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Abstract: Currently, the Ministry of Transportation of Ontario (MTO) obtains its pavement condition data 
via the Automated Road Analyzer (ARAN), an automated data collection vehicle and system, as part of its 
pavement management system activities. However, the pavement surface distress types that ARAN is able 
to discern are limited to cracking only. Without changing the formula used for the Pavement Condition Index, 
the pavement performance category could be misclassified. In this paper, instead of predicting target 
performance index values, the authors adopt unsupervised machine learning techniques, i.e., principal 
component analysis (PCA) and K-means clustering, to understand 2015 MTO asphalt pavement condition 
data that include 1,410 pavement sections. PCA is conducted to learn about the interrelationships among 
different key performance indices and employs the clustering method to categorize MTO provincial 
highways into three performance groups within each road functional class. In summary, this paper outlines 
an alternative approach to pavement condition assessment and could serve as a reference to facilitate 
decision-making for highway authorities. 

Keywords: Pavement management system (PMS), pavement performance assessment, pavement 
condition survey, Distress Manifestation Index (DMI), International Roughness Index (IRI), Pavement 
Condition Index (PCI) 

1. BACKGROUND 

1.1 Pavement Performance Assessment 

Pavement performance assessment plays an important role in both network-level and project-level 
pavement management systems (PMSs) and provides essential information for highway authority 
personnel when they make decisions regarding planning, policy, and budget. A comprehensive pavement 
performance assessment involves a pavement condition survey, ratings, and performance category 
assignments. Pavement condition surveys are used to collect data related to pavement serviceability and 
physical conditions. Currently, ASTM D6433 (ASTM 2011) is one of the most widely accepted standards 
that highway agencies use when collecting surface distress data across North America. FHWA-HRT-13-
092 (Miller and Bellinger 2014), proposed by the Federal Highway Administration (FHWA), is another 
standard practice adopted by several highway agencies and serves also as the guideline for pavement 
condition evaluation in the Long-Term Pavement Performance program (Hong et al. 2010). The Ministry of 
Transportation of Ontario (MTO) follows the standard practice, SP-024 (MTO 2016), for surveying and rating 
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flexible pavement conditions based on distress manifestations, expressed as distress manifestation index 
(DMI) values. In addition to using the DMI, current MTO practice also considers pavement smoothness 
(ride quality) as represented by the international roughness index (IRI) as the key performance index (KPI) 
in the condition rating scheme. To assess overall pavement conditions, the MTO developed a pavement 
condition index (PCI) formula that incorporates the interrelated DMI and IRI, as shown in Equation 1 (MTO 
2009).  

[1] 𝑃𝑃𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑎𝑎 + 𝑏𝑏 × 𝐷𝐷𝐷𝐷𝐷𝐷 − 𝑐𝑐 × 𝐼𝐼𝐼𝐼𝐼𝐼 

where, a, b, and c are the coefficients and vary for different pavement types. The DMI has a scale of 0 to 
10 (most distressed to free of distress) and the IRI is on a scale of 0 to infinity (smooth to rough). 

Pavement surface distresses have been rated subjectively for many years based on data that have been 
collected manually by trained inspectors. However, issues and problems have arisen that are associated 
with the unreliability and inconsistency of such manually collected data and as a result, researchers have 
carried out studies to investigate automated pavement surface distress detecting technologies. In particular, 
such studies have focused on the application of digital image processing-based approaches such as image 
filtering, image segmentation, feature extraction, and characteristic calculation methodologies (Zuo et al. 
2008, Chu et al. 2003, Xu et al. 2008, Zalama et al. 2014, Tsai et al. 2009, Oliveira and Correia 2009). In 
2013, in order to improve the accuracy and efficiency of pavement condition assessments as well as to 
ensure the safety of inspectors, the MTO started transitioning from manual to fully automated data collection 
for its distress detection and ride quality measurements by utilizing the Automated Road Analyzer (ARAN) 
(Cafiso et al. 2017, Chan et al. 2016). The ARAN vehicle is equipped with an advanced laser profilometer, 
a laser crack measurement system, two high-definition cameras, and an accompanying software 
application for visualizing and processing the pavement imagery and condition data. Calibrated by digital 
systems for global referencing and positioning, the vehicle is able to operate at various highway speeds, 
record data continuously, and meanwhile maintain accuracy in terms of location and spatial orientation. In 
order to distinguish among distress detection, distress reporting, and index computing algorithms used in 
manual surface distress surveys, ARAN utilizes its own developed PCI formula to represent overall 
pavement conditions, expressed here as Equation 2.  

