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Abstract: La Dorada Township (Caldas, Colombia) is located mid-way upstream along the west bank of 

the Magdalena River. In this region the channel banks have been affected by severe erosion as a 

consequence of the flow dynamics across a series of meanders. This work presents a comparative analysis 

of the HEC-RAS, IBER and FLOW 3D software as they are implemented in the characterization process of 

the channel flow dynamics, assessing their capabilities and limitations. Two field campaigns were 

completed in the region in February and May 2018 over the dry and rainy seasons respectively and included 

topographical and bathymetric surveys and river bed samples collection. Modelling of the river stretch was 

undertaken using a digital elevation model and field data. The three hydraulic models were prepared 

considering equivalent 1D, 2D and 3D conditions hence comparing simulated results among them. The 

study results highlighted the limitations and applicability of the 3D model in correctly modeling secondary 

currents across a curved channel and non-hydrostatic pressure conditions. Specifically the study points to: 

i) the validity of a 1D model if specific conditions related to channel characteristics and discretization of the 

domain can be met; ii) the shortcoming of the 2D shallow water equations in such case, and its inability to 

determine a non-zero, constant vertical velocity component across the channel depth; and iii) the 

requirement of a 3D model to correctly reproduce the three-dimensional velocity field distribution necessary 

to explain specific erosion processes occurring in meanders for example. 

1 INTRODUCTION 

The fundamental equations of hydrodynamics are based on the equations of Navier - Stokes. In general, 
the analysis of fluvial dynamics of a river can be undertaken by disregarding some spatial dimensions, 
taking into account that the scale, for example, of its length to its depth and width is significant and that the 
processes occurring in the vertical or horizontal dimension can be discarded within the global river 
analysis. In this case a number of hypotheses can be introduced to simplify the governing equations, 
imposing, for example, hydrostatic pressure conditions.  

Generally, a longitudinal 1D model is satisfactory to correctly reproduce the processes occurring along a 
river (Chow, 1959). If the width of the channel is considerable and the processes occurring in this dimension 
are significative, a two-dimensional horizontal (2DH) model may be necessary as it allows the analysis of 
the transverse processes of the flow while the conditions are averaged over the channel depth (Wesseling, 
2001); additionally, when the flow processes are important in other dimensions, a 3D model is required. 
Moreover, a full 3D model may be required in some cases where the vertical acceleration and 
nonhydrostatic pressure cannot be neglected. Such cases may include channel bed with abrupt changes, 
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short wave propagation, intensive density gradient and strong vertical circulation. (Parsapour-Moghaddam, 
2017) 

This study reports on the field work, modeling process and comparative analysis between the results 
obtained from a one-dimensional, two-dimensional and three-dimensional numerical modeling process 
using the HEC-RAS 5.0.5, IBER 2.4.3 and FLOW 3D 11.2 software, respectively. In this specific case, 
steady flow conditions were imposed to typical meandering channel way.  A calibration process was not 
undertaken since the scope of the study was comparative.   

This study was undertaken based on a previous study of the Magdalena River. As it passes though the 
township of La Dorada, a meandric curve is described generating severe erosion problems over the western 
bank of the river where the city is located. In this meander, the pressure forces are dominant at the bottom 
of the river and there is a flow from the outer bank in the direction of the interior part of the curve which was 
observed during the field campaigns. Along the channel, the flow follows the orientation of the flat curve, 
but it is also propelled simultaneously towards the interior/inner curve and upwards. At the same time, the 
flow is restricted on the outside of the curve and a helical flow (typical in a meander) is observed over the 
channel cross-section causing a significant lateral scour (Guarín et al., 2018).  

It is known that a secondary flow is a dominant feature in meandering rivers and can impact the velocity 
distribution, boundary shear stress, and consequently sediment transport of the channel. Hence, it is critical 
to develop a model capable of reproducing flow recirculations in such cases. Moreover, given the 
importance of pressure gradients driving secondary flow, it is worth studying the impact of the hydrostatic 
pressure assumption in meander flow modelling. Considering the characteristics of a rotational flow through 
a meander and the geometrical characteristics of the meander itself, the three-dimensional modeling was 
expected to be better reproduce such flow conditions under the influence of the vertical component of the 
velocity vector for this type of flow (Vargas et al., 2018). 

