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Abstract: This paper introduces a model for automated monitoring and control of productivity in 
earthmoving operations. The model makes use of advancements in wireless sensing networks, Internet of 
Things (IoT), and artificial intelligence. It consists of two modules; the first is a low-cost open-source remote 
sensing data acquisition module for collecting data throughout earthmoving operations. The collected data 
is sent to a cloud-based MySQL database, in which the second module is designed to (1) measure actual 
productivity in near-real-time, (2) detecting the location and condition of hauling roads and (3) monitoring 
and reporting driving conditions over these roads via short email messages. The work encompassed field 
and scaled laboratory experiments in the development and validation processes of the developed model. 
The laboratory experiments 1:24 scaled loader and dumping truck to simulate loading, hauling and dumping 
operations. The truck was instrumented with the microcontroller equipped with accelerometer, GPS module, 
load cell and soil water content sensor. Fifteen simulated earthmoving cycles were conducted using the 
scaled equipment. The field work was carried out in the city of Saint-Laurent, Montreal, Canada using a 
passenger vehicle to mimic the hauling truck operational modes. Fifteen Field simulated earthmoving cycles 
were performed. The data collected from the lab experiments and field work was used as input for the 
developed model. The results will be presented, highlighting the accuracy of the developed model in 
recognition of the status of the hauling truck, traveled road condition and in the estimated duration of the 
simulated earthmoving cycles. 

1 INTRODUCTION 

Timely collection of data about resources and project status is essential for supporting management to lead 
a project successfully. In this process, a significant amount of data from construction sites is required to 
determine the project status, and hence corrective actions can be taken if needed (Shahi et al. 2013). 
Collecting, storing and processing construction job-site data are regularly manual and labor-intensive 
methods. The usual practice for progress tracking typically depends on foremen daily or weekly reports 
which entail rigorous manual data collection and involve frequent record or data entry mistakes (Song et al. 
2006). 

Over the last few decades, automation technology market witnessed a remarkable advancement in both 
hardware and software. Data acquisition systems were promoted as a direct consequence of this 
advancement. These data acquisition systems are inevitable to be automated with less or no human 
intervention to avoid subjectivity and to boost accuracy and reliability of the acquired data.   

This paper introduces a novel automated model for near real-time measurement of productivity of 
earthmoving operations. The developed model consists of four modules; (1) automated data acquisition 
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module, (2) planned productivity module, (3) automated measurement of actual productivity module, and 
(4) driving and road condition analysis module. A set of sensors, smart board, and a microcontroller used 
in the development of a customized data acquisition module. Sensor data fusion algorithm is developed for 
accurate productivity measurement.  

2 BACKGROUND 

The construction industry has an emergent need for automated means of measuring construction progress, 
especially for approaches that employ remote-sensing technology, because the methods that are typically 
used to measure progress are labor intensive and therefore time-consuming (Abeid et al. 2003, Wu et al. 
2009). Many efforts were made to replace data collection paper-based with project monitoring and control 
systems providing a project-wide scope of automated solution. Several researchers have presented 
integrating different automation technologies, e.g., RFID, bar coding, 3D laser scanner, and GPS. The 
research is persistent in that field to augment the efficiency and to reduce the cost of implementation. The 
last two decades have included several research endeavors to study and develop automated on-site data 
acquisition systems. These studies have utilized several technologies, and they have targeted a broad 
scope of applications in construction. Throughout these studies, the recent advancement in sensing 
technologies, computing techniques, and wireless communication have played a vital role to automate the 
process of on-site data acquisition not only on construction job sites but also on the constructed facilities 
(Li et al. 2016).  These research studies have incorporated different technologies such as barcode, radio 
frequency identification system (RFID), GPS, image processing and Photogrammetry, laser scanners, 
remote and embedded sensors, wireless sensor networks (WSN), and mobile computing. 

GPS technology was identified as an accurate and robust technology for automated data collection for 
controlling highway construction. However, there are inaccuracies associated with the collected GPS data 
which are caused by objects hindering communication between GPS receiver and satellites (Navon and 
Shpatnisky 2005). GPS technology was utilized in tracking, e.g., to track earthmoving operations and/or 
highway construction (Alshibani and Moselhi 2016, Montaser et al. 2012, Hildreth et al. 2005, Navon and 
Shpatnitsky 2005), also in tracking pipe spools position in a construction project (Caldas et al. 2006).  

