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Abstract: This study aims at quantifying and comparing drivers’ following behavior during braking at 
intersections and midblock road segments (i.e., non-intersection) using Naturalistic Driving Data (NDS) 
data. The quantification of driver behavior was based on exploring the Probability Density Functions 
(PDF) of two parameters (i.e., minimum following distance and time-to-collision) which were extracted 
from NDS data. To classify drivers’ following behavior at intersection and segments, all events were 
mapped onto the road network using ArcGIS. The intersection events were defined based on the driver’s 
stopping sight distance to the stop line of an intersection. The results showed that there was a significant 
statistical difference between the PDFs of the parameters at intersection and segment events. Also, the 
results showed that drivers tend to keep less following distances and high deceleration rates (i.e., more 
aggressive) during intersection events when compared to segment events. Generally, the results of this 
study highlight the importance of considering the driver location before judging or classifying his/her 
behavior. 

INTRODUCTION 

Driver assistance or in-vehicle warning systems (e.g., Red Light Violation Warning, Forward Collision 
Warning (FCW), etc.) are expected to have a significant role in crash avoidance. The expected benefits 
from such systems will be mainly realized by enhancing the driver’s awareness regarding their 
surrounding environment (Farah et al., 2012; Mohammed et al., 2016; Olia et al., 2015). These systems 
can enhance the awareness of drivers by alerting them of safety-critical events through the use of in-
vehicle messaging (e.g., audible, visual, etc.). For instance, FCW provides a warning to the driver when a 
rear-end collision is expected with a leading vehicle in the same lane and the same direction of travel 
(Harding et al. 2014). In other words, such a warning is warranted when the actual following distance is 
equal or less than a minimum following distance which is predefined by the warning system.  

One of the major challenges facing these systems is to accommodate a wide range of driving behaviors 
(e.g., from cautious through neutral to aggressive driving situations) and satisfy various drivers’ needs 
(e.g., reliable warnings). For a cautious driving situation (i.e., when the driver usually keeps a larger 
following distance to a leading vehicle), an FCW might be considered as a late warning in this situation. 
On the other hand, for an aggressive driving situation (i.e., when the driver usually keeps a lesser 
following distance to a leading vehicle) an FCW, in this situation, might be considered as an early 
warning. The evaluation of warning systems showed that too early warnings, reduce users’ acceptance 
and decrease the impact of the warning on driver behavior (van Driel et al. 2007, Staubach et al. 2014). 
Conversely, in the case of late warnings, drivers could start a maneuver before the warning is relayed, 
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and hence, drivers will develop a mistrust due to the conflict between their expectations and the warning 
system performance (Abe and Richardson 2005). Therefore, it is essential to consider the 
situations/contexts when the warning will be relayed to the driver and drivers’ needs.  

Several studies investigated and classified drivers based on their behavior to different categories as a 
preliminary step of the development of an efficient and safe performing driving assistance systems (Wang 
et al. 2010, Jensen et al. 2011, Martinez et al. 2017). In these studies, driver behavior was analyzed 
regardless the location of the driver (i.e., at intersections or on midblock segments). However, it is 
expected that the driver behavior will vary based on several factors such as the roadway geometry (Ben-
Bassat and Shinar 2011), driver mental workload (Messer 1980), in-vehicle advisory messages 
(Mohammed et al. 2016), etc. Therefore, this study aims at, first, investigating the driver following 
behavior during braking at different road network locations (i.e., at intersections and on midblock 
segments). This investigation is carried out by quantifying two behavioral measures (i.e., minimum 
following distance and time-to-collision) which are extracted from naturalistic driving data. These events 
are then mapped onto the road network using ArcGIS to differentiate between intersection and non-
intersection events. Second, a comparison between these measures at intersections and on midblock 
segments is conducted. The probability distributions of the behavioral measures are generated for each 
location for three speed groups (i.e., low, medium, and high). To further explore the differences in driver 
behavior, the probability distributions are compared using statistical testing.  