2 STUDY AREA  

The study site was a 6,5km long reach of the Magdalena river near La Dorada, Colombia (5 ° 27 ' North 
latitude and 74 ° 40 ' East longitude). Figure 1 shows the topography of the studied area along the stretch 
between Motobombas and the Bridge.  

 

Figure 1: Study area (Google Earth, 2019) 

3 FIELD SURVEY 

The input data was obtained in the field evaluation developed on the 25-27 February and 6-8 May of 2018. 
Topographic and bathymetric surveys were carried out using a DGPS Topcon GR5 and an ADCP S5 River 
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Surveyor. In order to characterize the riverbed material, 31 samples were collected at the banks and the 
main channel. The roughness characterization was determined by the studies of Barnes (1967). The 
simulated events correspond to the flow rates and water levels registered by a nearby gauging station 
monitored by the Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM).    

4 MODELS DESCRIPTION 

4.1 HEC-RAS 5.0.5 V – 1D MODEL 

In a one-dimensional modeling, the channel geometry is represented as a series of cross sections (Ochoa 
et al., 2016). HEC-RAS is based on the energy equation proposed by Bernoulli (1738) [1] considering an 
incompressible and steady flow. 
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Where 1Z  and 2Z  are the elevations of the main channel, 1Y  and 2Y relate to the depth of the water 

column, 1V  and 2V  are the average velocities, 1  and 
2 are velocity weighting coefficients as determined 

by the equation [2], 𝑔 is the acceleration of gravity, eh  corresponds to energy losses, NQ  and NV  are the 

flow rate and the velocity at each section N, respectively (USACE, 2016). 

The water column of each section is determined by an iterative process solving a system of two equations 
[3] and [4] (Chaudhry, 2008). 

fhHH −= 12
 [3] 

elevel hhH +=2  [4] 

Where 1H and 2H  are the total head at section 1  and 2 respectively, fh  relate to energy losses, velh  is 

the velocity head and eleh  is the elevation head. 

The energy losses between two sections are determined according to equation [5] 
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Where L  stand for the weighted length, fS   represents the friction slope between two sections and C  

corresponds to the coefficient of expansion or contraction of the channel (USACE,2016)  

4.2 IBER 2.4.3 V – 2DH MODEL 

In a two-dimensional modeling, the river is discretized through a plane mesh formed by polygonal cells that 
model the topography of the channel. This model uses an unstructured mesh that can be formed by 
triangles or quadrilaterals (Bladé et al., 2012). 

The IBER software is based on Saint-Venant’s equations in two dimensions. In this case, hydrostatic 
pressure conditions and uniform vertical velocity distribution are assumed. It is also considered that the 
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shear over the vertical axis is negligible (Randall, 2006). Simplifications are generally valid when the vertical 
dimension is much smaller than any of the horizontal dimensions considered and the slope of the riverbed 
is negligible. 

The hydrostatic pressure assumption has been widely employed in shallow water studies. From the Navier-
Stokes equation, integrating the continuity equation over depth and considering the kinematic boundary 
conditions at bed level yields the governing Shallow Water equations (Parsapour-Moghaddam, 2017). The 
applicable mass conservation equations [6] and momentum conservation [7] and [8] are hence: 
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Where h  corresponds to the depth of the water sheet, xU  and yU  are the horizontal velocities averaged 

over depth.  
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Where 𝑔 is the acceleration of gravity, bZ  is the bottom of the channel, s  is the surface friction due to the 

wind calculated though the Van Dorn equation, b  is the background friction calculated with Manning’s 

equation and tv  is the turbulent viscosity calculated using a specific model of turbulence (Bladé et al., 

2012). 

 

In this study, the turbulence model used by IBER was the 𝑘 − 𝜀 of Rastogi and Rodi that solves a transport 

equation for the turbulent kinetic energy 𝑘 [9] and for the turbulent energy dissipation rate 𝜀 [10]. 
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The hydrodynamic equations are solved by finite volumes conservative method which uses the integral 

form of the equation and considered over a segment between two consecutive mesh points (Ruiz, 2017) 

that define the finite volumes (Cuervo, 2012). 

4.3 FLOW 3D 11.2 V – 3D MODEL 

In this three-dimensional model, the geometry is discretized as cubic or rectangular elements in a structured 

mesh which adapts to the topography. FLOW 3D approximates the solution of the Navier – Stokes 

equations [11], [12], [13] and [14] using the finite difference method either implicitly or explicitly over 

element. 

