

in a NERC region caused by multiple disasters occurred in a year. After the individual inoperability models 

are developed for specific disaster types, they can be integrated into a single model using disaster-type 

indicator variables to estimate the total inoperability in a region (refer to in Equation 8). 

[8] Total Inoperability 

=   ∑ 𝐼𝑛𝑜𝑝𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐷𝑖𝑠𝑎𝑠𝑡𝑒𝑟 

=    𝑄1 (𝐼𝑛𝑜𝑝𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐸𝑎𝑟𝑡ℎ𝑞𝑢𝑎𝑘𝑒) · 𝐷1 + 

      𝑄2 (𝐼𝑛𝑜𝑝𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑇ℎ𝑢𝑛𝑑𝑒𝑟𝑠𝑡𝑜𝑚) · 𝐷2  + 

      𝑄3 (𝐼𝑛𝑜𝑝𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐹𝑙𝑜𝑜𝑑) · 𝐷3  + 

     𝑄𝑛 (𝐼𝑛𝑜𝑝𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐷𝑖𝑠𝑎𝑠𝑡𝑒𝑟) · 𝐷𝑛                                                               



 

   
              Where         𝐷𝑛 = 1 𝑖𝑓 powere outage occures due to the n disaster 

                                   𝐷𝑛 = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

Q(𝐼𝑛𝑜𝑝𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐷𝑖𝑠𝑎𝑠𝑡𝑒𝑟) is a smoothing function for each disaster obtained from the Equation 7 using GAM 

algorithm. 𝐷𝑛 is an indicator variable described by 0 or 1 to indicate the absence or presence of the disaster 

affects on the outcome of total inoperability. 

3 EXPECTED OUTCOME 

Globally, with the growing frequency of disasters, risks of infrastructure failures are increasing that have 

threatened the communities and society, more than ever before. Especially failure of critical infrastructures 

leading to disruptions of essential services like power outages can impact the whole community and the 

economy resulting in huge cost burdens for our society and the economy. In this research, we proposed 

a strategic planning and decision-making framework to predict the inoperability of the utility due to several 

disaster types. The proposed framework mainly consists of two phases: (1) data mining and (2) 

inoperability model development using advanced statistical learning techniques. Step 1 is to identify the 

important variables that affect the inoperability model in Step2. In Step 1, feature selection is conducted 

leveraging principal component analysis (PCA) and regional categories as provided by NERC. The step 

2 of the proposed framework is to develop an Inoperability-disaster based- prediction model based on (1) 

Inoperability function application, (2) Multi-hazard induced inoperability model: Generalized additive model 

(GAM), and (3) Total inoperability prediction. The disaster models are developed using generalized 

additive model (GAM) based on the regional disasters. The given data set was used to develop the 

inoperability prediction model for disasters. The proposed framework to predict the inoperability of the 

utility ultimately provides the total inoperability of utility due to several disaster types. Therefore, the 

proposed prediction model for inoperability can be used especially in Inoperability Input-Output Model (IIM) 

to identify the interdependency among industries. Furthermore, the proposed framework to predict the 

inoperability of the utility can help decision makers or stake holders establish natural disaster prevention 

and security policies in the electricity sector. 
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