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Abstract: Information on extreme rainfall events variations in space and time is essential for the design of 
various water resources systems. However, it is difficult practically to obtain this information simply based 
on historical precipitation records due to the random behavior of these phenomena, especially in the climate 
change context. Hence, statistical and stochastic approaches have been commonly used for describing 
accurately the spatio-temporal variability of the precipitation process.  The objective of this study is to 
develop a stochastic model to represent the daily precipitation process in the context of climate change. 
The proposed model (referred herein as MCME- Markov Chain Mixed Exponential) consists of two 
components: (i) the first component representing the occurrences of daily rainfalls based on the first-order 
Markov Chain; and (ii) the second component describing the daily rainfall intensities using the Mixed 
Exponential distribution. In addition, a comparative study was carried out to assess the performance of 
MCME as compared to the popular LARSWG stochastic model using observed daily precipitation data 
available at selected rain gauge stations across the province of Quebec, Canada.  Both models were 
calibrated based on the available data for the 1961-1975 period and were validated using the data for the 
1976-1990 period. In general, it was found that the proposed MCME could provide comparable or more 
accurate results than the existing LARSWG in consideration of different graphical and numerical 
performance criteria for a majority of selected stations. In addition, results of this numerical application have 
indicated the feasibility, accuracy, and robustness of the MCME. 

1 INTRODUCTION 

Climate change studies at a local site usually involve daily time series of weather variables to develop future 
climate scenarios at the site of interest. Global Climate Models (GCMs) have been commonly used to study 
the present climate and project future climate. However, the spatial resolution of these models is quite 
coarse preventing an accurate estimation of weather variables at a small scale. Thus, many techniques are 
developed to link the local weather variables with the large-scale GCM outputs. The most common 
techniques available include dynamical downscaling (Giorgi and Mearns 1999), artificial neural networks 
(Gardner and Dorling 1998) and statistical downscaling techniques which in turn include linear regression-
based methods (Kilsby et al. 1998) , weather typing classifications (Wilby et al. 2004), and stochastic 
weather generators (Wilks and Wilby 1999; Semenov and Barrow 1997).  

The latter became widely used in the past decade to simulate daily scenarios of future climates at a certain 
location, necessary for risk assessment, interpolation of missing data and climate change impact 
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assessment (Wilks and Wilby 1999; Semenov and Barrow 1997). This technique is mostly based on 
perturbing the parameters of weather generators (WGs) with statistics derived from climate scenarios 
produced by GCMs either on monthly or daily timescales (Wilks 1992; Katz 1996; Semenov and Barrow 
1997). The weather generator is calibrated based on observed data from a certain period and the 
parameters obtained from calibration are then used to generate the synthetic series of any length; thus, the 
model’s outputs represent the climate observed during the period used for calibrating the model. When the 
parameters of a stochastic weather generator are perturbed, the daily data series generated can be 
representing a changed climate. While some WGs rely on Markov chains to model rainfall occurrences, ex.  
WGEN (Richardson and Wright 1984), CLIGEN (Arnold and Elliot 1996), others use semi-empirical 
distributions (LARS-WG (Semenov and Barrow 1997)). In particular, LARSWG (Long Ashton Research 
Station Weather Generator) is a popular WG, well-known mostly for its good performance in various climatic 
conditions (Qian et. al, 2008).   

In this study, the MCME model, an occurrence-amount stochastic weather generator is studied. Specifically, 
the performance of the MCME and LARSWG models is assessed for calibration and validation periods at 
different rain gauge stations across Quebec, Canada. First, an overview of each model’s features is 
detailed, followed by the description of the data used, the stations locations and the performance evaluation 
procedure. In the last section, detailed results of the study and discussion are elaborated. 