[2] 𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 0.7 × 𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 0.2 × 𝐷𝐷𝐷𝐷𝐷𝐷𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 0.1 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 

where RUT is a key performance index that reflects the rutting severity and magnitude in the pavement. 
𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 100 × (1 − 𝐼𝐼𝐼𝐼𝐼𝐼/5) and 𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 100 ∗ (1 − 𝑅𝑅𝑅𝑅𝑅𝑅/30). 

1.2 Issues 

Since 2014, MTO pavement condition data have been collected annually only by ARAN, but the DMI values 
calculated by ARAN capture only cracking-related distresses; the rating algorithms for other common 
distresses such as bleeding and raveling are still under development. As a result, DMIARAN is merely a 
cracking-based distress performance indicator, and thus, PCIARAN cannot be compared with PCIMTO directly. 
Although the MTO has identified the inconsistencies between manually and automatically generated DMI 
values, the MTO still uses DMIARAN instead of DMIMTO in Equation 1 to compute the PCI, resulting in 
questionable PCI values and related performance categories. Because the true PCI-defined performance 
categories are not known, this paper proposes a data-driven approach that uses unsupervised machine 
learning techniques to classify pavements into different performance groups. Compared with conventional 
statistical methods, unsupervised machine learning techniques, such as principal component analysis (PCA) 
and K-means clustering, offer advantages for handling the interactions among interrelated variables, 
identifying hidden data structures, and partitioning the data in a more robust and accurate way (Fwa et al. 
1997). To apply unsupervised learning techniques to the data in this study, all the analyses are performed 
using R, a statistical computing software application (R Core Team 2018). 
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2 UNSUPERVISED MACHINE LEARNING TECHNIQUES 

2.1 Database and Key Variables 

The 2015 asphalt pavement condition data for MTO provincial highways were collected and processed 
using ARAN 9000 and ARAN 7000. Based on the road functional class, the total numbers of pavement 
sections for freeways, arterials, collectors, and local roads were 515, 620, 123, and 152, respectively. 
Although rutting data have been collected by ARAN, a rutting-related index has not been incorporated into 
calculating the PCI or categorizing pavement conditions. To identify the effects manifested by the rutting 
data, the 2015 database includes three variables, i.e., the KPIs: DMI, IRI, and RUT. The DMI ranges from 
0 to 10; higher values represent fewer distresses. By contrast, a higher IRI value indicates a rougher 
pavement surface, and RUT values range from 0 to 30, where higher values indicate more severe rutting. 
Overall, the DMI has a mean of 8.38 with a standard deviation (SD) of 0.75, the IRI has a mean of 1.34 with 
a SD of 0.6, and RUT has a mean of 3.54 with a SD of 2.12.  

Figure 1 presents a chart to aid in visualizing the data. The distribution of each variable can be found in the 
histograms on the diagonal. The distributions of the IRI and RUT values are skewed to the right whereas 
the distribution of the DMI values is skewed to the left, which implies that highways are generally well 
maintained. In the lower left part of this figure, scatter plots with fitted lines are displayed for each pair of 
variables. The scatter plots show seemingly linear relationships among all the variables. The figure’s upper 
right section provides the Pearson correlation coefficient as well as its significance. Clearly, the significant 
relationship for each pair of variables, represented by the three stars, confirms that the IRI, RUT, and DMI 
are interrelated, and the strength of the relationship between the DMI and RUT is the greatest with a 
correlation coefficient of -0.56. 

 

Figure 1 Data distribution and correlation analysis. 

