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Abstract: Modeling pavement performance is a must for road asset management. In the age of climate 
change, pavement performance models need to be able to quantify the impact of climate change on roads. 
This paper provides a practical decision-support tool for predicting the condition of asphalt roads in the 
short and long term under a changing climate. Users have the option of running a predictive model under 
different values of climate stressors. The prediction of deterioration is performed via machine learning. More 
than a thousand examples of road sections from the Long-Term Pavement Performance (LTPP) database 
were used in the process of model training. The models can predict future values of pavement condition 
index (PCI) with an accuracy above 80%. The results were implemented in a web-based platform, which 
includes a map with an interactive dashboard. Users can query any road, input its data, and get relevant 
predictions about its deterioration in two, three, five and six years. To show the effectiveness of the solution 
two sets of examples were presented: two individual roads in Ontario and British Columbia and a group of 
44 roads in Ontario. The condition of the latter was predicted under a hypothetical climate change scenario. 
The results suggested that the roads in Ontario will experience a more relaxed deterioration under this 
climate change scenario. 

1 INTRODUCTION 

This paper aims to create a practical decision-support tool for predicting the deterioration of asphalt roads. 
The platform will also facilitate quantifying the impact of climate change on roads. So, this study has two 
major facets: predicting road conditions using machine learning and implementing the results in a web-
based platform coupled with a map. Users can query different roads and learn about their future conditions 
under different ranges of climatic stressors and traffic volumes. Such decision-support tools can be highly 
useful to transportation agencies and decision makers in different levels of government.  

In this study, the road condition is measured via the pavement condition index (PCI). The reason behind 
choosing the PCI was its popularity among municipalities and departments of transportation (DOTs). The 
authors conducted a survey on 58 municipalities in Ontario and asked about the type of data they collect 
for representing the level of service of roads. The most popular performance indictor (PI) was the PCI with 
84% followed by followed by the surface distress index (SDI) with 23% and the international roughness 
index (IRI) with 16%. These numbers motivated the authors to conduct the analysis on the PCI. 
Nevertheless, this study could be generalized to other PIs. Conducting all analysis based on the PCI and 
using easy-to-collect or free data makes the results reproducible for most municipalities in Ontario.  

Furthermore, climate change is another factor that necessitates further research on the impact of climate 
stressors on roads. Governments recently have become interested in the impact of climate change on 
infrastructure. In Ontario, Canada, the Province requires all municipalities to include the impact of climate 
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change in the design and maintenance of their infrastructure (Government of Ontario 2016). Accordingly, 
municipalities must develop relevant tools for understanding this impact. This research could help both 
industry and academia in this regard. 

2 LITERATURE REVIEW 

2.1 Pavement Performance Modeling 

It is incumbent upon municipalities to model the deterioration of roads. Currently, the main types of 
deterioration models include deterioration master curves, statistical regression-based models (including 
mechanistic and mechanistic-empirical methods), Markov models and data analytics models. In practice, 
deterioration master curves are widely used by the industry (Ford et al. 2012, El-Diraby et al. 2017). Most 
these deterioration curves are representing the changes in a performance indicator (e.g. PCI) over time 
using a sigmoidal function (Wu 2015). These curves are deterministic. Furthermore, they cannot take into 
account factors such as traffic and climate (Wu 2015, Piryonesi and El-Diraby 2018). Mechanistic-empirical 
(M-E) methods were developed to address the weaknesses of these empirical deterioration curves. Both 
categories rely on correlation analyses (Archilla and Madanat 2000, Ayed 2016). Over the last two decades, 
M-E models gained momentum and several DOTs have used this type of analysis for predicting the 
condition of their roads. Although M-E models are more accurate, but they are criticized for being 
deterministic, requiring expensive data such as deflection measurement and being unreliable for predicting 
unseen data (Ens 2012, Chi et al. 2014, Wu 2015). Markov models are a category of probabilistic methods 
frequently used in the literature of deterioration modeling (Li et al. 1996, Pulugurta et al. 2009). Unlike 
correlation-based techniques, Markov models define the deterioration of roads as a series of discrete 
events, and their output is a class of performance indicators in lieu of a real number. These models entertain 
probabilities. As a result, they are adopted to develop more sophisticated infrastructure deterioration models 
(Pulugurta et al. 2009, Ens 2012, Ford et al. 2012). However, they disregard the history of deterioration and 
cannot entail climatic attributes and traffic (Ens 2012, Anyala et al. 2014, Piryonesi and Tavakolan 2017, 
Piryonesi and El-Diraby 2018). It is worth mentioning that semi-Markov models could address the problem 
of time homogeneity (Black et al. 2005, Ens 2012).  