2 OVERVIEW OF THE LARSWG AND MCME MODELS 

2.1 LARSWG Stochastic Weather Generator 

The LARSWG model is based on the series approach and can generate synthetic daily series of 
precipitation, maximum and minimum temperatures, and solar radiation (Racsko et al. 1991; Semenov et 
al. 1998), which can be in turn used to simulate weather data at a given site. After inputting observed daily 
time-series weather variables at a local site, semi-empirical distributions (SED) are developed monthly for 
each of the following variables: length of wet series, length of dry series, daily precipitation, minimum and 
maximum temperatures, solar radiation (Semenov and Barrow 1997). The SED is a cumulative probability 
distribution function, comprising 23 intervals n, defining empirical cumulative probabilities 𝑝", from 0 to 1, 
with i going from 0 to 23, along with the corresponding values of the climatic variables 𝑣", calculated as 
follows: 

 [ 1]  𝑣" 	= 	𝑚𝑖𝑛{𝑣:𝑃(𝑣-./ 	≤ 	𝑣) ≥ 	𝑝𝑖}; 	𝑖	 = 	0,…	 , 𝑛 

where P() represents the probability computed based on the observed data. For the lowest 𝑣8 = min	{𝑣-./}  
and the highest 𝑣< = max	{𝑣-./} observed data values, respective fixed probabilities are set where 𝑝8 =
0	and 𝑝< = 1. For a better approximation of the extreme high daily precipitation values occurring with low 
probability, low daily precipitation occurring with high probability and extremely long dry and wet series, 
probability values 𝑝 are fixed at the corresponding tails of the SED. The synthetic series generation 
procedure is then based on selecting values from the appropriate distributions using a pseudo-random 
number generator (Semenov et al. 1998). In particular, to simulate the occurrence of precipitation, alternate 
wet and dry series are modeled, where the length of the series is randomly selected from the wet or dry 
SED for a particular month. For a wet day (precipitation > 0 mm), the precipitation amount is generated 
from the precipitation SED developed for the specified month, independently of the wet series length or the 
precipitation amount on the previous day. Predicted climate changes can be derived from global or regional 
climate models and then used to perturb the parameters of distributions to obtain a daily climate scenario 
at a particular site (Semenov and Stratonovitch 2010). Table 1 gives a summary of the precipitation 
generation features of the model. 

2.2 Markov Chain Mixed Exponential (MCME) Model 

The occurrence-amount MCME modeling scheme is a Richardson-type model which consists of two 
components representing the occurrences and intensities of daily rainfalls. After estimating the parameters 
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of each component, daily rainfall series are simulated through a random generation process. Table 1 gives 
a summary of the main features of the model. 

2.2.1 The Occurrence Process 

The first-order Markov Chain is used to model the occurrences of daily rainfall events, as suggested by 
previous studies, because of its simplicity in estimating the parameters (Chin 1977; Roldan and Woolhiser 
1982).The observed rainfall data is inputted and treated as a series of two states (wet or dry), modelled as 
either 1 or 0 respectively with a first order Markov Chain explaining the dependence between dry and wet 
days on successive days. Let 𝑋A,< be the random variable representing the occurrence and non-occurrence 
of rainfall on day 𝑛 of year 𝑡:  

[ 2] 𝑋A,< = 	 C
0			𝑖𝑓	𝑑𝑎𝑦	𝑛	𝑖𝑠	𝑑𝑟𝑦
1		𝑖𝑓	𝑑𝑎𝑦	𝑡	𝑖𝑠	𝑤𝑒𝑡 	      

Accordingly, the transition probabilities of the first-order Markov Chain can be defined: 

[ 3] 𝑝"L(𝑛) = 𝑃{𝑋A,< = 𝑗|𝑋A,< = 𝑖} for 𝑛, 𝑡 > 1         

where 𝑖 and 𝑗 can be 0 (dry) or 1 (wet). 

2.2.1.1 Estimating Transition Probability Parameters 

To estimate the transition probabilities, the maximum likelihood (ML) estimation method is used. The 
observed number of transitions 𝑎"L,P(𝑛) from state 𝑖 on day (𝑛 − 1) to state 𝑗 on day 𝑛 in a period 𝑘 across 
the full length of data is recorded (Woolhiser and Pegram 1978). In this case, a year is split into 𝑘 = 12 
monthly periods. Hence, the probability of a day to be dry given that the previous day was dry, p88, and, 
the probability of a day to be dry given that the previous day is wet, pU8 are computed as: 

[ 4] 𝑝88,P(𝑛) =
VWW,X(<)

VWW,X(<)YVWZ,X(<)
           

 [ 5] 𝑝U8,P(𝑛) =
VZW,X(<)

VZW,X(<)YVZZ,X(<)
        