1 LITERATURE REVIEW 

The knowledge of unassisted driving behavior is essential for the development of an efficient warning 
system (Berndt et al. 2007). Therefore, several studies investigated drivers’ nominal behavior to develop 
and/or enhance warning systems. To achieve this goal, drivers’ behavior characteristics in terms of TTC 
were analyzed in different classes such as age, gender groups, and speed ranges (Montgomery et al. 
2014). The purpose of this study was to characterize the differences between age and genders groups 
during car-following while braking situations (Montgomery et al. 2014). In a different study, an approach 
for driving behavior classification was proposed using several measurable parameters such as time 
headway, the inverse of TTC, and the time between accelerator pedal release to brake activation. The 
drivers were classified according to their aggression, stability, conflict proneness, and skillfulness (Wang 
et al. 2010).  

Feng et al. (2017) assessed the longitudinal vehicle jerk as a measure to classify aggressive drivers using 
Naturalistic Driving Study (NDS) data. Two jerk-based measures were proposed, namely, the frequent 
utilization of large positive or negative jerk. First, from the NDS data, the drivers recognized to be 
aggressive according to their excessive speeding, tailgating, or crash/near-crash frequency in the data. 
Based on that, three groups of aggressive drivers were generated, and the proposed jerk-based 
measures were validated using these three groups. The results showed that the proposed measures 
could successfully identify aggressive drivers in the three groups of aggressive drivers. However, the 
results indicated that the large negative jerk was more efficient when compared to the large positive jerk 
in detecting aggressive drivers (Feng et al. 2017).  

Using speed and lateral and longitudinal acceleration, Gonzalez et al. (2014) developed a linear filter 
based on Gaussian Mixture Model to detect driving aggressiveness. This model was validated by 
monitoring the driving behavioral measures of 10 drivers on a customized test route. This test route, 
which was part of a private road network, included five different road features such as a roundabout, 
curves, uphill and downhill segments, and sharp bend. The drivers conducted several driving rounds on 
the route including only one aggressive round for each driver. It is worth to mention that the drivers were 
not given any instruction/definition of the aggressive driving ( Gonzalez et al. 2014).  

Zheng et al. (2017) defined the aggressive driving based on a questioner given to 15 drivers before and 
after local road tests (i.e., within University of Florida campus area).  This study aimed to assess the 
relation between the driver type and driver behavior in a high vehicle-pedestrian interaction low-speed 
environment. Such an environment was within campus area with speed limit between 20 mph and 35 
mph. The driving aggressiveness, obtained from the questioner, was compared to behavioral measures, 
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namely, driving desired speed and yield to pedestrian behavior. The results revealed that the two 
measures could efficiently identify the driver aggressiveness (Zheng et al. 2017).  

Based on smartphone accelerometer data (i.e., the acceleration in X, Y, and Z axes of the smartphone), 
Osafune et al. (2017) classified the drivers into safe and risky drivers. This classification was validated 
based on drivers’ crash records in 20 years. The data was collected for 15 months covering almost all 
areas of Japan. Three thresholds were selected to identify risky drivers including acceleration, 
deceleration, and left acceleration (Osafune et al. 2017).  

Sundbom et al. (2013) defined aggressive and normal driving based on drivers’ steering behavior in terms 
of curve lateral acceleration, yaw rate, and lateral movement in the lane. Only two drivers participated in 
this study on a test track where each driver had a mixture of aggressive and normal driving. A model was 
developed to online classify the two driving styles (i.e., aggressive and normal). It is worth to mention that 
the test track had no traffic and consisted only of curved sections and straight sections. Also, the straight 
segments were removed when estimating the model performance because of drivers’ lack of excitation in 
these segments which generated classification errors (Sundbom et al. 2013). In a simulation environment, 
Casucci et al. (2010) differentiate between the prudent and aggressive drivers based on braking behavior 
and lateral performance. It was found that aggressive drivers completed an overtaking task faster than 
prudent drivers. In addition, the cruising speed (i.e., the final speed after completing the overtaking 
maneuver) of aggressive drivers is higher than the prudent drivers (Casucci et al. 2010). 

