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Abstract: The construction industry continues to experience an elevated number of accidents and 
fatalities, rendering safety a major concern for many construction companies. To develop more effective, 
proactive strategies capable of reducing future accidents, safety performance must be monitored and 
assessed prior to incident occurrence. Safety leading indicators can be used to proactively assess safety 
performance, provide insights into the effectiveness of an organization’s safety practices, and offer 
guidance on how to improve. Although useful, an agreed-upon set of leading indicators for proactively 
assessing safety performance has yet to be established in the literature. This research aims to investigate 
and test the feasibility of using project-related data together with safety-related data to more accurately 
assess proactive safety performance in industrial construction projects. Data utilized in this study were 
obtained from a large contractor in North America, pulled from eight industrial construction projects over a 
period of two years. Databases from different departments are matched and integrated into a single 
dataset. Correlation and feature selection techniques were used to identify the variables with the greatest 
impact on safety performance. Results of this study indicate that project performance data were 
associated with safety performance, demonstrating that project data, in addition to traditional safety 
leading indicators, can be used to build a safety management system to more effectively monitor safety in 
a project. Additionally, this study has shed light on the project performance metrics that could be collected 
by safety leaders to better predict safety performance on construction sites. 

1 INTRODUCTION  

Effective management of safety, health, and the environment are essential to the success of any 
construction company. Indeed, safety performance is one of the main measures of the success in a 
project (Mohammadi, Tavakolan, and Khosravi 2018). The construction industry is dynamic in nature; 
safety-management techniques, therefore, must regularly be altered to satisfy industry requirements 
(Akroush and El-adaway 2017). Safety indicators play an important role in providing information on 
organizational safety performance, and recognizing these safety indicators is a motivating factor for 
stakeholders to increase organizational potential for safety (Reiman and Pietikäinen 2012).  

Traditionally, safety performance has been measured by lagging indicators, or ‘after the loss’ 
measurements such as accident rates, which can only be measured after the occurrence of an accident 
(Grabowski et al. 2007, Akroush and El-adaway 2017, Hinze, et al. 2013). Used primarily by insurance 
companies, owners, and companies to compare performances or to examine performance trends over 
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cost-time, lagging indicators can be used neither to predict the safety performance of a construction 
company nor to predict the current level of risk of a particular construction project (Hinze et al., 2013). 
Indeed, monitoring classic measures such as total recordable injury rate (TRIR) and the experience 
modification rate (EMR) has not, as of yet, reduced injury rates to achieve optimal improvement in safety 
performance. This is primarily because it is both difficult and unlikely to identify deficiencies and flaws 
prior to incident occurrence using lagging indicators (Hinze et al. 2012). Although there is prevalent use of 
lagging indicators, their effectiveness in anticipating safety performance and proactively reducing 
occurrence of accidents is under scrutiny (Akroush and El-adaway 2017). Many safety professionals and 
researchers agree that lagging indicators may not provide the necessary insights for taking corrective 
action to avoid future accidents (Grabowski et al. 2007,  Hinze et al. 2013, Kjellén 2009). 

The construction industry is moving away from lagging indicators and toward leading safety indicators as 
an alternative method of measuring safety performance (Akroush and El-adaway 2017). Due to their 
ability to facilitate preventative decision making, leading indicators have become the preferred method for 
assessing construction safety (Versteeg 2018). Leading indicators in current use are based on case 
studies, content analysis of completed projects, and safety experts’ knowledge (Guo and Yiu 2016), with 
many leading safety indicators reported in literature focusing only on safety-related data. However, 
multiple researchers have demonstrated the potential associations between quality (Wanberg et al. 2013) 
and schedule (Han et al. 2014) performance and safety. Despite collecting rich stores of performance 
data from different departments (such as cost, quality, and schedule) construction companies do not fully 
utilize this existing information to develop safety leading indicators in practice. 

