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Abstract:  

This paper presents a new higher order 3D fiber element using beam theory leading to a 18x18-stiffness 
matrix including shear and torsional warping. This element is used to analyze the structural response of 
concrete spillway piers with deep variable cross-sections subjected to 3D loads. The element stiffness 
matrix is computed from numerical integration using a mixed formulation: (i) the flexibility method is used 
for flexural and shear influence coefficients; (ii) the displacement method is used for torsional influence 
coefficients (Saint–Venant and warping). The element (fibers) cross sections along the beam are first 
discretized at Gauss points using the 2D finite element method (FEM). The element stiffness matrix is then 
computed from Gauss integration of cross-sectional stiffness coefficients. This novel deep beam model 
allowing to consider combination of axial, bending, shear and torsional loads is implemented in a MATLAB 
code. A beam-column example for deep beam is considered to verify and validate the proposed model by 
comparisons with 3D ABAQUS finite element solutions using solid elements.  

1 INTRODUCTION 

Three-dimensional structural analysis methods for deep plain concrete spillway piers (Fig.1) subjected 3D 
loads (P-Mx-My-Vx-Vy-T) can be divided into three categories: (i) the gravity method; (ii) 3D fiber elements 
(Fig 1.b); and (iii) 3D finite element method (FEM). The gravity method (GM) is used frequently in 
engineering practice to analyse hydraulic structures. It is based on Euler – Bernoulli beam theory with the 
assumption that cross sections remain plane after deformation. However, nonlinear normal and shear 
stress distributions induced by cross-sectional warping are not captured. Element warping can be captured 
using 3D FEM using commercial software such as ABAQUS with solid elements. Yet, 3D FEM requires 
significant resources and complex post-processing to compute classical engineering stability indicators 
such as (i) sliding safety factor, (ii) position of force resultants, (iii) cracked area, and (iv) maximum 
compressive stresses. 3D fiber elements use conventional beam theory input parameters such as cross-
sectional area (A), moments of inertia (Ix, Iy, Ixy), effective shear sectional areas (Ax, Ay, Axy) and torsional 
constants (J, ). Higher order beam theories lead to more precise results than the GM but with less 
complexity than 3D FEM in terms of engineering resources and result interpretation to take decision about 
the adequacy of stability indicators as compared to dam safety guidelines requirements.  



 

   
The first solution for “shear lag” effect was presented by Cowper (1966) to consider shear deformations in 
cross-sections using an effective shear area coefficient for rectangular cross-section. Gruttmann and 
Wagner (2001), and Pilkey (2002)  extended this solution for arbitrary shaped cross-sections using 
Timoshenko’s beam theory by including shear deformations. However, the warping effect was not 
considered to compute normal stress distributions. Elastic stress analyses of cross sections with arbitrary 
geometry subjected to three-dimensional loads was presented by Stefan and Léger (2011).  It included 
shear and torsional warping deformations. However, this solution considered the Euler-Bernoulli 
formulation in bending. The normal stress distributions at individual cross-section were computed without 
interactions from a cross section to another to form a structural element (Fig.1c). The application of this 
solution is adequate for individual cross-sections. For deep concrete beam sections, that will eventually be 
cracked, it is necessary formulate suitable 3D elements, aggregating cross-sectional behaviours along the 
element axis and to add the shear warping deformations to compute normal stress distributions.  

In the oriented research software OpenSees (OS) (Mazzoni et al., 2006), there are some fiber elements 
available to analyze structural beams and frames subjected 3D loads. OS fiber elements are including 
shear deformations from Timoshenko theory but without shear and torsional warping effects. Le Corvec 
(2012) developed a slender 3D nonlinear fiber element using Timoshenko beam theory including local 
warping deformations from shear and torsion. Capdevielle et al. (2016) pursued this solution by using all 
FE mesh points in the cross-sections to formulate a beam-column element including shear and torsion 
warping deformations using the displacement method. However, the formulation did not have any 
independent parameters for shear and torsion such as added degrees-of-freedoms (DOFs). These 
parameters were introduced in research by Dikaros and Sapountzakis (2014a, 2014b, 2014c); 
Sapountzakis (2013); Sapountzakis and Dikaros (2015) using the boundary element method to compute 
shear and torsion warping deformations. However, their models focused on thin walls box cross-sections 
with elastic and composite elements. For hydraulic structures, it is necessary to develop a novel fiber 
element model to include shear and torsional warping deformations for deep cross-section and to later 
introduce the nonlinear material effects from concrete cracking and uplift water pressures (Fig.1).  
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Figure 1: 3D Fiber beam-column element including non-uniform shear and torsion: (a) 3D fiber element 
model for spillway pier; (b) 3D fiber element parameters; (c) cross-section analyzed by 2D FEM. 