In summary, driver behavior classification is an approach to investigate and understand nominal driver 
behavior which is used to enhance the development of different warning systems. A wide range of 
measures were used for driver behavior classification such as drivers’ speed (Casucci et al. 2010, 
Rodriguez Gonzalez et al. 2014, Zheng et al. 2017), TTC (Montgomery et al. 2014), jerk (Feng et al. 
2017), and acceleration (Osafune et al., 2017; Gonzalez et al., 2014). In almost all the mentioned studies, 
these measures were used as an aggregate measure (e.g., averaged over a certain period of time or 
specific maneuver) regardless the location of the driver. For instance,  Gonzalez et al. (2014) classified 
the driver behavior while driving on a part of a private road network which consisted of several road 
features (i.e., roundabout, curves, etc.). However, the behavioral measures were aggregated on the 
entire route without considering the change in the driver behavior from one road feature (e.g., 
roundabout) to another (e.g., curve). In addition, Osafune et al. (2017) and Feng et al. (2017) extracted 
behavioral measures from smartphone data and NDS (both are high-frequency data) without referring to 
the location of the events of the interest.  

Therefore, this paper is investigating whether the driver will be relatively more aggressive in a specific 
location on the network when compared to other locations. In other words, the hypothesis in this paper is 
that there is a difference in driver following behavior when driving on midblock segments and around 
intersections. Moreover, this paper will characterize driver behavior during braking on these two locations. 
The results of this paper could be used as the core of a context-aware application. Such an application 
adopts automatically to the driver behavior variation due to the change in driver’s surrounding 
environment (i.e., other vehicles, pedestrians, infrastructure, weather, etc.) over time. 

2 METHODOLOGY 

To characterize driver behavior during braking, the NDS data was used to identify car following events as 
well as extract various driver behavioral measures (e.g., following distance and TTC). The candidate car 
following events during braking were split into three groups based on the host vehicle speed and plotted 
on a map using ArcGIS. The detailed procedure is discussed in the below subsections.   

2.1 Data Description  

Big data has a wide range of definitions in the literature. For instance, big data is defined as the type of 
data which is hard to store, manage, process, and visualize (Cox and Ellsworth 1997, Manyika et al. 
2011).  In addition, big data could be defined as the methods and technologies which enable unveiling 
hidden values from large, complex, and diverse datasets (Hashem et al. 2015). Moreover, big data could 
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be described by high volume (i.e., large storage), variety (i.e., data format), high velocity (i.e., change in 
data over time), veracity (i.e., data credibility and certainty), and value (i.e., data usefulness) (Elragal 
2014). Big data has a significant role in the automotive and transportation industry transformation. For 
instance, big data is used to develop intelligent vehicles applications such as Self-Driving cars, 
Autonomous Vehicles, and Connected Vehicles (Luckow et al. 2015). In addition, big data, in the form of 
NDS, was used for understanding driver behavior to develop robust intelligent vehicles applications 
(Wang et al. 2017). NDS data, which is considered as big data, is a rich source of detailed real-world 
driving behavioral and performance data. NDS was carried out to investigate driver behavior and 
performance by collecting detailed data on volunteer drivers, vehicles, and the surrounding environment 
during normal every day driving.  

The NDS, which is used in this paper, was collected as part of the Safety Pilot Model Deployment 
(SPMD). SPMD was a data collection effort under real-life conditions with about 3,000 vehicles equipped 
with V2V communication devices in Ann Arbor, Michigan, US (Henclewood and Rajiwade 2015). SPMD 
was part of the “Connected Vehicle (CV) Safety Pilot Program” research initiative which was aimed at 
evaluating the safety benefits of CV technologies. The dataset comes from the Data Acquisition System 
(DAS) which was developed by Virginia Tech Transportation Institute. This dataset is available in the ITS 
Public Data Hub which is operated by the US DOT (USDOT 2018). The dataset was collected from 64 
host vehicles equipped with Integrated Safety Devices (ISD) for two months (October 2012 and April 
2013). For each second, ISD unit recorded data including position and GPS details (e.g., latitude, 
longitude, elevation, speed and GPS-based data fidelity measures) and driver behavior data (e.g., 
braking status, speed, yaw rate, and acceleration). In addition, the dataset contains radar data collected 
from the ISD unit. The radar data provided information pertaining to the detected vehicle type (i.e. light 
vehicle, heavy vehicle, bike, pedestrian, or unclassified), status (i.e. moving and in path), the distance 
from the host vehicle, and the relative speed to the object in front of the host vehicle (Henclewood and 
Rajiwade 2015). The data was stored in two .csv files with a total file size of around 40.7 GB. The first file 
housed the information related to the vehicle operation and position of the host vehicle. The second file 
stored the radar data of the detected vehicles around the host vehicle. 