The objective of this paper is to investigate and test the feasibility of using existing, yet under-utilized, 
project-related data together with safety-related data to more accurately assess proactive safety 
performance in industrial construction projects. First detailing the development process of finding leading 
indicators, the study investigates whether or not integrated project-performance data can be used within 
quantitative development methodologies to identify safety useful leading indicators. 

2 LITERATURE REVIEW 

To take corrective actions, safety indicators must be both detectable before an event and be linked in a 
causal pathway leading to the event (Hale 2009). A leading indicator is a measure of attitudes, behaviours, 
practices, or conditions that influence construction safety performance (Hinze et al. 2012, Guo and Yiu 
2016). In addition to informing practitioners of the current safety performance, threshold values for leading 
indicators (below which corrective actions should be taken) can be established to guide risk mitigation 
practices to reinstate above-level performance (Akroush and El-adaway 2017). The careful selection, 
measurement of, and response to leading indicators of safety performance in the construction industry all 
have helped to improve construction-site safety and organization (Ng et al. 2012, Hinze et al. 2012).  

Leading indicators can be classified as passive or active (Hinze et al. 2012). Passive indicators are a set 
of strategies and actions that are set up prior to the beginning of the project and cannot be adjusted once 
the project has started (Hinze et al. 2012, Akroush and El-adaway 2017). In contrast, active indicators 
can be measured and adjusted dynamically during the construction phase, allowing for the real-time 
implementation of risk mitigation practices (Akroush and El-adaway 2017, Hinze et al. 2012).  

2.1  Development of safety leading indicators in construction 

Multiple researchers have defined many base-criteria for selecting leading indicators in construction. 
Criteria established by Hale (2009) include validity, reliability, sensitivity, representativeness, openness to 
bias, and cost-effectiveness. Guo and Yiu (2016) categorized essential attributes of safety leading 
indicators into two dimensions: a scientific dimension and a managerial dimension. From the scientific 
perspective, indicators should have strong scientific and conceptual bases, be developed from safety 
models, reflect causes of accidents, be sensitive to changes in safety conditions, and allow for early 
warning. From the managerial perspective, indicators should be compatible with practical safety 
management, drive appropriate behaviour, be easily observable, and be cost-effective in terms of 
collection. Akroush and El-adaway (2017) added to this list by identifying four additional criteria that 
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selected leading indicators should satisfy: indicators should be complete, consistent, and reliable in 
covering critical assumptions of safety; they should be unbiased, and not susceptible to or influenced by 
manipulation; they must be easily measured and quantifiable on a numerical scale; and finally, they 
should significantly correlate to a reduction in number of incidents. 

Qualitative and quantitative methods have been used to develop safety leading indicators in the 
construction industry. Qualitative models, aimed at identifying leading indicators and then assessing both 
their effectiveness and their correlation to safety performance (Akroush and El-adaway 2017), include (1) 
questionnaires, interviews, accident investigations and focus groups; (2) safety audits built by the 
organization to monitor and measure safety performance factors; (3) perception surveys asking 
employees, supervisors, and top management about their perceptions regarding the corporate and safety 
climate in the organization; (4)  behavioural observation to identify unsafe behaviours and promote safer 
attitudes through necessary training; (5) case studies and brainstorming sessions by research teams and 
experts in the field, and data extraction from industry databases; and (6) the Delphi method: a structured 
communication technique involving a panel of experts giving initial estimates, and revising those 
estimates after in-depth discussion. A number of passive and leading indicators have been identified 
using qualitative methods (Hallowell et al. 2013, Hinze et al. 2012, Akroush and El-adaway 2017). 

Qualitative methods are questioned by some researchers (Guo and Yiu 2016, Guo et al. 2017) owing to 
the fact that the indicators are not selected based on a conceptual framework that provides theoretical 
guidance on developing leading indicators. Furthermore, (Hinze et al. 2013) pointed out that safety 
practitioners face challenges in developing indicators that fit well into existing safety programs. A few 
construction companies have successfully implemented the monitoring of safety leading indicators; 
however, there is little published information concerning successfully applied, specific leading indicators 
(Hinze et al. 2013). 

