CSCE Annual Conference

Growing with youth — Croitre avec les jeunes

Laval (Greater Montreal)
June 12 - 15, 2019

STRIPPING ASSESSMENT OF ASPHALT COATING USING K-MEANS
CLUSTERING AND SUPPORT VECTOR MACHINES

Sahari Moghaddam, A. 3, Mejias, Y. 2?4, and Bell, H. 2°, Rezazadeh Azar, E. 16

1 Lakehead University, Canada

2 Ministry of Transportation of Ontario
3 asahari@lakeheadu.ca

4 Yolibeth.Mejias@ontario.ca

5 Heather.Bell@ontario.ca

6 eazar@lakeheadu.ca

Abstract: Stripping of the asphalt coating is a major moisture-related damage in hot mix asphalt
pavements, which deteriorates the bond between the asphalt cement and aggregate particles. This issue
could initiate many forms of asphalt pavement distresses, such as ravelling. Static immersion is a common
testing method to assess the stripping of asphalt cement cover from the aggregate particles in a submerged
condition, but since this assessment depends on the visual judgment of technicians, its accuracy and
reproducibility have been disputed by professionals and research community. Image processing and
machine learning methods have proven to be reliable tools and have the potential to provide consistent and
accurate results in this test. This paper introduces a computer vision-based system to estimate the stripping
of test samples processed in the static immersion test. This system employs series of image processing
methods to enhance the lighting of the images and to correct specular highlights. Then the pixels on the
enhanced images are segmented using the k-means clustering algorithm, and the resulted clusters are
classified using linear support vector machines to determine the number of pixels belonging to the coated
and uncoated areas. A set of experiment was carried out to evaluate the performance of this system, in
which the machine-measured results did not have a significant difference with the manual assessments
with a mean difference of 2.74%.

1 INTRODUCTION

The moisture damage susceptibility of hot-mixed asphalt (HMA) pavements is an important issue in
durability of the highway networks, which is particularly important in the regions with high annual average
precipitation (Liu. et al. 2014). Moisture-related damages can be defined as the degree of performance loss
in an asphalt pavement due to moisture. The damage process initiates by moisture transportation into the
system and causes cohesive and adhesive failures in the asphalt coating (Caro et al. 2008).

Stripping is the detachment of asphalt cement coating from aggregate surface and causes different forms
of distress in asphalt pavement (Kakar et al. 2015; Mehrara and Khodaii 2013). Therefore, a number of
research studies investigated the stripping damage in asphalt pavements, which includes investigation of
damage mechanisms, field studies, laboratory experiments for prediction and controlling stripping
damages, and analytical modelling of the moisture-related damages (Mehrara and Khodaii 2013; Caro et
al. 2008). Moisture penetration into the mix is the first stage of damage and the response of the pavement
could manifest in different forms, such as stripping, ravelling, and hydraulic scour (Caro et al. 2008).
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There are two main types of laboratory experiments to evaluate moisture sensitivity of HMA mixtures,
including test procedures for loose and compacted mixtures. Static immersion test MTO LS-285 (Ministry
of Transportation of Ontario 2018) and the boiling water ASTM D3625 (American Society for Testing and
Materials 2018a) are the main instances in the first group, and immersion compression ASTM D1075
(American Society for Testing and Materials 2018b) and Modified Lottman Test AASHTO T283 (AASHTO
2018) are example test methods carried out on compacted mixtures.

The amount of retained asphalt cement coating measured in the static immersion test is usually used to
assess the effectiveness of anti-stripping treatments and investigate related durability problems of HMA,
such as raveling. The outcome of this test is expressed as “retained coating”, which is the approximate
percentage of the aggregate surface that retained asphalt cement coating. This is a manual process, which
is based on visual assessment of the visible portion of the mixture. Although the test procedures designed
for the loose mixtures are simple and require basic tools available in most asphalt laboratories, the test
samples are visually assessed and the subjectivity of the assessments by unexperienced evaluators can
negatively affect the consistency of the results (Kallén et al. 2016; Amelian et. 2014; Kallén et al. 2012).

Image processing algorithms provide reliable options to replace visual assessment, specially in controlled
environments, because they offer better accuracy, speed, consistency, and lower cost compared to manual
assessment (Andreopoulos and Tsotsos 2013). Civil engineering research community has been also
utilizing image processing algorithms to improve assessment of asphalt pavements. Field assessment
systems and laboratory-based methods are two main groups of research in this area. Field assessment
systems aim at detection of pavement distresses, such different cracks and potholes. A main challenge in
these methods is the varying lighting conditions (due to daytime, weather condition, and shadows), and
therefore pre-processing techniques are typically used to enhance lighting of the images (Koch et al. 2015).
Then the distresses are mainly identified based on the assumption that the defective regions are darker
than the normal pavement. Different image processing algorithms, such as thresholding, edge detection,
and iterative clipping methods (Koch et al. 2015), deep learning (Zhang et al. 2018), and support vector
machines (Hoang et al. 2018), were used to detect cracks, whereas segmentation methods, such as
watershed (Tsai and Chatterjee 2018), fuzzy c-means (Ouma and Hahn 2017), and semantic texton forests
(Radopoulou and Brilakis 2016), were employed to detect potholes and patches.