2.2 Principal Component Analysis 

PCA is a widely used dimensionality reduction technique. By projecting data from the initial space onto the 
subspace (formed by orthogonal principal components), typically a large set of correlated variables can be 
reduced to a smaller set that still contains most of the information in the larger set (Bianchini 2013). In this 
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study, PCA is performed using a covariance matrix 𝚺𝚺 of existing p variables (i.e., the IRI, DMI, and RUT), 
represented by 𝑿𝑿′ = [𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑝𝑝]. The calculated eigenvalue-eigenvector pairs from 𝚺𝚺 can be expressed 
as (𝜆𝜆1, 𝒆𝒆𝟏𝟏), (𝜆𝜆2, 𝒆𝒆𝟐𝟐), … , �𝜆𝜆𝑝𝑝, 𝒆𝒆𝒑𝒑�, where 𝜆𝜆1 ≥ 𝜆𝜆2 ≥ ⋯ ≥ 𝜆𝜆𝑝𝑝 ≥ 0, and 𝒆𝒆𝒊𝒊 is the loading vector. As a result, the 
ith principal component (PC) can be denoted as 𝑌𝑌𝑖𝑖 = 𝑒𝑒𝑖𝑖′𝑿𝑿 = 𝑒𝑒𝑖𝑖1𝑋𝑋1 + 𝑒𝑒𝑖𝑖2𝑋𝑋2 + ⋯+ 𝑒𝑒𝑖𝑖𝑖𝑖𝑋𝑋𝑝𝑝 with properties 
𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌𝑖𝑖) = 𝒆𝒆𝒊𝒊′𝚺𝚺𝒆𝒆𝒊𝒊 = 𝜆𝜆𝑖𝑖 and 𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌𝑖𝑖 ,𝑌𝑌𝑘𝑘) = 𝒆𝒆𝒊𝒊′𝚺𝚺𝒆𝒆𝒌𝒌 = 0, where 𝑖𝑖 = 1,2, … , 𝑝𝑝 and 𝑖𝑖 ≠ 𝑘𝑘. Therefore, the PCs are 
uncorrelated linear combinations of the existing p variables with variances that are equal to the eigenvalues 
of 𝚺𝚺. A larger eigenvalue means more information is explained by the PC, so keeping only a few PCs is 
reasonable because they can explain most of the information. In addition, it should be noted that the 
magnitude of the variable can greatly impact the PCA results, and the PCs generally place more weight on 
variables with greater variance. To minimize the effects of the magnitude to certain variables, the IRI, RUT, 
and DMI in this paper were scaled first to have a mean of zero and a standard deviation of one prior to 
conducting PCA.  

Table 1 presents the PCA outputs for each road functional class. In general, the first PC (PC1) explains 
more than 50% of the total variance. For the collector roadways, the proportion of the total variance that is 
due to PC1 is as high as 70 percent. For all the road functional classes, the total variance obtained for the 
first two PCs ranges from 85% to 90%, indicating that PC1 and PC2 can provide a summary of the original 
data with sufficient accuracy, and PC3 can be dropped in later analysis.  

Table 1 Loadings and Total Variance Explained by Principal Components 

Functional Class Variable PC1 PC2 PC3 

Freeway 

IRI -0.517 -0.830 -0.211 
RUT -0.587 0.523 -0.618 
DMI 0.623 -0.195 -0.757 

Cumulative Proportion of Variance 65.8% 87.9% 100% 

Arterial 

IRI -0.519 -0.841 0.154 
RUT -0.592 0.483 0.645 
DMI 0.617 -0.243 0.749 

Cumulative Proportion of Variance 68.9% 89.4% 100% 

Collector 

IRI -0.532 0.810 -0.248 
RUT -0.580 -0.561 -0.591 
DMI 0.617 0.170 -0.768 

Cumulative Proportion of Variance 70.1% 89.8% 100% 

Local 

IRI -0.595 0.531 0.603 
RUT -0.428 -0.844 0.322 
DMI 0.681 -0.067 0.730 

Cumulative Proportion of Variance 54.5% 85.1% 100% 

Figure 2 shows that the PCA results can be illustrated further using biplots. Each PCA biplot includes both 
a loading plot (axes not shown) and a score plot with PC1 as the horizontal axis and PC2 as the vertical 
axis. As the PCs are linear combinations of the three variables, PC1 and PC2 are calculated as scores for 
each observation (pavement section), which are plotted as dots in the figure. The lighter blue dots indicate 
longer pavement sections and darker blue indicates shorter sections. Consistent with the information shown 
in Table 1, the loading vector for each variable is depicted as an arrow. Figure 2 also shows that the loading 
vector for PC1 places approximately equal weight on the IRI, RUT, and DMI, whereas the PC2 loading 
vector puts much less weight on the DMI. For freeways, arterials, and collectors, most weight in PC2 is 
placed on the IRI, but in comparison, for local roads most weight in PC2 is put on RUT. Overall, the loading 
sign of the DMI is the opposite to that of the IRI and RUT in PC1, which is similar to the form of Equation 1, 
indicating that PC1 roughly corresponds to the pavement condition expressed by the PCI. The PC2 loading 
vectors for all the road functional classes indicate that the loading sign of the IRI is always the reverse of 
that of RUT. With limited impact from the DMI (for example, on local roads, the loading of the DMI is as 
small as -0.067), PC2 is essentially the weighted difference between the IRI and RUT. Despite the sample 
size for each road functional class, more dots are close to the plot origin for the freeways and arterials, 
which suggests that more pavement sections in freeways and arterials experience average pavement 
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conditions. By contrast, the dispersed dots indicate that local roads tend to have either ‘good’ or ‘poor’ 
pavement conditions. The effects of pavement section length on pavement conditions are further 
investigated, but no clear patterns have been found among all the road functional classes. 