Limitations associated with qualitative methods, such as subjective nature, have prompted researchers to 
develop quantitative methods for the identification of leading indicators. Guo and Yiu (2016) developed a 
conceptual framework for developing leading indicators in construction where they clarified the concept of 
a leading indicator; a model was then used to conceptualize the safety conditions. Despite being an 
important first step, their approach lacked quantitative validation, as their only means of validation was 
expert judgment. Guo et al. (2017) proposed a pressure-state-practice model as a theoretical basis for 
developing leading indicators in construction. Their model represented the safety level of a construction 
project as a dynamic phenomenon characterized by interrelationships between safety state, safety 
practice, and pressures. Similar to the early neural network model proposed by Goh and Chua (2013), the 
model only considered safety aspects of the project. Later, Poh, Ubeynarayana, and Goh (2018) 
proposed a machine-learning approach for developing leading indicators that incorporated other aspects 
of projects, including project delay and percentage completion. In spite of the model’s novelty, data 
regarding quality and cost performance were not examined, and the procedures other contractors should 
use to collect and combine such data to apply the methodology were not clarified. 

3 RESEARCH METHODOLOGY 

The research methodology for investigating the association and impact of project performance data on 
safety performance is described. This methodology presents a general framework that can be applied by 
any construction company. Collection, processing, and preparation of input data, as well as data analysis 
and investigation, are described in Figure 1.  
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Figure 1: Research methodology 

3.1 Data Collection and Understanding 

In industrial construction projects, project performance data (including safety, quality, schedule, and 
costs) are collected separately by each designated department. Data are collected periodically (usually 
every two weeks) according to the specific conditions of each project. Each department collects only 
related data. For example, the cost department tracks the financial records and indicators of cost 
performance, such as the cost performance index and money spent in each reporting period. The 
scheduling department records the schedule performance index and assesses whether or not the project 
has progressed as planned. The quality department tracks of the number of change orders. The safety 
department keeps track of the number of working-hours spent in each reporting period and tracks 
whether or not incidents have occurred.  

3.2 Data Preparation and Processing 

In order to process the data, it must first be integrated into one centralized dataset. A common challenge 
with centralizing the data is the differences in reporting periods used by the various departments within an 
organization; in these instances, recording dates may be used to match and combine project data. Once 
centralized, the dataset is cleaned to identify missing data and remove outliers. 

3.3 Data Analysis and Investigation 

The final step is to test the hypothesis that project performance data can be used to develop safety 
leading indicators. This step is conducted by correlation testing and the Boruta feature selection function 
in R (R Team 2013) to determine if variables are feasible (i.e., important) or not.  

4 CASE STUDY 

The dataset used in this research was collected from a large construction company in Alberta, Canada. 
The company engages in many types of projects such as building, industrial, and infrastructure projects. 
Data spanned eight industrial projects over a period of two consecutive years, from 2016 to 2017. Project-
performance-related data within the dataset consists of cost, schedule, quality, and safety performance 
data collected from different departments. 

4.1 Data Collection and Understanding 

Table 1 describes the collected features from each department and defines each attribute. 
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Table 1: Description of the collected variables in each department 

No. Variable/feature Description Department 

1  Project ID Unique identifier for the project All 

2 Contract type The specific type of contract used for the project All 

3 Report date The date at which the variables are measured All 

4 Contract change order 
(CCO) 

A change in the work or change in the contract sum 
or the contract time at report time Cost  

5 Outstanding CCO 
A change in the work or change in the contract sum 
or the contract time at report time that will change 
original contract 