The most recent method for modeling road performance is using machine learning. According to National 
Cooperative Research Program (NCHRP), machine-learning techniques have been used to a lesser extent 
because the results of such analyses are not easy to interpret (Ford et al. 2012). The NCHRP report merely 
limits machine learning to artificial neural networks (ANNs). Neural networks have been criticized for their 
lack of interpretability despite their learning capability (Cervantes et al. 2017, Piryonesi and El-Diraby 2018).   

The most commonly used algorithm for pavement performance modeling is the ANN. Ferregut et al. (1999) 
used ANNs in predicting the remaining life of asphalt pavement. They used an array of nine attributes as 
the input of their model: the thickness of the asphalt concrete; thickness of base layers; and seven readings 
of an FWD. Another example of using ANNs for predicting pavement performance is available at (Lou et al. 
2001). Using the data of Florida DOT, they used predictive attributes such as the age of road and three 
consecutive values of crack index (CI) to predict the CI in the near future. Kırbaş and Karaşahin (2016) 
used an ANN to predict the deterioration in the PCI based on the age of road. They reported that the ANN 
outperformed the deterministic regression. A shortcoming of their work was the small size of their training 
set, which entailed less than 100 examples. The literature includes other similar studies that have relied on 
ANNs and a small training set (Terzi 2007, Ford et al. 2012). Most these studies result in overparameterized 
models. In addition to ANNs, a few other probabilistic prediction studies on pavement are available, which 
are majorly based on Bayesian models (Ramia and Ali 1997, Anyala et al. 2014).  

The black-box nature of ANNs motivated researchers to use other algorithms. Chi et al. (2014) learned four 
decision trees for predicting structural condition index (SCI) based on the data of Texas DOT. The highest 
accuracy their models could achieve, in predicting five classes of SCI, was only 62%. The small size of 
their training set, which included 354 examples, may have adversely affected the accuracy. Among the 
attributes used by Chi et al. (Chi et al. 2014) were the amount of distress and ride score over five years, 
which are not free or easy to collect. Another study that is not merely based on neural networks is done by 
Kargah-Ostadi and Stoffels (2015). This study as well used the LTPP data to predict the roughness of 
roads. This is a common trend among the researchers who use the LTPP data (Haider et al. 2007, Kargah-



 

   
Ostadi et al. 2010, Kargah-Ostadi and Stoffels 2015, Ziari et al. 2016), most probably, because the PCI 
data is not given in this database, and its preparation requires a lot of effort. 

Notwithstanding the availability of different classification algorithms, most researchers relied on regression 
algorithms. A few studies that used classifiers such as decision trees expressed concern about the low 
accuracy (Chi et al. 2014, Piryonesi and El-Diraby 2018). In this paper, more advanced classifiers, such as 
ensemble algorithms or naïve Bayes coupled with kernels, are used for predicting the PCI deterioration. 
These algorithms have a higher accuracy when compared with their predecessors. Notwithstanding their 
high learning capabilities, this category of machine learning algorithms is barely used in deterioration 
modeling. To the best knowledge of authors, the only study that has used an ensemble learning method 
for performance modeling is a recent research conducted by Gong et al. (2018).  

Another distinguishable aspect of this research, that differentiates it from previous studies, is the selection 
of attributes. As discussed above, most previous studies tend to focus on predicting a single type of distress 
such as rutting depth, pothole or roughness. These indices cannot comprehensively represent the health 
of pavement. But, the PCI, which is a more complex index composed of different types of distresses, could 
reflect the pavement condition more holistically. Furthermore, the predictive attributes of previous studies 
mostly are not free or easy to collect. It was mentioned that most small municipalities do not have access 
to updated deflection data collected by the FWD (Chi et al. 2014, El-Diraby et al. 2017). 