2.2.2 The Rainfall Amount 

The mixed exponential distribution was found to be the most accurate function to describe the distribution 
of daily rainfall intensities as compared to other commonly used distributions such as simple exponential, 
gamma, and Weibull (Roldan and Woolhiser 1982; Wilks and Wilby 1999). The mixed exponential function, 
fitted to the daily rainfall amounts 𝑥	greater than 0.1	𝑚𝑚 is given by: 

[ 6] 𝑓(𝑥) = 	 ]
^Z
𝑒_

`
aZ + U_]

^c
𝑒_

`
ac          

where 𝑥 ≥ 0.1	𝑚𝑚, 0 ≤ 𝑝 ≤ 1, 0 < 𝜇U < 𝜇f,  𝑓(𝑥) being the probability density function and 𝑝, 𝜇U, 𝜇f the 
parameters. Mathematically, this function is a superposition of two simple exponential functions with means 
𝜇U and 𝜇f, combined by the mixing probability parameter 𝑝 (Wilks and Wilby 1999).  

2.2.2.1 Estimating the mixed exponential parameters 

The ML method is used to estimate the parameters of the mixed exponential distribution, where the 
likelihood function is defined as: 

[ 7] 𝐿(𝑥|𝑝, 𝜇U, 𝜇f) = 	∏ 𝑓(𝑥L|𝑝, 𝜇U, 𝜇f)<
"iU          

For simplicity in solving, the log-likelihood function is derived to be: 
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[ 8] 𝑙 = 𝑙𝑜𝑔 𝐿 = 	∑ 𝑙𝑜𝑔	[ ]
^Z
𝑒_

`o
aZ + U_]

^c
𝑒_

`o
ac]q

LiU         

where 𝑁 is the sample size. Various methods can be used to find the optimal solutions to maximizing this 
log-likelihood function (Everitt and Hand 1981).  The global optimization technique chosen for this study, is 
the shuffled complex evolution (SCE) algorithm. This method was developed by Duan et. al (1993)  and 
was found able to provide more accurate and more robust results than the local optimization procedures 
(Peyron and Nguyen 2004). 

2.2.3 Seasonal variability of parameters 

The MCME has a total of five parameters (two describing the transitional probabilities and three explaining 
the mixed-exponential distribution), which can be estimated for 12 sets of monthly data. Each monthly 
parameter set is then fitted to a finite Fourier series (Woolhiser and Pegram 1978), where the parameters 
change periodically through the 12 months per year, which is the case of weather processes.  

Table 1: Precipitation Features of the MCME and LARSWG Models 

Weather 
Variable MCME LARSWG 

Precipitation Status 
Definition of wet 

day Precipitation > 0.1 mm Precipitation > 0 mm 

Precipitation 
Occurrence  1st order 2-state Markov Chain Model 

Lengths of alternate wet and dry series 
chosen from a semi-empirical distribution 

(SED) 
Precipitation Amount 

Daily Distribution  Mixed exponential distribution Precipitation SED developed for a 
particular month 

Parameters 

- ML Estimation Method 
- SCE technique for global 

optimization of the ML 
function 

- Fourier series fitted for 
seasonal variation 

Separate parameters calculated monthly 

3 LOCATIONS OF STATIONS AND DATA USED 

I this study, daily precipitation data between 1961 and 1990 from 9 stations across the province of Quebec 
in Canada is used to assess the performance of the MCME and the LARSWG models. In addition, minimum 
and maximum temperatures along with solar radiation data series are needed to run the LARSWG model. 
Thus, the selection of the weather stations was based on the availability of data between 1961 and 1990 
for all variables needed (precipitation, solar radiation, minimum and maximum temperatures). Figure 1 
shows the graphical locations of the selected weather stations covering the entire Quebec province with 
the different weather conditions present, and Table 2 provides more details of their characteristics. The 
daily precipitation observed data series were extracted from the second generation Adjusted Precipitation 
for Canada dataset (Mekis and Vincent 2011). The minimum and maximum temperatures data were 
obtained from the second-generation homogenized temperature (Vincent et al. 2012). The solar radiation 
observed data series were in turn obtained from the Canadian Weather Energy and Engineering Datasets 
(CWEEDS) (http://climate.weather.gc.ca/prods_servs/engineering_e.html). 
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Table 2: Summary of the characteristics of the selected weather stations 