 

   
This paper presents a new higher order 3D fiber element using deep beam theory leading to a 18x18-
stiffness matrix including shear and torsion warping deformations. In Figure 1, each element has two nodes 
“i” and “j”, with 9 DOFs per node. There are 6 DOFs for the usual translational and rotational displacements, 

and 2 added DOFs, X , Y , for shear warping displacements in X and Y directions, and 1 DOF, ' , for 

torsional warping displacement associated with the Bi-moment, B (around Z). The element stiffness matrix 
is computed by using a mixed isoparametric formulation: (i) the flexibility method is used to compute flexural 
and shear influence coefficients; (ii) the displacement method is used to compute torsional influence 
coefficients (Saint–Venant and warping). This approach has some advantages for element with variable 
cross-sections. It is easier to work with force and equilibrium (flexibility) than to work with displacement and 
compatibility (stiffness) for P-Mx-My-Vx-Vy. For torsional effect, T, the bi-moment internal force-deformation 
relationship is described in the literature by the stiffness method. Herein torsional effect is thus considered 
using the displacement method by using Hermite polynomial functions to interpolate displacements along 
the element. The element (fibers) cross sections along the beam are first discretized using 2D FEM using 
triangular elements (Figure 1.c). The element stiffness matrix (from node “i” to “j”) is then computed from 
Gauss integration of cross-sectional flexibility and stiffness matrix at Gauss points located along the 
element axis.  

This 3D fiber element is implemented in a MATLAB code, named “FIDAM” using two formulations: (i) 
“Timoshenko” beam including torsional warping deformations leading to 14 DOFs and “FIDAM 18DOFs” 
including shear and torsion warping deformations. A geometrically complex concrete deep pier of a spillway 
is analyzed using ABAQUS (3D FEM) to validate the proposed fiber element model. 

2 FINITE ELEMENT FORMULATIONS FOR SECTIONAL ANALYSIS 

This section presents the finite element formulations for sectional analysis to compute sectional properties 
then, sectional stiffness or flexibility matrix. This matrix is computed from Gauss points along the element 
(Fig.2.I) including shear and torsional warping deformations.  

The distribution of normal stresses on an arbitrary cross-section is given by:   

( , , )
p
x y zz : Linear normal stresses from Euler – Bernoulli beam theory;  

( , , )w x y zz : Nonlinear normal stresses from shear and torsion warping deformations. 

2.1 Sectional flexural stiffness matrix using Euler - Bernoulli 

Euler - Bernoulli theory is used to determine the linear normal stresses and deformations to compute cross-
section flexibility matrix (Fig. 2.I.a). The cross section is divided in a given number nfib of sub-sections called 
fibers. The generic i-th fiber, of area Afibi, is identified by means of the position of its centroid (xfibi, yfibi). The 
sectional stiffness matrix is first determined from equation (2) (Spacone et al., 1996) where I(xfibi, yfibi, z) is 
a geometric vector I(xfibi, yfibi, z) = {1 -x,  y}, and Efibi is the Young’s modulus of i-th fiber.  

The sectional flexibility matrix is obtained from the inverse of the sectional stiffness matrix: 

  1
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    . For a symmetric cross-section, this matrix is diagonal from equation (3):  
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P-Mx-My-Vx-Vy: 
- Sectional properties: A, Ixx, Ixy, Ixy, xC, yC; 
- Secondary shear warping functions: x

s,y
s 

- Effective shear areas : AP,S
xx, A

P,S
yy, A

P,S
xy (P: Primary; S: Secondary); 

- Secondary bending constants (Ixx,Iyy, Ixy);
- Flexibility sectional matrix [fs

PMV(z)]9x9;

T: 
- Torsion constants, J and G 
- Shear center (xS, yS); 
- Sectional stiffness matrix: [Km]2x2;

P-Mx-My-Vx-Vy: Flexibility method
- Flexibility matrix for a member with simple supports: 

 [F] 9x9 = [b(z)T][fs
PMV(z)][b(z)];

- Element stiffness matrix: 
[Ke

PMV]14x14 = [n][K][n]T; with [K] =  [F]-1

T-B : Stiffness method
(St. Venant Torsion and Bimoment )
- Element stiffness matrix: 
[Ke

T]4x4 = [B(z)]
T[Km][B(z)];
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Figure 2: Element stiffness matrix formulations: (I) Step 1: Sectional flexibility and stiffness matrices; (II) 
Step 2: Element stiffness matrix formulation. 