2.2 Considering Climate Change in Deterioration Modeling 

The notion of incorporating climatic attributes in deterioration modeling is gaining traction in the wake of 
climate change. For instance, a new provincial regulation in Ontario mandates municipalities to consider 
the impact of climate change on infrastructure, and vice versa (Government of Ontario 2016).  Driven by 
such motives, research has been recently moving towards calculating the impact of climate. Anyala et al. 
(2014) investigated the impact of different climatic scenarios on asphalt pavement rut progression. They 
combined M-E models with simulation to create deterioration models for different climate scenarios. Ayed 
(2016) also considered the impact of climate change in developing M-E models for predicting the condition 
of roads in Canada. The PIs of interest were riding comfort index (RCI) and the SDI. As mentioned, crude 
Markov models are incapable of representing climate stressors explicitly, but Osorio-Lird et al. (Osorio-Lird 
et al. 2018) developed multiple Markov models to consider the impact of climate.  

The number and extent of studies that specifically quantify the impact of climate change are limited. 
Schweikert et al. (2014) developed a software for analyzing the impact of climate change on road 
infrastructure. Their study brought together quantitative and qualitative methods to quantify the risks and 
consequences of climate change in the policy level. Neumann et al. (2015) estimated the cost that climate 
change imposes on the US infrastructure until the end of 21st century. Their study included roads, bridges, 
coastal development and urban drainage. In a more specific study, Chinowsky et al. (2013) calculated the 
cost of different types of climate change adaptation on roads in the US. Their study included different climate 
change scenarios and was studying the impact until year 2100. A limitation of their study was that instead 
of modeling the impact of climate stressors, they relied on one-number estimates from the literature for 
quantifying the impact of temperature and precipitation on roads. For climate change scenarios, they relied 
on Special Report on Emissions Scenarios (SRES). 

3 METHODOLOGY 

The current study proposes a decision-support tool for predicting the future condition of roads using 
machine learning. The developed tool has the capability of predicting the deterioration of roads under 
different values of climate stressors. A few factors distinguish this paper from previous studies. First, this 
study relies on machine-learning classifiers for predicting the PCI rather than curves or regression models. 
Second, it facilitates the study of climate change by including different climatic attributes in the predictive 
model. The models can explicitly represent climatic attributes. Users can input a range for each climate 
stressor and learn the impact on the road networks. Third, the models are implemented in an online platform 
with a map for the use of practitioners. Figure 1 is giving a brief overview of the methodology of this work. 
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Figure 1. An overview of the methodology and scope 

 

As shown in Figure 1, user can query a road on the map and enter some values for its different current 
attributes. Each input could be a single value or a range of possible values. The entered data will be fed 
into a predictive model, which is trained by machine learning. The model will iterate through the input values 
and print different results for each input. The future PCI will be predicted for two, three, five and six years. 
The results will be graphically represented on a map. The necessary steps for training the predictive models 
are shown inside a dashed-line rectangle. These steps include retrieving training data, cleaning and 
preparing the data, training the models and testing their accuracy.  

4 DATA PREPARATION 

The data was retrieved from the LTPPP database. This open database contains the information of more 
than 2500 road sections across the US and Canada (InfoPave 2018).  The LTPP database does not entail 
the PCI, but it includes the necessary data for PCI calculation such as the distresses and their severity 
levels. For that reason, the first step was to generate PCI values from distresses given that the emphasis 
of this research was on the PCI. This task was done according to ASTM D 6433–07 guideline (Way et al. 
2015). With this aim, the curves presented at ASTM D 6433–07 were digitized and their mathematical 
formulas were extracted using curve fitting. Given that the training set included 3277 examples, calculating 
the PCI for the training set manually was impractical. As a result, the extracted formulae were imbedded in 
a computer program to calculate the PCI from distresses. 

The intention was to predict the PCI in the short-term. So, the horizons of prediction were chosen as two, 
three five and six years. The number of examples for each prediction interval included 1196, 942, 616 and 
523 respectively, totalling up to 3277 records. Each example included fifteen possible predictive attributes. 
A list of these attributes and their description is given in Table 1. The target variable is the future class of 
PCI based on ASTM’s guideline. In this study the last three classes are merged and called Very Poor. Thus, 
the models have five labels.  