2.2 Identifying Drivers’ Following Events During Braking 

One of the car following identification algorithms in naturalistic data was developed by Kusano et al. 
(2014) which aimed at identifying host vehicle braking events while following another vehicle. This 
algorithm was validated and successfully identified approximately 92% of the car following events when 
compared to manual inspection of video data in a100-car NDS. This algorithm was used to investigate 
various aspects of driving following behavior during braking. For instance, this algorithm was used to 
identify the situations during normal car-following situations with brake application to compare between 
the TTC and the Enhanced TTC as thresholds for triggering FCW (Chen et al. 2016). In addition, the 
same algorithm was utilized to compare the TTC for different speed bins or different drivers’ demographic 
groups (i.e., age and gender) in car-following scenarios while braking (Montgomery et al. 2014, Kusano et 
al. 2015).  

Consequently, this algorithm will be adapted to serve the purpose of this study. The following steps, 
which were coded in MATLAB, summarize the NDS data processing and events identification: 

1. Preparing and filtering the data: 

1. Remove all object types except the object type which was recognized as a light vehicle (i.e., 
passenger car).  

2. Remove all instances which were marked with invalid GPS data. 

2. Identifying car following events during braking using Kusano et al. algorithm (Kusano et al. 2014). For  
more details about the algorithm, readers are directed to (Kusano et al. 2014, Tawfeek and El-
Basyouny 2018)This algorithm could be summarized in the following steps: 
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1. Identify all braking events for the host vehicle only when the vehicle’s speed is above 10 mph 
(4.47 m/s) for at least 1 second of the braking time. 

2. Identify candidate leading vehicles within 3 seconds headway in front of the host vehicle during 
the braking events. These candidate leading vehicles should be within 2 meters laterally from the 
path of the host vehicle.  

3. Remove fixed objects (i.e., parked vehicle and slow vehicles in adjacent lanes). This step 
depends on the speed of the leading vehicle, the gap distance between the leading and the 
following vehicle, and the azimuth change rate. The azimuth here is defined as the angle between 
the host vehicle path and the candidate leading vehicle. 

4. Select leading vehicle, when multiple candidate vehicles were selected from the previous step, 
based on the lateral distance between the host and the leading vehicle and proximity to the host 
vehicle.  

3. Selecting incidents of interest: 

1. Scan each identified following event for the minimum following distance. 

2. Extract and calculate driver behavior measures (i.e., TTC) occurring at the minimum following 
distance while braking. 

A total of 43,738 car-following events during braking were identified as candidate events. The incidents, 
when the following distance is the minimum during the event, were prepared to be plotted on a map to 
differentiate between intersections and segments events as discussed in the next section.  

2.3 Mapping and Defining Intersections and Segments Following Events 

ArcGIS was used as a tool to map the identified car following events during braking and to classify each 
event into either an intersection or segment related event. The candidate events were imported to ArcGIS 
using the available position data of the host vehicle (i.e., latitude and longitude). Before starting the 
classification process, intersection and segment (non-intersection) events should be defined. The current 
literature has various definitions of the intersections influence area. For instance, both American 
Association of State Highway and Transportation Officials (AASHTO) and Highway Safety Manual (HSM) 
defines at-grade intersections by physical and functional areas (AASHTO 2010, 2011). The physical area 
is the area bounded by the stop lines of both intersecting roads. On the other hand, the functional area 
extends upstream the intersections on the intersecting roads. This area includes driver’s decision and 
maneuver distances and queue storage distance. More specifically, intersection-related crashes are 
defined as the crashes which occur within 15 to 152 meters from the intersection center point (R.Stollof 
2008, FHWA 2009). On the other hand, the 152 meters intersection influence area was considered to be 
suitable for intersections approaches according to the 40 mph speed limit only (Cottrell and Mu 2005). It 
is worth to mention that intersection crashes and intersection-related crashes have been defined as the 
crashes which occurred upstream or inside the physical area of the intersection (Wang et al. 2009). 
Therefore, similar to the definition of intersection crashes, the candidate events were identified as 
intersection events when they occurred either upstream or inside the physical area of the intersection. 