Station Name Latitude Longitude Elevation 
(m) 

Bagotville 48° 19' 48'' N 71° 0' 0'' W 159 
Inukjuak 58° 28' 12'' N 78° 4' 48'' W 25 
Kuujjuaq 58° 6' 0'' N 68° 25' 12'' W 39 

Lennoxville 45° 22' 12'' N 71° 49' 12'' W 181 
Dorval 45° 28' 12'' N 73° 45' 0'' W 73 

Normandin 48° 51' 0'' N 72° 31' 48'' W 137 
Roberval 48° 31' 12'' N 72° 16' 12'' W 179 
Sept-Iles 50° 13' 12'' N 66° 16' 12'' W 53 
Val d'Or 48° 2' 60'' N 77° 46' 48'' W 337 

 
Figure 1: Location of Stations studied in Quebec 

4 PERFORMANCE EVALUATION PROCEDURE 

The evaluation procedure of each model includes two stages: calibration and validation. The MCME and 
the LARSWG models take the observed variables series between 1961 and 1975 as input. Then, each 
model generates 100 precipitation samples of 30-year period, which in turn are split into 2 periods: 

1) Calibration period: comparing the 1st 15-year period data with observed rainfall series from 1961 to 1975. 

2) Validation period: comparing the 2nd 15-year period data with observed rainfall series from 1976 to 1990.  

The performance of each model was then assessed according to Gachon et al. (2005), by studying the 
indices presented in Table 3, and comparing the results with the observed data. The results are laid out 
graphically through standard boxplots and numerically through the Root Mean Square Error (RMSE). 

 

[ 9] 𝑅𝑀𝑆𝐸 = wU
q
∑ (𝑖𝑛𝑑𝑒𝑥x-yz{ − 𝑖𝑛𝑑𝑒𝑥-./z|}zy)fq
"iU  

The middle band of the displayed boxplots marks the median value, the boxes and whiskers respectively 
represent the inter-quartile range (IQR) and 1.5x IQR. The red crosses beyond the whiskers denote the 
outliers. In addition, to further evaluate the performance of each model, a rank sum test was conducted, 
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where the RMSE values, obtained for each index listed in Table 3, are compared between MCME and 
LARSWG for every station, at calibration and validation stages. The index in the corresponding model with 
the larger RMSE is assigned a score of 1 while the one with the smaller error gets a score of 0; if the RMSE 
values of an index for both models are the same, a score of 0 is given to each model. Finally, after summing 
all scores among all the indices and all the stations, the model with the largest total score is considered 
less accurate than the other.  

Table 3: Evaluation indices and statistics 

Index Unit Time 
Scale Description 

Prcp1 % Season Percentage of wet days 
SDII mm/day Season Precipitation Intensity 
CDD days Season Maximum number of consecutive dry days 

Wet Spell days Season Maximum number of consecutive wet days 
RNPeriod mm Season Greatest 3 days total rainfall 
Prec90p mm Season 90th percentile of daily precipitation amount 

R90N % Season % days with precipitation > 90th percentile calculated for 
wet days 

Means mm/day Month Monthly mean of daily precipitation 
Standard 
Deviation mm Month Monthly standard deviation daily precipitation 

5 RESULTS AND DISCUSSION 

By going over the calibration and validation results obtained for each station, the performance of each 
model can be compared by studying the indices listed above. A good performance at the calibration stage 
indicates that the model is able to replicate the observed data in an accurate way by estimating precisely 
the corresponding parameters. A good performance at the validation stage shows the ability of the model 
to predict accurately the observed series in future periods. After comparing the results at different stations, 
the MCME had a better performance than LARSWG in general. For the 9 stations studied, MCME appeared 
to be performing better than LARSWG at both the calibration and validation stages, except only for the 
calibration stage at Lennoxville station, where LARSWG gave better results than MCME. These results 
show the good ability of MCME to replicate the present-day data and also to predict future rainfall series. 
Furthermore, the RMSE values obtained for every index are compared between both models by conducting 
the rank sum test explained previously. Accordingly, table 4 shows the total ranking sum test results 
obtained for each model at each analysis stage. Tables 5 and 6 displays the total ranking scores at both 
periods respectively for Dorval and Kuujjuaq stations. 