 
Figure 2 Principal component analysis biplots. 

2.3 Clustering – K-means 

With the two-dimensional representation of pavement data obtained from PCA in hand, the K-means 
clustering method is utilized to determine the homogeneous subgroups among all the MTO’s provincial 
pavement sections. According to Li et al. (2015), the procedures of the K-means method can be 
summarized as follows:  

1) Define the K clusters. 

2) Initially assign a cluster number from 1 to K and determine the centroids for all clusters. The kth 
centroid is the vector of the feature means obtained from PC1 and PC2 for all the observations 
located in the kth cluster.  

3) Iterate the process by moving any observation to the cluster with the smallest Euclidean distance 
and then update the related centroids until no changes are available in the cluster assignment. 

The Elbow method is employed to determine the optimal number of clusters. This method employs the K-
means clustering algorithm by varying the K value from 1 to 10. Then, the total within-cluster sum of the 
squares (WSS) is calculated, expressed as ∑ ∑ ∑ (𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥̅𝑥𝑘𝑘𝑘𝑘)2𝑝𝑝

𝑗𝑗=1𝑖𝑖∈𝑆𝑆𝑘𝑘
𝐾𝐾
𝑘𝑘=1  , where 𝑆𝑆𝑘𝑘  is the set of the kth 

cluster and 𝑥̅𝑥𝑘𝑘𝑘𝑘 is the kth cluster center by the jth variable. Figure 3 presents the WSS values as a function 
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of the number of K values. The K values should be chosen such that adding more clusters does not reduce 
the WSS significantly. The bend in each plot clearly suggests that the optimal number of K is three for all 
highway functional classes.   

 

Figure 3 Determination of optimal number of clusters. 

By implementing the K-means clustering method, the database is divided into three clusters; Table 2 
provides a summary of the means and SDs of the KPIs within each cluster by road functional class.  

Table 2 Key Performance Index Values by Cluster and Road Functional Class 

 N IRI RUT DMI 
Mean SD Mean SD Mean SD 

Freeway 
Cluster 1 186 0.95 0.23 2.09 1.08 9.04 0.50 
Cluster 2 264 1.01 0.17 4.35 1.18 8.16 0.25 
Cluster 3 65 1.82 0.41 5.59 1.88 7.66 0.36 

Arterial 
Cluster 1 157 1.00 0.29 1.71 1.23 9.28 0.55 
Cluster 2 353 1.25 0.27 4.32 1.23 8.16 0.31 
Cluster 3 110 2.26 0.61 6.09 1.75 7.61 0.44 

Collector 
Cluster 1 31 1.05 0.29 1.53 1.38 9.44 0.62 
Cluster 2 71 1.42 0.34 4.32 1.31 7.98 0.40 
Cluster 3 21 2.52 0.43 5.48 1.58 7.60 0.41 

Local 
Cluster 1 76 1.34 0.41 0.20 0.77 9.28 0.60 
Cluster 2 27 2.10 0.88 5.20 1.46 7.61 0.63 
Cluster 3 49 2.73 0.69 0.00 0.00 7.73 1.04 

For the freeways, arterials, and collectors, Cluster 2 has the largest number of observations followed by 
Cluster 1 and Cluster 3. For the local roads, on the other hand, the highest proportion of observations is 
classified into Cluster 1. In general, Cluster 1 is a collection of the pavement sections with the lowest IRI 
and RUT values but the highest DMI values, whereas Cluster 3 is the opposite. Hence, the K-means 
clustering method was able to differentiate the database into three groups, where Cluster 1 represents 
those pavement sections with good pavement conditions, Cluster 2 represents an intermediate level of 



- 7 - 
 

pavement conditions, and Cluster 3 represents those pavement sections with relatively poor pavement 
conditions. 