The laboratory-based methods focus on improving existing test procedures by producing more accurate
and consistent test results. In particular, image processing methods were developed to estimate asphalt
cement coverage of aggregate particles. Earlier research efforts used simple methods, such as thresholding
in grayscale frames, to estimate retained asphalt cement coating in mixtures (Kim et al. 2012; Merusi et al.
2010). Thresholding on YUV colour-space showed better performance than Red-Green-Blue (RGB) colour
space in the removal of the shades (Lantieri et al. 2017). But simple thresholding should be done manually
and it is problematic in dark aggregate samples with similar colours to the asphalt cement. Moreover,
thresholding methods are not able to distinguish shadow areas and specular highlights, thus special
illumination systems were proposed to reduce these issues (Yuan et al. 2015; Merusi et al. 2010).

Colour transformation and segmentation methods were used in later studies to estimate the stripping in
loose mixtures (Kallén et al. 2016; Yuan et al. 2015; Kallén et al. 2012). Test sample particles should be
spread on a plain background (with a plain colour such as blue) to enable thresholding module to isolate
mixture particles. Then a classification method, such as k-means clustering, could be employed to segment
the pixels of with close intensities, thus the number of pixels belonging to each cluster can be counted
(Kallén et al. 2016). All of these research efforts, however, change the original test procedures, because
the operator has to manually spread selective particles on a board with a plain colour. In addition, some of
the main processes, such as thresholding or deciding on the class of clusters (stripped or coated), were
carried out manually.

This paper aims at addressing these limitations by proposing a system that does not require changing
original test procedure (i.e. spreading samples on a plain background). In particular, this system is proposed
to automatically assess the test results of the Ministry of Transportation Ontario’s (MTO) stripping by static
immersion test procedure LS-285 (Ministry of Transportation of Ontario 2018) without changing its original
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procedure, in which the sample particles have to remain in the beaker. In addition, this paper proposes a
machine learning-based method to classify the clustered pixels into coated and stripped areas.

2 METHODOLOGY

Figure 1 presents the workflow of the proposed system, which includes two parts: First, it demonstrates a
low-cost illumination system to provide uniform diffuse lighting for the test samples to obtain high quality
images; the second part includes a series of image processing methods to enhance contrast of the test
images, reconstruct specular highlights, cluster pixels, and to classify these clusters. The image processing
framework was developed using OpenCV 3.3.0 library (OpenCV 2017) in C++ Visual Studio Community
2015 platform. Details of these modules are discussed in the following subsections.
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Figure 1. Workflow of the developed system

2.1 Lighting Box

Since specular highlights and shaded areas could be problematic in the classification stage, providing
uniform indirect illumination could reduce these problems. Specular highlights are light reflections on the
surface of the sample particles, which mainly occur on the coated surfaces, air bubbles, and water surface.
Figure 2 provides two samples of excessive reflections in images captured under ambient room lighting.
The top view of the beaker containing the sample is used to capture images as it usually provides the
clearest view of the submerged test mixture. All the analysis will be carried out on this view and the retained
percentage will be calculated based on this view.
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Figure 2. Specular highlights on a) surface of the water; b) coated areas

Images taken under ambient room lighting could have sever specular highlights and a bright reflection on
the surface of water, which masks parts of the sample. In addition, shadows are imminent where direct
lighting is provided from a certain direction(s). Therefore, an illumination box was developed to provide
uniform and indirect lighting for capturing images from samples. This box is 20 x 20 x 20 cm to
accommodate a 600 ml beaker containing test sample. The box was made of MDF boards with a white
melamine surface bonded on the internal side. The White Melamine surface diffuses light arrays due to its
uneven surface (Figure 3), which provides uniform lighting on the sample and reduces specular highlights
and shadows. An LED string, which is attached inside an L-shaped piece, emits light toward the inner
surfaces of the box which then diffused inward. The light intensity was measured using a lux meter in
different spots within the box and the readings were consistent at 1214 lux. Details of this system is provided
in Figure 3 and Figure 4 shows a prototype and sample image captured using this prototype.
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Figure 3. Details of the lightbox
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a. b.
Figure 4. a) a lightbox prototype; b) sample image captured using this lightbox

2.2 Image Enhancement

Despite using the lightbox, captured images might still include low contrast and small specular highlights.
Thus, a preprocessing module was developed to enhance contrast and remove specular highlights.
Contrast Limited Adaptive Histogram Equalization (CLAHE) was used to enhance the contrast in test
images (Zuiderveld 1994), which facilitates distinguishing coated and stripped areas. Since this module
aims at enhancement of the lighting of images, it firstly converts images to the L*a*b* colour space, because
L* channel contains lightness intensities. The CLAHE method processes the L* (lightness) channel of the
image and then the channels are merged again to create a new enhanced image. A sample of this process
is shown in Figure 5.