+

Model Deformations Shear stresses Normal stresses Equilibrium equation

a, Timoshenko 
beam theory

b, Primary shear 
order 

(a)

(b)

yzxz 0
pp p

z

x y z

  
  

  

Y

y

M
x

I
P
z 

P P P
xz x x,xGγ 

c, Secondary 
shear order 

Secondary shear 
effect 

yzxz 0
ss w

z

x y z

  
  

  

xz x x,xGγS S S 
x

ψ
Y

x
ψψ

M
ψ

I
w S
z 

d, Proposed model 
(FIDAM-18DOFs) 

Total deformations

+

=

+

xz xz xzτ P S  

=

p w
z z z   

S P
x xψ =ψ -X

Secondary shear 
function: 

: primary shear 
function  

P
xψ

 

Figure 3:  Modelling of shear deformations and related normal stresses (Vx only): (a) Timoshenko beam 
theory; (b) Primary shear order; (c) Secondary shear order; (d) Proposed model for shear effect in FIDAM 
– 18DOFs.  
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2.2 Sectional stiffness matrix including shear warping deformations 

The shear sectional stiffness matrix is used to determine shear stresses and deformations by using 2D 
FEM to compute primary and secondary warping functions. The primary warping functions are used  (Stefan 
and Léger, 2011) to compute primary shear stresses and effective shear area coefficients. The secondary 
warping functions are developed from Dikaros and Sapountzakis (2014b) to compute secondary shear and 
normal stresses.  

 Primary shear warping function 

Stefan and Léger (2011) used shear warping functions to solve the shear stress distribution by 2D FEM for 
elastic variable cross-section element. This solution is based on the elasticity theory with a Poisson 

differential equation by using proper boundary conditions. In equation (4), ( , , )G x y z is the primary 

warping functions, with ( , , )P
X x y z  and ( , , )P

Y x y z for x, and y directions. The function, ( , )f x y , is a 

normal stress function along of the element length. The Poisson differential equation is given by (G = G), 
with G = E/2/(1+), v being the Poisson ratio and E being the elastic modulus: 

The primary shear stresses in the section zi are  computed from:  

with nxh  , nyh  being functions depending on the boundary conditions (Stefan and Léger, 2011). Herein, we 

used the solution of Pilkey (2002) to compute the shear centre location (xD, yD), shear deformation 

coefficients (xx, yy, xy) from Timoshenko beam theory, and primary shear areas (
P
XA , P

YA , P
XYA ) to build 

the sectional stiffness matrix.  

 Secondary shear warping function 

The shear lag effect in deep cross-sections can be captured by using secondary order shear warping 
functions (Figure 3). Dikaros and Sapountzakis (2014c) developed a secondary shear warping function 
from the third equation of elasticity theory. For a rectangular cross-section, the secondary shear warping 

functions ( ( , , )s
X x y z , ( , , )s

Y x y z ) are obtained from the primary shear warping functions from equation 

(6).  Two independent parameters are defined for secondary  shear warping DOFs ( X , Y ), along the axes 

x, y.  