Mass conservation equation: 
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Momentum conservation equations: 
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Where FV  is the volume fraction opened to the flow, 𝜌 is the fluid density, xA , yA  and zA  are the opened 

areas to the flow in the x, y, z directions respectively, R  is a coefficient which depends on the coordinate 

system, p  is the pressure, xG , yG and zG  are the body accelerations, xf , yf  and zf are the viscous 

accelerations (Flow Science, 2000). 

To include the turbulence effects, the Renormalized Group Model (RNG) was incorporated. This model 
solves two transport equations [15] and [16] in order to determine the turbulence kinetic energy and viscous 
dissipation independently considering a completely turbulent flow (Colman et al., 2006). 
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Where 𝜇 represents the viscosity, k  the turbulent kinetic energy, 𝜀 the viscous dissipation, kG  the kinetic 

energy generation, YM  the contribution due to the fluctuation of the expansion in the compressible 

turbulence due to the total dissipation rate, k  and   correspond to the inverse of the Prandtl number 

effective for 𝜅 and 𝜀 respectively, 1C , 2C  and 3C  are constants,  S  and kS  are source terms, iU  

represents the component of velocity in direction i , the R term includes constant values obtained 

experimentally in order to make the model more sensitive to the effects of high deformations and curvatures 

of the currents lines, and H is a function defined between 0 and x (Ceballos, 2014). 

5 NUMERICAL MODELLING 

Based on the field data, a digital elevation model (DEM) of the study area was prepared (Figure 2). Also, 

two roughness maps were determined; one as an IBER input file with 3 Manning coefficients corresponding 

to the west bank, the main channel and the east bank of the river, and another as FLOW 3D input file with 

3 equivalent values of d50. The roughness maps spatial rendering is shown in Figure 3. 
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              Figure 2. Digital elevation model.                 Figure 3. Roughness spatial distribution. 

Table 1 presents the general characteristics of the 3 models considered in the study.  

Table 1. General characteristics of the models. 

CHARACTERISTIC HEC - RAS IBER FLOW - 3D 

GEOMETRY 

• Imported as a 
GIS2RAS file. 

• Processed in ArcGIS 
10.2 , extension 
HEC-GeoRAS. 

• Imported as a ASCII file 
from the DEM. 

• Format conversion 
through ArcGIS 10.2. 

• Imported as a ASCII 
file from the DEM. 

• Format conversion 
through ArcGIS 10.2. 

ROUGHNESS 

• Input of Manning’s n 
coefficient in each 
section:  

n west. = 0.032  

n channel = 0.0125 

n east  = 0.039 

• Input of Manning’s n 
coefficient using a 
roughness map (ASCII) 
n west. = 0.032 

n channel = 0.0125 

n east  = 0.039 

• Input of the roughness 
using a map of d50 

values (ASCII) 

d50 west = 0.09961, d50 

channel = 0.00035, 

d50 east  = 0.32644. 

• Use of the Manning-
Strickler equation to 
convert n to d50. 

MESH 

• Sections calculated 
every 5 m of channel 
way. 

• Total 1416 sections 
along the channel.  

• Unstructured mesh with 
triangular and square 
elements of 5 m on each 
side. 

• Total elements: 86927 

• 4 mesh blocks with 
cubic cells of 5x5x5 m 
dimension. 

• Total 2560806 cells.  

BOUNDARY 
CONDITIONS 

• Flows entered as 
boundary condition 
along the initial 
section.  

• Q: 435 and 1822 
m3/s 

• Flows entered in the 
mesh contour nodes. 

• Q: 435 y 1822 m3/s 

• Flows entered in the 
initial mesh block. 

• Q: 435 y 1822 m3/s 

SIMULATION TIME 
- 

32000 seconds. 

Δt(s) = (0.16 – 1.0) 

13000 seconds. 

Δt(s) = (0.02 - 0.1) 

TURBULENCE - 𝑘 − 𝜀 RNG  
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6 RESULTS 

Figures 4-6 present the results obtained in HEC-RAS, IBER and FLOW 3D for the event simulated with a 
flow rate of 1822 m3 / s as the relate to simulated channel depth. 