Cost 

6 CCO submitted to 
date The cumulative amount of CCO at report time Cost 

7 RFI The total number of Requests For Information at 
report time Quality 

8 RFI submitted to date The cumulative amount of RFI at report time Quality 

9 Open RFI The number of unresolved RFI at report time Quality 

10 Original budget The planned/ estimated cost of the project Cost  

11 Re-baseline budget The modified budget of the project at the report time Cost 

12 Approved changes The cost of the changes in the project at the report 
time Cost 

13 Revised contract 
value 

The sum of re-baseline budget and approved 
changes Cost 

14 Pending changes The cost of the changes in the project at the report 
time waiting for approval Cost 

15 Forecast at 
completion (FAC) Forecasted value of the project at completion time Cost 

16 Earned value The budgeted cost of work performed Cost 

17 Incurred value The money spent for the work accomplished Cost 

18 Outstanding change 
% 

The percentage of change in the original budget at 
report time Cost 

19 Field Surveillance 
Report (FSR) A proactive quality surveillance technique Cost 

20 FSR submitted to date The cumulative amount of FSR at report time Cost 
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21 Open FSR The number of unresolved FSR at report time Cost 

22 Work order CPI The ratio of the earned value to the incurred/actual 
value at report time (Cost Performance Index) Cost 

23 Work order % 
complete 

The progress of the project at report time as 
percentage Schedule 

24 Non-conformance 
report (NCR) 

The number of reports showing the quality deviation 
at report time Quality 

25 Open NCR The number of reports showing the quality deviation 
which are not resolved Quality 

26 Work order HPI 
Evaluation of the accomplishment of the schedule 
and budget of the activities executed at report 
time(Human Performance Index) 

Cost & 
Schedule 

27 Work order SPI The ratio of the earned value to the planned value at 
report time (Schedule Performance Index) Schedule 

28 
(0-1) years’ 
experience direct 
hours 

The total numbers of hours spent on the project up to 
the report time by workers that have experience less 
than one year 

Safety 

29 
(1-2) years’ 
experience direct 
hours 

The total numbers of hours spent on the project up to 
the report time by workers that have experience 
greater than one year and less than two years 

Safety 

30 
(2-3) years’ 
experience direct 
hours 

The total numbers of hours spent on the project up to 
the report time by workers that have experience 
greater than two years and less than three years 

Safety 

31 
(3-4) years’ 
experience direct 
hours 

The total numbers of hours spent on the project up to 
the report time by workers that have experience 
greater than three years and less than four years 

Safety 

32 +4 years’ experience 
direct hours 

The total numbers of hours spent on the project up to 
the report time by workers that have experience 
greater than four years 

Safety 

33 Foreman hours The total numbers of hours spent on the project up to 
the report time by foreman Safety 

34 Shift hours The total number of hours spent on the project by all 
workers at the report time Safety 

35 Exposure hours The cumulative amount of shift hours Safety 

36 Incident The variable that shows if an incident happened on 
the project at report time Safety 
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4.2 Data Preparation and Processing 

Raw data was processed, cleaned, and transformed into a proper format before analysis. Because data 
may have been collected in an ad hoc manner, including empty fields in records or mistakes in data entry, 
data preparation was given the utmost care (Soibelman and Kim 2002). Data were integrated into one 
dataset; both project ID and report dates were then used to match different records from various datasets. 
The collected variables were investigated, and features/variables that were not useful for the purpose of 
this work were removed. For example, in the provided dataset the variables “Contract Type” and “Project 
ID,” which are the same type for all the 8 projects (and, therefore, for all the records in the dataset) were 
removed. Due to the similarity in meaning between the three budget variables (Original Budget, Re-
Baseline Budget, Revised Contract Value), only “Re-baseline Budget” was kept. Additionally all “To Date” 
variables were removed, as they could be easily calculated from the corresponding non-cumulative 
variable (e.g., CCO Submitted and CCO Submitted to Date).  

Another common issue in all datasets, and in the case study dataset particularly, is missing values. 
Missing values were removed or substituted by values that allowed them to be used in further analysis 
while, at the same time, not adversely affecting dataset behaviour (Witten et al. 2016). In this particular 
dataset, 50% of the total records for “0-1,” “1-2,” “2-3,” and “3-4 Years’ Experience Direct Hours” were 
missing; therefore, these columns were removed due to the limited number of data points. After filtering 
the variables (from Table 1), 23 features remained. 