 

Table 1. Predictive attributes and their description 

Field name Description 

PCI0 The (initial) value of PCI at time of analysis  

AGE Age of road (since construction) 



 

   

PAVEMENT_TYPE Type of pavement (as defined by FHWA in LTPP) 

FREEZE_INDEX_YR Calculated freeze index for year (in Celsius days) 

MAX_ANN_TEMP_AVG Average of daily maximum air temperatures for year 

MIN_ANN_TEMP_AVG Average of daily minimum air temperatures for year 

TOTAL_ANN_PRECIP Total precipitation for year (in mm) 

FUNC_CLASS Functional class of road (as defined by FHWA in LTPP) 

FREEZE_THAW_YR Number of freeze-thaw cycles per year 

OVERLAY_THICKNESS Thickness of the placed layer in rehabilitation 

AADT_ALL_VEHIC_2WAY Average annual daily traffic 

REMED_TYPE Type of last remedial action (as defined by FHWA in LTPP) 

REMED_ YEARS Number of years since the last remedial action 

CONSTRUCTION_NO Number of conducted remedial actions  

GBE Granular Base Equivalence  

PCI (target variable) The class of PCI after three years (as categorized by the ASTM) 

5 MODEL TRAINING  

Several classification models were trained to predict the class of PCI in the future. Some of the models are 
shown in Table 2. The level of PCI was predicted after two, three, five and six years. The accuracy of the 
models was tested using a tenfold cross-validation. Table 2 shows the results of the cross-validation 
accuracy for different models in predicting the PCI in three years. All attributes of Table 1 were 
simultaneously used in training these models.  As a generic observation, the ensemble learning algorithms 
had a significantly higher performance than their base learner. Note that these two models rely on decision 
tree I as base learner. Decision trees, on the other hand, did better in comparison to linear classifiers such 
as naïve Bayes classifier or logistic regression. Coupling the naïve Bayes classifier with kernels increased 
its accuracy considerably.  

 

Table 2. The accuracy of different models in predicting the PCI in three years 

Type of model Accuracy (percent) Comments 

Gradient boosted trees 81.05 ± 5.97 50 single learners (trees) 

Random forest 70.01 ± 4.48 50 single learners (trees) 

Decision tree I 63.37 ± 4.07 Leaf size = 2, confidence = 0.25 

Decision tree II (C4.5)  72.70 ± 4.21 Leaf size = 2, confidence = 0.25 

Naïve Bayes classifier 57.10 ± 2.08 - 

Naïve Bayes classifier with kernel 70.15 ± 5.16 Number of kernels = 10 

Logistic regression 54.56 ± 4.25 - 

k-NN 64.28 ± 6.03  k = 4 



 

   
6 MODEL IMPLEMENTATION  

The trained models were implemented into an interactive portal coupled with a map.  Figure 2 shows an 
overview of how the online portal functions. It has two major modules: a front-end webpage that is available 
to the user; and a server that is responsible for analytics, storing data and visualization. The front-end 
webpage contains the fields that allow users to input data. This part of the interface is created by a static 
HTML code. In addition to direct input, the platform also has the capability of reading from files, in case a 
user wants to upload the data collectively. Once the user enters the name and information of a road, the 
webpage will send a request to the server-end. The server will then response with the map data. A map on 
the other side of the page will display the result. The process of reading from the map will be briefly 
explained below. 

· Static HTML code:

Input fields

User interface

· Dynamic JavaScript:

Server communication

Local analytics

Front-end webpage

· Computationally 

expensive analytics

· Handling larger 

amounts of data

· Reading and 

translating 
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Figure 2. A schematic representation of the information flow between the web page and the server 

 

Each input field could be input either as a single number or a range of possible values. These data will be 
fed into a dynamic script written in JavaScript. This program can conduct the prediction locally for models 
that do not include a computationally expensive process. However, more computationally complex models, 
such as ensemble learning models, could be run on the server side. Another case in which the server 
conducts the calculation is when the users inputs a range of values rather than a single number for climatic 
attributes. In this case the model needs to be run multiple times, and this iteration of models needs 
computational power. The JavaScript program is also responsible for communication with the server or any 
other external servers such as Google Maps.  

Raw map data was fetched from OpenStreetMap (2018), which is an open source editable map. The 
extracted data was stored in the server waiting for the service program to operate. The OpenStreetMap 
raw data is in XML format. Service program will have to use an external library to operate the map data. 
The name of every road is then transferred into an array of longitude and latitude coordinates that could be 
represented visually. Since JavaScript could support JSON data, every response by the server is be 
represented in JSON format. Responses from the service program will be transferred into JSON String and 
then sent to the front-end. The response will be accordingly displayed on a map (see Figure 3).  