Figure 5. Sample contrast enhancement using CLAHE
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The next process in this module corrects specular highlights. This method uses thresholding to isolate
specular highlights in the L* channel of images (Figure 6.a), and then applies morphological dilation to
widen the specular highlights to include their margins (Figure 6.b). Then an image inpainting method uses
this mask to reconstruct the specular highlights (Figure 6.c). This inpainting algorithm initiates
reconstruction process from the boundary pixels and gradually advances toward the inner regions of
interest (Telea 2004). It calculates the intensity(s) of each pixel by normalizing the weighted sum of the
known pixels around that pixel.

Figure 6. Reconstruction of specular highlights: a) thresholding on L* channel; b) dilating the mask; c)
inpainting the masked regions in the original image

2.3  Clustering and Classification

K-means is used in this system to cluster the enhanced image. K-means segmentation aims at classifying
n samples into k clusters, which is determined based on the distance of each sample to the clusters’
mean. This method uses an iterative refinement approach, which initiates by assigning each sample to
the cluster with the nearest mean and then updates the mean of the new cluster. This process continues
until the assignments do not change.

Then these clusters should be classified to determine whether they represent a coated or a stripped
region. Support Vector Machines (SVM) method with a linear kernel was used as a classifier in this
system. Image histograms of the three channels of the regions were used as visual descriptors in training
a classifier. A large number of histograms from positive and negative samples were used to train the SVM
classifier. After clustering of the pixels by the k-means algorithm, this system calculates histograms of
each cluster and passes them to the SVM classifier, which determines class membership (coated or
stripped) of each cluster. Figure 7 shows the process of classification.
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Figure 7. Classification process: a) clusters from k-means segmentation; b) histograms of blue, green,
and red channels of each cluster; c) training of the classifier; d) classification outcome

3 EXPERIMENTAL RESULTS

The developed system was tested using three different configurations, including using three, four, and five
clusters in k-means. Altogether, 73 samples mixtures were prepared according to the MTQO'’s stripping by
static immersion test (LS-285), which included different types of aggregate, such as dolomitic sandstone,
granite-gneiss, and quartzite, and PG 58-28 asphalt cement.

All these samples were also assessed by expert technicians and the results were compared against the
machine-measured results (retained %), and the absolute difference of the measurements for each sample
was calculated. For example, if the retained coating percentages of a test sample were estimated at 75%
and 80% in manual and machine assessments, respectively, the absolute difference would be 5%. Table 1
provides the summary of the results for the 73 images. Figure 8 illustrates a sample result of this process.

Table 1. Difference of the machine-measured and manual assessments in different combinations

Number of k-means Mean of the differences Standard deviation of the
clusters differences
Three 3.22% 6.30%
Four 2.74% 5.04%
Five 2.85% 5.36%

Increasing the number of clusters from three to four improved segmentation of pixels and resulted in lower
differences between manual and machine measurements. But the differences increased in the results with
five classes in k-means process, which can be due to misclassification of some of the clusters. In some
misclassified clusters, the histograms were marginal between positive and negative samples and the
classifier could not correctly classify them.
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Figure 8. Sample result

Since the results in the configuration with four clusters showed the best outcome, these results were further
analyzed in which the differences between the technician assessments and the results of the proposed
system in different retained coating ranges were calculated (see Figure 9). Since the 65% retained coating
is a critical threshold for pass/fail of an HMA mixture in this test procedure and the samples within the
ranges of 65% to 84% and 50% to 64% had the highest level of differences (average difference of 8.85%
and 5%), thus it is suggested that the samples measured by this system at 55% to 75% are doublechecked
by an experienced technician.

Differences in retained coating ranges
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Figure 9. Differences between machine-measured and technician assessments in different coating
ranges
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4  CONCLUSION

A novel image processing system was proposed for automated stripping assessment of loose asphalt
mixtures in MTO'’s static immersion test. In addition, a low-cost illumination box was developed to improve
lighting of the samples. Experiments on a set of images from 73 samples showed an average of 2.74%
difference between the machine-measured and manual assessments. This system demonstrated promising
performance in estimation of the stripping of asphalt cement coating and has the potential to eliminate the
subjectivity of manual assessments. Because two dimensional images are only used for assessment, a
complete view of the mixture is not provided and therefore the result might not represent the entire condition
of the test samples. Therefore, it is recommended to use images of multiple samples from the same mix
design to address this issue. Moreover, assessment of the stained areas and removing dark shaded areas
between aggregate particles are not fully investigated in this research project and future research will
investigate methods to address these issues.
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