Table 4: Score Ranking Results for MCME and LARSWG at Calibration and Validation Stages 

 

 

 

 

 

 

 

Indices & Statistics Calibration Validation 
MCME LARSWG MCME LARSWG 

Prcp1 12 24 13 23 
SDII 8 28 10 26 
CDD 17 19 14 22 

RNPeriod 14 22 15 21 
Prec90p 11 25 10 26 

R90N 7 29 7 29 
Wet Spell 20 16 20 16 

Means 37 70 38 69 
Standard Deviations 39 68 41 66 

Total 165 301 168 298 
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 Table 5: Score Ranking Results for MCME and LARSWG - Dorval Station 

 

 

 

 

 

 

 

 

Table 6: Score Ranking Results for MCME and LARSWG - Kuujuuaq Station 

Indices & Statistics Calibration Validation 
MCME LARSWG MCME LARSWG 

Prcp1 1 3 1 3 
SDII 0 4 1 3 
CDD 3 1 1 3 

RNPeriod 0 4 1 3 
Prec90p 1 3 1 3 

R90N 0 4 0 4 
Wet Spell 2 2 2 2 

Means 3 9 4 8 
Standard Deviations 2 10 2 10 

Total 12 40 13 39 

 

Indices & Statistics Calibration Validation 
MCME LARSWG MCME LARSWG 

Prcp1 1 3 1 3 
SDII 0 4 0 4 
CDD 0 4 0 4 

RNPeriod 2 2 1 3 
Prec90p 1 3 0 4 

R90N 0 4 0 4 
Wet Spell 2 2 2 2 

Means 3 9 3 9 
Standard Deviations 4 8 5 7 

Total 13 39 12 40 

Figure 2: Monthly means and standard deviations - Calibration stage- Dorval station 
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As shown in Table 4, the rank sum scores obtained with the MCME stochastic model are lower than those 
found with the LARSWG model for both the calibration and validation periods, indicating lower overall error 
values and better accuracy for MCME than for LARSWG. For almost all indices calculated, MCME 
outperformed LARSWG, except for the dry spell (CDD) and the wet spell indices, where the performance 
of both models was very close, and LARSWG outperformed MCME for the wet spell index. This is explained 
by the fact that LARSWG relies on the semi-empirical distribution of dry and wet spells in order to simulate 
synthetic rainfall series; hence, the ability for LARSWG to accurately represent the wet and dry spells in 
both the calibration and validation periods. However, the stochastic WG still requires 23 parameters in total 
to generate daily weather variables series, which makes it less flexible for the model to perform accurately 
in the validation period, contrary to the MCME model. Two stations were chosen to illustrate the graphical 
results: the first one being Dorval station (Figures 2 and 3), situated South of Quebec, with a relatively wet 
climate across all seasons, and the second one being Kuujuuaq station (Figures 4 and 5) located in the 
North of Quebec, and characterized by a totally dry weather during winter (i.e. very low temperatures and 
no rainfall precipitation, only snow all along the months of December, January and February).  As illustrated 
graphically and represented numerically, MCME outperformed LARSWG in both stations, except for the 
wet and dry spells where LARSWG showed a better performance. 

 

 

Figure 3: Maximum number of consecutive dry and wet days - Calibration stage- Dorval station 

Figure 4: Maximum number of consecutive dry and wet days-validation stage- Kuujjuaq station 

Max Number of Consecutive Dry Days (days) Max Number of Consecutive Wet Days (days) 

Max Number of Consecutive Dry Days (days) Max Number of Consecutive Wet Days (days) 
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6 SUMMARY AND CONCLUSIONS 

The present study has proposed a stochastic model for representing the daily precipitation process for 
assessing the climate change impacts on the precipitation a given local site.  The proposed model consists 
of two components: (i) the first component representing the occurrences of daily rainfalls based on the first-
order Markov Chain; and (ii) the second component describing the distribution of daily rainfall intensities 
using the Mixed Exponential distribution. Results of an illustrative application observed daily precipitations 
from a network of selected stations in Quebec (Canada) have indicated the feasibility and accuracy of the 
proposed MCME for describing the daily precipitation process. In addition, it was found that the MCME 
could provide a better performance than the existing LARSWG for a majority of cases considered. Further 
studies are planned to describe the linkage between the MCME parameters and the climate change factors 
for current and future climates.   
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