4.3 Correlation 

To investigate the degree of association, the Pearson correlation coefficient between all attributes was 
calculated. The results of correlation analysis are summarized in Table 2. The attributes with the highest 
positive and negative correlation with “Accident” were “Foreman Hours” (r = 0.50) and “Work Order HPI” 
(r = -0.28), respectively. Evans (1996) suggested that a value of r between 0 and 0.19 represents a very 
weak correlation; 0.20 and 0.39 represents a weak correlation, and 0.40 and 0.59 represents a moderate 
correlation. Here, “Foreman Hours,” “Shift Hours,” “+4 Years’ Experience Direct Hours,” “RFI,” “Open 
FFI,” and “Contract Change Order (CCO),” were determined to be moderately correlated with “Accident.” 
In contrast, “Work Order HPI,” “Forecast at Completion (FAC),” and “Re-baseline Budget,” were weakly 
correlation with “Accident.” Remaining attributes were very weakly correlated with “Accident.” The feature 
selection process was also performed to provide further insight into the feasibility of the features. 

Table 2: Correlation matrix 
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ReBaseBudget 1
ApprChanges 0.63 1
PendChanges 0.16 0.16 1
FAC 1 0.69 0.18 1
Earned 0.79 0.73 0.08 0.82 1
Incurred 0.78 0.72 0.09 0.82 1 1
Outstanding.Changes.of.Original.Budget -0.3 -0.23 0.55 -0.3 -0.23 -0.22 1
WOComplete -0.11 0.21 -0 -0.07 0.34 0.34 0.16 1
WOHPI -0.46 -0.35 -0.4 -0.47 -0.38 -0.39 -0.2 -0.1 1
WOSPI -0.57 -0.19 -0.1 -0.54 -0.06 -0.05 0.24 0.65 0.16 1
WOCPI -0.09 -0.09 -0.3 -0.11 -0.11 -0.13 -0.5 -0.2 0.58 0.08 1
FM.Hours 0.74 0.42 0.23 0.75 0.73 0.74 -0.2 0.1 -0.53 -0.19 -0.1 1
Shift.Hours 0.67 0.41 0.25 0.69 0.76 0.77 -0.1 0.21 -0.49 -0.1 -0.2 0.94 1
X4.yrs.Exp 0.38 0.2 0.32 0.39 0.43 0.44 0.04 0.18 -0.55 -0.03 -0.3 0.72 0.76 1
RFI 0.56 0.34 0.19 0.57 0.58 0.58 -0.2 -0.1 -0.29 -0.14 0.15 0.72 0.72 0.43 1
Open.RFI 0.7 0.31 0.03 0.69 0.6 0.6 -0.3 -0.1 -0.29 -0.36 -0 0.74 0.72 0.4 0.73 1
FSR 0.52 0.43 -0 0.53 0.66 0.65 -0.1 0.19 -0.26 -0.02 -0.1 0.56 0.59 0.35 0.42 0.48 1
Open.FSR 0.67 0.48 0.06 0.68 0.86 0.87 -0.2 0.27 -0.32 -0.02 -0.1 0.75 0.78 0.43 0.64 0.66 0.73 1
NCR 0.34 0.28 -0.1 0.35 0.45 0.45 -0.2 0.21 -0.2 0.02 -0.1 0.5 0.53 0.37 0.26 0.32 0.57 0.53 1
Open.NCR 0.52 0.47 0.09 0.55 0.78 0.79 -0.2 0.42 -0.26 0.11 -0.1 0.66 0.73 0.41 0.52 0.48 0.51 0.85 0.64 1
CCO 0.58 0.5 0.09 0.6 0.59 0.58 -0.1 0.05 -0.35 -0.2 -0.1 0.56 0.54 0.27 0.44 0.44 0.41 0.49 0.28 0.43 1
Outstanding.CCO -0.11 -0.08 0.23 -0.1 -0.07 -0.07 0.69 0.19 -0.26 0.16 -0.4 -0.2 -0.18 -0.1 -0.2 -0.21 -0.1 -0.1 -0.1 -0.1 0.13 1
ACCIDENT 0.39 0.03 0.06 0.37 0.29 0.28 -0.1 -0.1 -0.28 -0.18 0.01 0.5 0.48 0.41 0.47 0.48 0.22 0.26 0.15 0.12 0.43 -0.08 1
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4.4 Feature Selection 