 

 

 

 

 

 

 

 

 

Figure 4. Depth in HEC-RAS, Q=1822 m3/s.                         Figure 5. Depth in IBER, Q=1822 m3/s. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Depth in FLOW 3D, Q= 1822 m3/s and longitudinal stretch of the river channel. 

Figures 7 and 8 show the results of average velocity obtained in HEC-RAS, the average velocity in the 
depth obtained in IBER and in FLOW 3D in the main channel for a flow rate of 1822 m3 / s and 435 m3 / s 
respectively. 
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Figure 7. Comparison of simulated velocities along the channel way (Q=1822 m3/s). 

 

Figure 8. Comparison of simulated velocities along the channel way (Q=435 m3/s). 

Figures 9 and 10 show the comparison of calculated water depth for two simulated flows. 

 

Figure 9. Comparison of simulated water levels along the channel way (Q=1822 m3/s)

 

Figure 10. Comparison of simulated water levels along the channel way (Q=435 m3/s). 
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7 DISCUSSION 

 

• Results obtained using HEC-RAS and FLOW 3D for the simulated events regarding the longitudinal 

velocity and the evolution of the water level. FLOW 3D presents higher velocities than other models. 

It is necessary to remember that FLOW 3D considers the three components of the velocity, 

therefore, the value of the resultant along the channel will tend to be higher. 

• The IBER model presents a significant difference underestimating the speed along the channel and 

overestimating the elevation of the water level from 2 to 4 meters as compared with the FLOW 3D 

and HECRAS models. This velocitiy underestimation was identified in the Palavecino’s study 

(Palavecino, 2015). 

• The IBER model, based on the Boussinesq's Shallow Waters equations, has 3 underlying 

fundamental hypotheses: i) to satisfy the hydrostatic pressure condition, ii) to have a uniform 

(constant) velocity over the vertical, iii) to consider a velocity on the vertical axis that is negligible 

or equal to zero. Analysis of the flow through the meander revealed that none of the previous 

hypotheses can be verified which may explain the discrepancies obtained from the 2DH model in 

this case. 

• The interaction mechanisms between the secondary flow and the vertical distribution of streamwise 

velocity plays a vital role in sharply curved bend flow modeling (Parsapour-Moghaddam, 2017), 

which is cleary present in this case 

• The major limitation of the 1D and 2D models relate to the concealed hydrodynamic processes 

ocurring over the channel depth that can not be incorporated in such models. 

8 CONCLUSION 

The secondary flow is a transverse velocity component which is driven towards the inner bend near the 
riverbed and directed to the outer bend near the water surface. Due to the vertical component of this flow 
circulation phenomenon and the important non-hydrostatic pressure component in meander flow dynamics, 
it is necessary to implement a fully 3D model able to reproduce the non-linear effect between the horizontal 
and vertical distribution of the flow, and the non-hydrostatic pressure conditions.    

The study investigated the limitations of the 1D, 2D and 3D models in hydraulic modelling of a meander 
using HEC RAS, IBER and FLOW 3D software respectively, and illustrated the superior performance of the 
FLOW 3D model regarding to the secondary flow in the studied natural meander.  

The 1D model could reproduce some hydraulic variables and river characteristics. Also, it has the 

advantage of its simplicity  and a lower computational cost .  Nonetheless, the one dimensional approach 

cannot capture all relevant hydrodynamic processes in the specific case of a meander where occurs 

important processes in the horizontal and vertical dimensions. 

The IBER model presents important differences with regard to the other models underestimating the speed 
along the channel and severally overestimating the elevation of the water column from 2 to 4 meters. 
Analysis of the flow through the meander revealed that none of the 2D Saint-Venant equations assumptions 
can be verified. In fact, it can be observed through the bathymetric survey that the bed of the channel has 
different longitudinal slopes, transversally changing across the section along the meander. In addition, a 
significant helicoidal secondary flow was observed during the field campaigns acting initially downwards 
from the outside bend, then across the channel width and finally upwards. 

In previous studies, Lane, Bradbrook, Richards, Biron and Roy (1999) suggested that a 3D model has 
better predictive capability compared to a 2D model, particularly when the 2D model does not account for 
the effect of secondary flow (Parsapour-Moghaddam, 2017). It was found that FLOW 3D was the  only 
model that could comprehensively reproduce 3D flow characteristics and also explain erosion processes 
occuring in the region. 
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