Since speed is a main contributor to a driver’s decision (i.e., perception-reaction) distance and maneuver 
(i.e., braking) distance, the speed limit should be considered when deciding the influence area (Fitzpatrick 
et al. 2000). Consequently, the candidate events were split into three categories based on the host 
vehicle speed, namely; low, medium, and high speeds. The boundaries of low, medium and high speeds 
were defined as less than 25 mph (40 km/h), between 25 mph and 55 mph (88 km/h), and more than 55 
mph, respectively. These boundaries are chosen based on the speed limits in the City of Ann Arbor, 
Michigan (City of Ann Arbor 2013). Based on these categories, intersections influence area for each 
category was set and defined as shown in Figure 1. 
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Figure 1: Intersection influence area (shaded in yellow) and an example of the candidate intersection 
events (red dots) and segment events (blue dots). 

The intersection influence distance (i.e., from the stop line and upstream the intersection) is calculated 
based on the driver’s Stopping Sight Distance (SSD) which include driver’s decision and maneuver 
distances as shown in the following equation.  

ሻݎ݁ݐሺ݉݁	ܦܵܵ [1] ൌ 0.278 ൈ ݒ ൈ ܴܲܶ ൅
௩మ

ଶହସቀ
ೌ
೒
േீቁ

   

where ݒ is vehicle speed in km/h, ܴܲܶ is driver’s Perception-Reaction Time in seconds, ܽ is vehicle 
deceleration in m2/s, and ܩ is roadway longitudinal slope.  

The SSD was estimated for low, medium, and high-speed categories as 30, 80, and 150 meters 
respectively based on AASHTO recommendations for PRT of 2.5 seconds and deceleration of 3.41 m2/s 
(AASHTO 2011). It is worth to mention that this value of PRT is also recommended by Alberta’s Highway 
Design Guide (Alberta Transportation 1999). Therefore, the intersection influence distance which starts 
from the intersection’s stop line and upstream the intersection will be 30, 80, and 150 meters for low, 
medium, and high-speed categories. Based on this distance, the intersection influence area (shaded in 
yellow in Figure 1) was determined, and any candidate event within this area was classified as an 
intersection event or, otherwise, considered as a segment event as shown in Figure 1. All 44,383 
candidate events were classified based on the position of the host vehicle as mentioned before. 

3 RESULTS AND DISCUSSION  

The identified events were mapped using ArcGIS to differentiate between intersection and segment 
events in three-speed groups as shown in Table 1. It is worth to mention that the high-speed group does 
not include any intersection events, as shown in Table 1. 

Table 1: Events breakdown by event type and speed group 

Speed Group Intersection Events Segment Events Total Events 

Low 11403 14962 26365 
Medium 1995 12614 14609 

High 0 3409 3409 
Total 13398 30985 44383 

The results were exported from ArcGIS to be processed in MATLAB. To characterize the driver behavior 
for each event type, the probability density functions (PDF) for minimum following distance and TTC were 
developed in each speed group for both intersection and segment events. The actual values of the 
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measures were fitted to 17 continuous distribution types, namely; Beta, Birnbaum-Saunders, Exponential, 
Extreme value, Gamma, Generalized Extreme Value, Generalized Pareto, Inverse Gaussian, Logistic, 
Log-logistic, Log-normal, Nakagami, Normal, Rayleigh, Rician, t Location-Scale, and Weibull. Table 2 
shows the distribution’s name and parameters which best fits the actual values of the behavioral 
measures (i.e., minimum range and TTC) for each event type and speed group. The distribution was 
considered to best fit the actual values of the behavioral measures since the Bayesian Information 
Criterion (BIC), and Akaike Information Criterion (AIC) had the lowest values. 