The secondary normal and shear stresses are obtained from equation (8). Secondary shear average 

deformations (
S
X ,

S
Y ) are computed from primary shear deformations and secondary displacements, 

;
P P

S SX Y
X Y Y XP P

X Y

V V

A A
        (Dikaros and Sapountzakis, 2014c). Due to the development of normal 

stresses, there are also three secondary sectional inertia moment properties (
X X
I  , 

Y Y
I  ,

X Y
I  ) in 

analogy to the sectional moments of inertia in bending (Ixx, Iyy, Ixy).  
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For the shear sectional stiffness matrix to include shear lag effects, we have to consider secondary shear 
areas in equation (9). In this paper, we neglect the coupling term AS

XY :  

The shear sectional stiffness matrix, 
4 4

VV
sk 

   and the secondary bending sectional matrix, 
2 2

M
sk



   in 

equation (10) are given below :  

To obtain the sectional flexibility matrix including shear lag and secondary bending effects, we invert 

4 4

VV
sk 

   and 
2 2

M
sk



   . The sectional flexibility matrix for axial-shear-bending effects is then:  

3 3

9x9 4 4

2 2 9 9

( ) 0 0

( ) 0 ( ) 0

0 0 ( )

P
s x

PMV VV
s s x

M
s x

f z

f z f z

f z



    
        
    

 (11) 

 

2.3 Sectional stiffness matrix including torsion warping deformations  

Torsion sectional formulation is based on the solution of Stefan and Léger (2011) including two effects: (1) 
the Saint – Venant (uniform) torsion when the section is free to warp ; (2) the warping (non-uniform) torsion 
when sectional warping is restrained. This problem is solved in two steps: (1) computation of Saint-Venant 
torsional shear stresses and torsional constant (J); (2) computation of the warping effect and the torsional 
warping constant (). 

The torsional cross-sectional stiffness matrix including the torsional warping deformations is given by:  

3 THREE-DIMENSIONAL ELEMENT STIFFNESS MATRIX FORMULTATION 

This section presents the formulation of the 18x18 element stiffness matrix for 3D fiber element including 
shear and torsional warping deformations (Fig2.II). There are two methods to obtain this element stiffness 
matrix: (1) the flexibility method for P-Mx-My-Vx-Vy that is shown in Figure 2.II.a ; (2) the stiffness method 
for torsion that is presented in Figure 2.II.b.  

2 2( ) ; ( ) ; ;
x x y y x y

S S S S
X Y X Y

A A A

I dA I dA I dA              (7) 
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3.1 Flexibility method (P-V-V-M-M) 

The flexibility method is based on force interpolation functions along a simply supported 3D element. These 

functions,  9 9
( )b z


 are obtained by applying unit loads at each DOF and from the differential relations 

between shear forces and bending moments in equation (13). In a first step, we can obtain the flexibility 

matrix of a 3D simply supported element,  9x9
F in equation (14).  

; ; ; yP S P S X
X X X Y Y Y Y X

dMdM
V V V V V V V V

dz dz
     

 
(13) 

     9x9 9 9 9x99x9
0

( ) ( ) ( )
L

T PMV
sF b z f z b z dz


     (14) 

Then, the stiffness matrix of 3D element can be obtained by inverting the flexibility matrix,   1

9x9
K F

 . A 

transformation matrix,  n , is then applied to obtain the complete set of forces from the reduced set where 

free body motions have been prevented (for more details see Vu-Quoc and Léger (1992), Neuenhofer and 
Filippou (1998)):  

   
14 14

TPMV
eK n K n


     

(15) 

3.2 Stiffness method (Torsion) 

The stiffness method is based on displacement interpolation functions. In this paper, Hermite cubic 

polynomials,   ( ) ( ) ( ) ( )1 2 3 4( ) H z H z H z H zH z     , are used to compute the torsion element matrix, 

4 4

T
eK 

   , including Saint-Venant and warping torsion.  

2 3 2 3

1 22 3 2

3 2 3 2

3 43 2 2

3 2 2
( ) 1 ; ( )

2 3
( ) ; ( )

z z z z
H z H z z

L L L L

z z z z
H z H z

L L L L

     

    

 (16) 

Based on the deformation – displacement relations, we have equation: 

  euzBzyx )(),,(   (17) 

Where   ' ' Te
i j i ju        is the nodal displacement vector,   ( ) ( ) ez H z u   is the angle of 

rotation along the element axe and ( , , )x y z  are sectional deformations. The displacement interpolation 

functions are obtained from:  

 
2

2

( ) ( )
( ) ;

dH z d H z
B z

dz dz

 
  
 

 (18) 

The element stiffness matrix in torsion is obtained from:  



 

   

   
0

( ) ( ) ( )
L

TT TB
e sK B z k z B z dz        (19) 

The 3D element stiffness matrix including shear and torsion warping deformations is presented in equation 
(20). For a structure that has variable cross-sections along of the element length, an element with rigid end 
offset extensions is used by applying an eccentricity matrix transformation.     