Many research studies used GPS as a standalone tool, while most of these studies concluded that 
standalone GPS could not usually satisfy the needed requirements to solve the research problems. In case 
of standalone GPS utilization, the obtained data are limited to time and location, which is sometimes hard 
to differentiate between productive and idle times. Furthermore, the acquired records do not present enough 
information that could be used to estimate the quantities of the excavated soil or confirm that the trucks are 
fully loaded (Ibrahim 2015). The productivity of earthmoving operations was substantially studied during the 
last decades. However, equipment as a part and particular of earthmoving operations play a vital role in the 
production, many other internal and external factors could influence productivity i.e., weather and road 
conditions (Salem et al. 2017). Research has introduced numerous analytical methods that used in the 
planning, measurement and analysis of earthmoving operations. However, some of these methods proved 
the efficiency and effectiveness; they still lack being fully automated in line with the current technological 
advancement. Moreover, most of automated models have depended on black-box and off-the-shelf 
technologies. 

3 DEVELOPED MODEL 

3.1 Automated Productivity Analysis Framework 

The main objective of this research is the automation of productivity measurement and analysis to 
guarantee a near-real time detection of different factors influencing productivity of earthmoving operations. 
The developed framework of this research integrates data acquisition as well as productivity measurement 
and analysis in a near-real-time. Figure 1 shows a simplified overview of this framework. 
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Figure 1: Simplified representation of the developed measurement and analysis framework 

The developed automated models consist of two main modules; each module has one or more sub-
modules. Figure 2 shows a schematic design of the proposed automated productivity analysis framework. 
The developed model has a variety of data communication protocols, such as 3G, GPRS, Bluetooth, Xbee 
and Wi-Fi. The data collected by different sensors as well as the weather station is tabulated in internal 
MySQL database. This internal database is built-in the communication gateway (Meshlium®). The gateway 
was developed by Libelium®™ and it has a capacity of up to 40 GB of data storage. In this research, GPRS 
and Wi-Fi are the utilized data communication protocols due to their low risk in data transmission. The 
internal MySQL database allows preprocessing of the collected data. The main purpose of this 
preprocessing is to filter the captured raw data with a focus on extracting and processing key data items 
before its final processing distention on the host server i.e. cloud.  
Figure 3 shows a framework of the developed automated productivity analysis model. Figure 4 shows the 
architecture of the onsite automated data acquisition module.  It was provided with sensors for air 
temperature and humidity, luminosity, wind speed and direction, rainfall. This board (Waspmote agriculture) 
allows up to fifteen sensors to be connected at the same time. As shown in Figure 4, the principal 
components of the data acquisition module are the microcontroller and the smart sensor board. 
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Figure 2: Schematic design of the developed automated productivity analysis framework 
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Figure 3: Framework of the developed automated productivity analysis model 

 

 

Figure 4: Onsite data acquisition module block diagram (Salem et al. 2018) 
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3.2 On-Site Data Acquisition Development 

The data acquisition system consists of portable components installed on hauling equipment and fixed data 
storage and preprocessing gateway (Meshlium) on the excavation site, as shown in Figure 5. The 
customized multi-sensor data acquisition prototype and the on-board-diagnostic scanner OBDII are 
attached to all the hauling trucks in the earthmoving project, while the data receiver is installed near either 
the loading zone or the project gate. 

 

Figure 5: Data acquisition module deployment 

3.3 Productivity Measurement, Assessment and Analysis 

Different algorithms are utilized to automate the measurement, assessment, and analysis of earthmoving 
operations using data mining, data fusion and machine learning techniques. The main goal of developing 
the productivity measurement, assessment, and analysis models in this research is to avoid the time 
consumed in conventional recognition of productivity variations. Also, to automate the identification of main 
reasons behind productivity variations. Productivity analysis model receives different data from the data 
acquisition module, where the collected data is pre-processed on the microcontroller units and the 
gateway’s local database. Microcontrollers have the role of controlling not only data-captured delays and 
transmission intervals, but also it determines the appropriate data sets to communicate to the productivity 
analysis module. Waspmote™ smart boards and microcontrollers permit through its programming the 
application of efficient strategies and algorithms needed for data sampling, processing and storing.  

Collected and communicated data sets should satisfy its acquisition purposes without data streaming 
congestions. The amount of data should not be so scanty as to put its usefulness at risk, nor should it be 
so roomy as to overwhelm processing. The developed model allows the fulfillment of this purpose through 
the application of some data sampling algorithms. Figure 6 shows an example of two raw data acquisition 
algorithms; the first algorithm is only for recording only values greater than targeted threshold value, while 
the second one only records only predefined significant changes in readings. In both algorithms, the times 
of each change are also recorded. 