Feature subset selection is another important data preparation and testing step for checking and selecting 
the most important predictive features (Poh et al. 2018). This technique aims to reduce the number of 
features based on their importance and impact as irrelevant features in the dataset can negatively impact 
the accuracy of the prediction model and cause unnecessary computational complexity. The feature 
subset selection algorithm performs a subset search using the induction algorithm as part of the 
evaluation function (Soibelman and Kim 2002). 

As opposed to previous feature selection techniques, which are limited by assumptions of normality, the 
Boruta feature selection function in R (R Team 2013) runs a random forest classifier on the dataset and 
ranks the features in a step-wise manner. Boruta was applied to the 23 features remaining after the data 
cleaning and preparation step.  The results of the feature selection method are summarized in Figure 2. 
Box plots are used to show the distribution of a feature’s importance over a Boruta run, and colors are 
used to indicate importance outputs, where green indicates an important feature, red indicates a feature 
that is not important, and yellow indicates a tentative feature. A total of 10 features (indicated in green) 
were identified as important, from which the “Shift Hours” feature was determined to be the most 
important among the features analyzed. The correlation results are in agreement with the feature 
selection results where the nine variables determined to be moderately or weakly correlated were 
classified as the most important in the feature selection process. Only one variable with a very weak 
correlation (“Approved Changes”) was considered important in the feature selection. This research study 
is focused on proving that combined project performance metrics can be utilized as inputs for machine 
learning algorithms when evaluating project safety performance. More details on applying machine 
learning algorithms using selected features was provided by Jafari et al (2019) where the authors 
extended their work by investigating different models and measuring their performance.  

 

Figure 2: Boruta feature selection results 
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5 CONCLUSIONS 

In current practice, construction companies collect rich stores of data related to various aspects of project 
performance such as quality, safety, cost, and schedule. Yet, it is uncommon for these data to be used to 
predict safety performance and accident occurrence. This research study has demonstrated that existing 
project performance data can be used as safety leading indicators and to build machine-learning 
algorithms for predicting safety performance; of the ten variables identified as important by the Boruta 
feature selection, seven were from non-safety-associated departments. Notably, while schedule and 
quality performance variables were associated with accident occurrence, variables conventionally 
associated with cost performance represented 40% of the most important variables identified using the 
Boruta feature selection. 

Although currently limited, an increasing number of studies are suggesting that project performance data 
can be used to develop safety leading indicators. This study has expanded upon previous work and 
applied a Boruta feature selection procedure to demonstrate not only that project performance variables 
are important for predicting accident occurrence but that they are feasible for use to build machine-
learning algorithms for predicting safety risk. As these data are already being collected by various 
departments for alternative purposes, using these existing data can reduce the time, efforts, and 
resources required to monitor and track safety leading indicators. 

While the specific variables identified as important in the current study (foreman hours, shift hours, years’ 
experience direct hours, re-baseline budget, forecasts at completion (FAC), contract change orders 
(CCO), approved changes, and work order HPIs, requests for information (RFI), and open RFI) may 
motivate practitioners to monitor these metrics in practice, it is important to note that, as a result of 
differences in safety cultures, types of activities, and scope of projects, these variables may not be 
associated with accident occurrence in all construction organizations. Additionally, the data set used in 
the current study was limited by its small size and by the large number (up to 50%) of missing data points. 
Future research is recommended to address these limitations. 
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