3 DISCUSSION 

3.1 Comparisons with Pavement Condition Index 

To evaluate the effectiveness of the developed clustering method described in this paper, the PCI values 
computed from the DMI and IRI are used as the baseline for comparison. Figure 4 presents a boxplot for 
each road functional class with the PCI as the vertical axis and the cluster group as the horizontal axis. The 
dashed red lines in the figure are MTO PCI thresholds that are used to define the pavement conditions as 
‘good’, ‘fair’, or ‘poor’. Note that the PCI thresholds vary based on the road functional class. The blue dots 
are outliers, defined as being away from the 1.5 times interquartile range of the lower and upper quantiles. 
Generally, for the freeways, arterials, and collectors, Cluster 1 and Cluster 2 fall into the ‘good’ condition 
category as defined by the PCI, and Cluster 3 corresponds to the ‘fair’ condition. The clustering method 
cannot explicitly discern which cluster indicates ‘poor’ conditions because the number of ‘poor’ pavement 
sections is usually small and the MTO ensures that maintenance activities are undertaken in a timely 
manner for the ‘fair’ condition pavements before their conditions turn into ‘poor’ conditions. Nonetheless, 
the clustering method developed in this paper still helps to identify variations that are present in pavements 
with ‘good’ conditions. The Cluster 2 pavement sections could potentially become candidates for pavement 
preservation treatments in the following years and thus might be helpful in prioritizing pavement sections 
for maintenance and managing budgets.  

 
Figure 4 Pavement condition index boxplots by cluster. 

3.2 Comparisons with Pavement Performance Category Adjusted by Key Performance Indices 

According to the MTO (Li et al. 2011), ‘poor’ pavement conditions can be triggered by individual KPIs, such 
as the DMI and IRI. For example, for freeways, ‘poor’ conditions will be assigned to those pavement 
sections with DMI values less than 5 or IRI values higher than 3.5. Through this process, the number of 
‘poor’ pavement sections has increased by 53 for freeways, 63 for arterials, and 8 for both collectors and 
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local roads. The distribution of pavement performance categories adjusted by KPI values within each cluster 
are investigated as well. Figure 5 shows that almost all the pavement sections in Cluster 1 and most of the 
pavement sections in Cluster 2 are classified as ‘good’. ‘Fair’ pavement sections can be found in Cluster 2 
and Cluster 3, and most ‘poor’ pavement sections are in Cluster 3. It should be noted that differences are 
evident in the distribution for local roads compared with the other three roadway types. This finding results 
from the rutting data; 119 out of 152 pavement sections in local roads have zero RUT values, but some of 
those zeros might be missing values, which could adversely affect the clustering results. This finding also 
suggests that the database should be examined carefully before using any unsupervised learning 
techniques. 
 

 
Figure 5 Pavement performance distribution by cluster. 

4 SUMMARY AND CONCLUSIONS 

Since 2013, a transition from manual to automated pavement condition data collection has taken place for 
MTO’s provincial highways. The use of the newly developed DMI, which considers only cracking-related 
surface distresses in calculating the PCI, has brought PCI-based performance assessments into question. 
In this study, asphalt pavement condition data including 1,410 pavement sections, which are automatically 
collected by ARAN, are analyzed. Three variables are selected that represent various KPIs: the IRI, RUT, 
and DMI. Based on unsupervised machine learning techniques, the following conclusions can be drawn. 
• The correlation analysis results show that all the variables are strongly correlated. 
• PCA is applied as a dimensionality reduction tool for the exploratory data analysis. The results suggest 

that PC1 and PC2 can explain more than 85% of the total variance of the data. PC1 has a similar 
formula as the MTO PCI formula, and PC2 is expressed as the weighted difference between the IRI 
and RUT. Thus, the existing PCI formula does not capture all the data variance and updates for PCI 
that are needed to consider the PC2 effects. In addition, when KPI values are numerous, PCA proves 
to be an optimal way to develop an alternative overall pavement condition index using PCs in the form 
of KPIs.   

• Using PC1 and PC2, the K-means clustering method is applied to divide the data into three groups. For 
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each type of road functional class, it has been found that Cluster 1 represents those pavement sections 
with the best performance in terms of individual KPIs and Cluster 3 represents those pavement sections 
with the worst conditions. 

• Furthermore, the clustering results are employed to check and compare the distribution of PCI-based 
performance categories and KPI-adjusted performance categories. The results show that the pavement 
sections in Cluster 1 and a large proportion of the pavement sections in Cluster 2 are generally in ‘good’ 
condition. The pavement sections in Cluster 3 contain almost all the ‘poor’ condition pavements and 
some of the ‘fair’ condition pavements. Hence, this information can be used to improve highway network 
monitoring and prioritize maintenance activities. The results also suggest that a similar data pattern is 
present for freeways, arterials, and collectors. The differences found for local roads may be due to 
missing values in the rutting data. 

• The unsupervised machine learning techniques used in the paper can provide valuable insights for 1) 
better understanding the data, 2) considering multiple KPI effects at the same time, 3) accurately 
classifying pavements into different groups, and 4) eventually developing alternative performance 
indices. 
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