3.4 Productivity Measurement Algorithm 

The developed productivity measurement algorithm employs multi-sensors data fusion. Table 1 shows the 
concept of how different sensory data acquisition sources are the inputs for the truck operational state 
classifier. Automatically collected data sets by GPS, OBDII, three axial accelerometer, and load cell are 
tabulated into the developed database, then based in the fused data captured by all employed sensors; 
developed MySQL procedures recognize different states of the hauling truck. 
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Figure 6: Example of raw data acquisition algorithms 

The main necessary six states for calculating the productivity are waiting for loading, loading, hauling, 
waiting for dumping, dumping and returning. Once these states are recognized, productivity could be 
calculated using the associated timestamps that could be retrieved from the captured GPS data. The 
timestamps permit the determination of the start and end time of each state, and hence its duration, likewise 
the total duration of each earthmoving cycle. Equation 1 used for calculating each truck productivity. Soil 
volume determined using soil properties data obtained from specific or generic soil database and soil 
weights acquired from the load cell as shown in Equation 2.  

[1] Truck productivity m3 hr⁄ =  
Soil Volume (m3)

Cycle time (hr)
 x Load Factor    

 [2] V =
m

ρ
    

Where: V soil volume in m3, m soil weight in tons, and ρ soil density in ton/m3 
Therefore, the total productivity of hauling fleet can be calculated using Equation [3].  

[3] Total Productivity = ∑ Truck Productivityn
i=1 (i) 

Table 1: Conceptual overview of data fusion algorithm for truck state recognition (Salem 2018) 

                    State   

Detector 
Wait / Loading Loading Hauling Wait / Dumping Dumping Return 

GPS 
Location Loading Zone Road Dumping Zone Road 

Speed  Zero  > 0  Zero > 0 

OBD II 
Engine (ON / OFF) 
Low / No Fuel consumption 
Low Gear Speed / N / P 

Engine (ON) 
Fuel consumption 
High Gear Speed 

Engine (ON / OFF) 
Low / No Fuel consumption 
Low Gear Speed / N / P 

Engine (ON) 
Fuel consumption 
High Gear Speed  

Accelerometer X, Y=0, Z  g 
X, Y 0 
Z > ±g Fluctuated X, Y=0, Z  g 

X(++), Y 0 
Z(--), Mirrored Fluctuated 

Load cell Constant  0  
Exponential 

(++) Capacity  
Constant   
Capacity 

Constant             

  Capacity 

Exponential  

(-)   Zero 
Constant  0 

3.5 Driving and Road conditions Analysis 

The 3D accelerometer associated in the data acquisition module is used for recognizing undesirable driver 
behavior of hauling equipment. The algorithm shown in Figure 7 depicts driving and road conditions 
analysis. The application of this algorithm allows automated monitoring of hauling equipment drivers to 
detect and report any adverse behavior. Also, it recognizes access and traveling road deficiencies as well. 
Alerts are triggered by excessive speeding, harsh breaking, severe maneuvers, and unsafe lane changes. 
The boundaries in the movement direction i.e., X direction for safe and harsh accelerations and brakes are 
±0.3g and ±0.5g respectively (Langle and Dantu, 2009; Fazeen et al. 2012, Li et al. 2017). 
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Figure 7: Flowchart of driving and road condition analysis algorithm (Salem and Moselhi 2018) 

3.6 Automated Alerting System 

Early warning decision support module is configured to report detected road and driving conditions as well 
as the status of actual productivity compared to that planned. For automating the early warning system, an 
embedded notification system is coded through the Waspmote IDE, and then uploaded to the 
microcontroller. Hence, the microcontroller dispatches the predefined notifications via associated GPRS 
module in the form of cellular short message service (SMS), email or recorded voice message. Figure 8 
shows the schematic design flowchart of the proposed automated early warning system. These notifications 
address the need for intervention and permit decision makers to take prompt and proactive measures to 
improve the performance and related productivity. Hence, it assists in avoidance of schedule delays, cost 
overruns, and inefficient utilization of resources. 
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GPRS Module
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Upload
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SMSPhone call

Cellular network

Send an 
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Figure 8: Schematic design flowchart of the proposed automated early warning system 
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4 CASE STUDY 

The applicability of the developed model was examined through a designed hybrid case study to evaluate 
and validate the model. This case study is divided into two integrated phases to collect three types of data. 