To demonstrate the functionality of the map two different examples were studied. The first example included 
predicting the condition of two individual roads, one in Ontario (ON) and one in British Columbia (BC), and 
the second entailed 44 roads in Ontario. The input data of the two individual roads is given in Table 3. The 
data was input into the web portal and the result of the condition prediction was recorded in Table 4.  

 



 

   
Table 3. Input variables for two different roads 

Input Location PCI0 AADT Age 
Pavement 

Type 
Freeze 
Index 

Avg. 
Max 

Temp 
Precipitation 

Freeze 
& Thaw 

Last M&R 
(yr) 

GBE 

Road #1 ON 58.1 10000 19.2 1 1046 10.2 1226.9 106 6 35.7 

Road #2 BC 100 10475 18.3 1 26 15.6 1498 34 0.1 28.4 

 

Table 4. The results of predicting the condition of the roads of Table 3 for different years 

Road PCI (2 Yr) PCI (3 Yr) PCI (5 Yr) PCI (6 Yr) 

Road #1 Poor (90%) Poor (100%) Poor (94%) Very Poor (97%) 

Road #2 Good (100%) Good (95%) Good (100%) Good (100%) 

 

The results of PCI prediction for the roads of Table 3 is presented in Figure 3. When the user queries a 
road and inputs its data, the model will predict the condition and color the road accordingly. The predictions 
of Figure 3 are for five years, but the user can switch between different years of prediction. 

 

 

Figure 3. The results of PCI prediction in five years for the roads of Table 4. 

 

For the second example, the data for 44 roads in Ontario was used. These roads are real road sections in 
different conditions and operating attributes. The attributes of these roads were prepared in a CSV file and 
uploaded to the web-based platform. The prediction of condition was done under the current climate and a 
hypothetical climate change scenario. It was assumed that the climate change scenario is affecting the 
roads at the end of 21st century. The current conditions of roads and the results of predictions under the 
current climate is given in figures 4. It shows the results of prediction for different years. The model predicted 
that none of the twenty-two initially Good roads will remain in a Good condition after five or six years, and 
they will degrade to worse PCI classes. Figures 4 and 5 entail a lot of information. To simplify the results, 
the mean and standard deviation of PCI values were written below each bin.  

 



 

   

 

Figure 4. The prediction of condition under the current climate 

 

The same roads of figure 4 were studied under a climate change scenario. Note that detailed modeling of 
different climate change scenarios for each road section is beyond the scope of this paper. Several 
assumptions were made for calculating the value of climate stressors. It was assumed that the temperature 
will increase by 6 degree Celsius, the annual freeze index and number of freeze thaw cycles will decrease 
proportionally, and the annual precipitation will increase by 10%. Note that all these are within the range of 
projections of RCP 8.5 scenario for Ontario in year 2098 (IPCC 2014, Deng et al. 2018). Therefore, the 
range of climatic stressors is justifiable based on the climate change literature.  

The result of predictions for roads under this climate change scenario is given in Figure 5. When compared 
with Figure 4, it could shed some light on the climate change impact on road deterioration. One could easily 
notice that in Error! Reference source not found., virtually in all cases, the deterioration becomes more 
relaxed, given that the number of roads in Poor and Very Poor condition is smaller than Figure 4. On the 
other hand, the number of roads in a Good condition in Error! Reference source not found. is larger than 
Figure 4. An easier way to compare the graphs would be comparing the aggregate results of mean and 
standard deviation. 

 

Figure 5. The prediction of condition deterioration under a climate change scenario 

7 CONCLUSION  
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In this paper an interactive online decision-support tool was introduced to help predicting the condition of 

roads. Since the training data was collected over a large geographic spread, and several relevant climatic 

stressors were among the predictive attributes, the developed tool could be used in quantifying the impact 

of climate change on road networks. An immediate conclusion of this study is that climate change affects 

various regions differently; therefore, its impact on infrastructure is not going to be the same everywhere. 

While it will alleviate the deterioration of roads in Ontario, it could exacerbate the conditions in another 

place. 

This study had a few limitations in terms of quantifying the impact of climate change, which could be 

addressed in the future research: insufficient granularity; excluding the impact of climate change on AADT; 

and excluding the impact of harsh climatic events such as tornados and storms.  
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