  14 14

18 18

4 4 18 18

0

0
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K
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(20) 

4    APPLICATION EXAMPLE AND NUMERICAL RESULTS  
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Figure 4: Application example: (a) variable spillway piers (squat wall – deep beam); (b) 3D FEM from 
ABAQUS with 5916 solid elements.  

This example is a variable spillway pier (deep beam) shown in Figure 4.a. The material parameters are the 
Young modulus Ec = 30000 MPa, = 0. In this paper, Poisson effect is ignored to easily validate proposed 
model with ABAQUS using 3D solid FE. This spillway pier is subjected two load cases: (1) P = -2000 kN 
and Vx = 3000 kN; (2) Torsion (T = 200 kN.m). The results for the cross-section located at Ls = 2.254m are 
shown in Figure 5. In Figure 4.c1, the FIDAM displacement, ux, along of the spillway pier, was shown to be 
similar to results using Timoshenko beam theory and 3D FEM (ABAQUS). The normal stress distribution 
for the first load case is obtained by using the proposed model, “FIDAM-18DOFs”. It is nonlinear, and it 
exhibits a small error with a maximum ratio FIDAM/ABAQUS = 1.007 for maximum compressive normal 
stresses.  Overall, “FIDAM-18DOFs” shear stress distribution is very similar to the ABAQUS solution for the 
deep cross-sections with some local differences mainly at the sloped pier extremity (shown in Figure 4.a).  

The second load case is a torsional moment, T = 200 kN.m. The rotational displacements along the 
structure height are showed in Figure 5.c2. “FIDAM-18DOFs” maximum rotation is very close to the 
ABAQUS solution. The normal and shear stress distributions are shown in Figure 5.b. They exhibit an 
acceptable error with a maximum ratio FIDAM/ABAQUS = 1.13 (13% different). This error is caused by 
secondary torsional warping effect. We ignore the secondary shear order effect due to torsional load to 
compute normal stresses in the proposed model to avoid adding more DOFs and complexify further the 
element formulation and still provide reasonable stress estimate. The shear stress distributions from 
“FIDAM-18DOFs” are very similar to the ABAQUS solution for deep cross-section.  
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Figure 5: Results of spillway pier: (a) Stress distributions for P-Vx; (b) Stress distribution for T; (c) 
Displacements: c1 – translation ux for P-Vx, c2-rotation for T.   

5 CONCLUSIONS and RECOMMENDATIONS 

This paper presents a novel fiber element model for deep elastic piers subjected to three-dimensional loads 
(axial force, biaxial shear forces, bending moments, and torsion). This fiber element has a 18x18 stiffness 
matrix dimension to include shear warping and torsional warping cross-sectional deformations. This model 
consists in the determination of the nonlinear normal and shear stress distributions for deep spillway piers 
by considering secondary shear and primary torsional effects (St-Venant, warping). An application example 
for rectangular spillway pier (squat wall) was presented. The main conclusions are as follows:     

(a) The 3D fiber element model labeled as “FIDAM 18DOFs” presents nonlinear normal stress 
distributions for deep beam subjected to shear forces that are more representative than the linear 
stresses from classical Euler-Bernoulli beam theory and closely matched the 3D FE solution using 
solid elements from ABAQUS (within 1% error for maximum stresses).  

(b) The fiber element model is implemented using a 2D+ efficient formulation to introduce shear and 
torsion warping deformations for squat structures subjected to axial, bending, non-uniform shear and 



 

   
non-uniform torsion. The sectional analysis employs only some cross-sectional 2D surface meshes 
by using triangular FE to compute all necessaries sectional properties (primary and secondary).  

(c) The “FIDAM” shear stress distributions are very similar to those from ABAQUS solution.   
(d) This proposed beam-column model provides the framework to extend the formulation to include 

material nonlinearity such as concrete cracking, and uplift pressures to analyse efficiently spillway 
piers.  

This study provided a frame work to implement advanced beam theory to analyse deep spillway piers. It is 
recommended to investigate the structural significance of shear and torsional distortions for deep concrete 
sections. It was shown herein that deep beam theory maximum tensile normal stresses is 45% larger, while 
the average value is 20% larger, than classical Euler Bernoulli solution. 
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