4.1 Phase I – Laboratory Experiment 

The laboratory experiment was conducted in an open to sky terrace to allow a reliable contact to GPS' 
satellites. Also, to make a direct connection between Meshlium and a computer PC to observe the received 
data latency. A WiFi signal was available thru an Internet router connected to a PC computer. Connecting 
the gateway to WiFi aims to simulate its installation in loading and dumping zones as described in the 
developed automated productivity measurement model. In this Phase, thirty simulated earthmoving cycles 
were conducted using the scaled equipment. Where the truck has a payload capacity of 864 cm3 and the 
loader bucket capacity is 175 cm3. The performed cycles incorporate a total of 143 buckets with different 
fill capacities Acceleration data was recorded in a high sampling rate (100 reading/second). Also, the load 
cell records, water content sensor readings were filed in CSV format. All data sets were recorded in the SD 
card to be integrated with the data collected in the second phase. 

4.2 Phase II – Field Experiment 

The second phase was conducted in field using a passenger vehicle. The selected site located in the city 
of Saint-Laurent, Montreal, Quebec, Canada. The data acquisition module was installed on the dashboard 
near the windshield of the mimicked truck i.e., the passenger vehicle. An OBD II scanner was appropriately 
attached to the car as explained in the developed model. Then the vehicle has performed fifteen trips 
between two designated locations, which identified as loading and dumping zones. A specific criterion has 
controlled the choice of the site for this phase, where the selected site provides two equal in length hauling 
roads with a significant alteration in road conditions. The selected site layout is shown in Figure 9, the figure 
shows both loading and dumping zones in addition to hauling and the alternative roads. The vehicle has 
simulated different operational states of hauling truck as in real earthmoving operations, unless loading and 
dumping states which were done in phase I. 

Duration of each state was recorded through time laps using a smartphone as a reference for evaluating 
the developed model in terms of automated determined durations. GPS, acceleration and OBD II data were 
stored in the SD card in a CSV format. Thereafter, all the acquired data from the two implemented phases 
were transmitted to the central MySQL relational database. The designed MySQL procedures were run for 
the application of the associated developed algorithms. 

 

 

Figure 9: Case study field - loading, dumping zones and hauling roads 
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4.3 Results and Discussion 

The model demonstrates ability to recognize different states even for the ones which take few seconds as 
in the states of exiting loading and dumping zones, where they have durations as little as 5 seconds.The 
developed model has shown perfect recognition of the state of truck throughout the fifteen field simulated 
earthmoving cycles. The developed road condition analysis algorithm has demonstrated an accuracy of 
83.3% and 82.6% in recognizing road bumps and potholes, respectively. Also, the results indicated tiny 
variances in measuring the durations compared with actual durations using time laps displayed on a smart 
cell telephone; with an average invalidity percentage AIP% of 1.89 % and 1.33% for the joint hauling and 
return duration and total cycle duration, respectively. Figure 10 shows the total cycle duration for each of 
the fifteen trips; determined by the developed model and those of the recorded time laps method. The chart 
shows approximate coincide between the two methods. 

 

Figure 10: Output from model and time laps method for total duration of each cycle  

5 Conclusion 

This paper presents a model for automated monitoring and control of productivity in earthmoving operation, 
where a variety of sensors, smart boards, and microcontrollers are used to automate the data acquisition 
process. The model consists of two main modules, the first one is for data capturing, which encompasses 
onsite fixed unit and a set of portable units attached to each truck used in the earthmoving fleet. The fixed 
unit is a communication gateway (Meshlium®), which has integrated MySQL database with data processing 
capabilities. Each mobile unit consists of a microcontroller equipped with a smart board that hosts a GPS 
module as well as a number of sensors such as accelerometer, temperature and humidity sensors, load 
cell and automated weather station. The second module is for productivity measurement and analysis, 
which processes and analyzes the captured data automatically. It automates the analysis process using 
data mining and machine learning techniques; providing a near-real-time monitoring of measurement and 
analysis outcomes. Laboratory and field work was conducted for the development and validation processes 
of the developed models. The work encompassed field and scaled laboratory experiments. The developed 
road condition analysis algorithm has demonstrated an accuracy of 83.3% and 82.6% in recognizing road 
bumps and potholes, respectively. Also, the results indicated tiny variances in measuring the durations 
compared with actual durations using time laps displayed on a smart cell telephone; with an average 
invalidity percentage AIP of 1.89 % and 1.33% for the joint hauling and return duration and total cycle 
duration, respectively.  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Model 10.77 10.7 10.88 10.87 11.23 11.2 11.18 12.2 12.08 11.95 11.57 12.38 13.75 12.7 12.97

Time Laps 10.88 10.72 10.67 11 11.02 11.1 11.38 12.58 12.05 12.15 11.38 12.55 13.83 12.62 13.2
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