Table 2: The parameters of the fitted distributions to the actual PDFs 

 

Speed 
Group 

Location 
(mean 
value) 

Distribution Name 
Parameters 

P-value 
Location Scale Shape 

Minimum 
Range 

(m) 

Low Int.(9.01) Generalized Extreme Value 7.127 3.153 0.020 <0.001 

Low Seg.(11.05) Generalized Extreme Value 8.496 4.071 0.047 <0.001 

Med. Int.(19.5) Gamma - 4.430 4.403 <0.001 

Med. Seg.(20.99) Gamma - 4.984 4.212 <0.001 

High Seg.(29.07) Birnbaum-Saunders - 25.100 0.563 - 

TTC 
(sec) 

Low Int.(10.48) Generalized Extreme Value 3.556 3.081 0.739 <0.001 

Low Seg.(17.23) Birnbaum-Saunders - 9.383 1.295 <0.001 

Med. Int.(21.42) Log-normal 2.549 1.087 - <0.001 

Med. Seg.(30.00) Gamma - 20.834 1.440 <0.001 

High Seg.(31.81) Birnbaum-Saunders - 24.162 0.794 - 

Since the distributions of all the measures were not normally distributed, a nonparametric statistical test 
(i.e., Kolmogorov-Smirnov (KS) test) was used to check the significance of the difference between the 
intersection/segment event distributions in each speed group. The null hypothesis is that the values for 
each measure of the intersection and segment events are from the same continues distribution. As shown 
in Table 2, the results of KS test showed that all the measures of intersection events were different from 
segment events at 95% confidence level. These results indicate that driver behavior at intersections is 
substantially different from driver behavior on segments. Such results are crucial when developing any 
driving assistance system because drivers will receive the warning differently in varied contexts. In other 
words, drivers could accept a warning relayed to them on midblock segments while considering the same 
warning at intersections as an early warning which will have an impact on the entire system acceptance.  

Table 2 also shows the mean values of the selected behavioral measures in the third column between 
brackets. As shown in the table, measures’ mean values for intersection events were less than segment 
events. For instance, the mean value of the minimum range of low-speed intersection events (i.e., 9.01 
m) was less than the minimum range of low-speed segment events (i.e., 11.05 m). This indicated that the 
drivers tend to have larger following distance during braking when driving on segments than when driving 
on intersections. This observation was confirmed by the values of TTC where TTC of car-following during 
braking events at intersections were less than segment events. Moreover, the mean values of the 
behavioral measures in the medium-speed group were larger than the values of the low-speed group. In 
summary, drivers’ following behavior during braking at intersections is statistically different from their 
behavior on midblock segments. In addition, drivers are more likely to follow closer to leading vehicles 
and to have lower TTC at intersections. Therefore, the results shown in Table 1 indicate that the drivers 
are more aggressive when approaching intersections. It is worth to mention that Morton et al., (2005) 
defined aggressive driving for teenage drivers based on speed and headway (i.e., high speed and smaller 
headway indicate an aggressive driving). In addition, drivers were identified according to their TTC and 
headway to prudent and aggressive drivers (Wang et al. 2010). Hence, in this paper, aggressive driver 
behavior is defined based on the minimum following distance and TTC. However, this aggressive 
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behavior is defined here relative to driving behavior on midblock segments which means that the 
aggressive behavior in this paper is not necessary linked to risky driving. 

4 SUMMARY AND CONCLUSIONS 

This paper quantified four driver behavioral measures (i.e., minimum following distance and TTC) for car-
following during braking situations. Using NDS, this quantification is carried out for events occurred at 
intersections and midblock segments. In addition, the selected behavioral measures for intersection and 
segment events were compared. To achieve the objectives of this paper, the car-following events during 
braking were extracted from the NDS. These events were mapped onto the road network using ArcGIS to 
identify intersection and segment events. The intersection influence area was defined for three speed 
groups (i.e., low, medium, and high) based on driver’s SSD and speed. Then, the probability distributions 
for the behavioral measures for each speed group for intersections and segments were developed and 
fitted to continuous probability distributions. In addition, intersection/segment driver following behavior 
during braking was compared by checking the significance of the difference between the behavioral 
measures distributions in each speed group.  

The results of this study revealed that there was a considerable difference between driver behavior during 
braking at intersections and on midblock segments. This difference was defined as the differences 
between the behavioral measures distributions of intersection and segment events. Using KS test, these 
differences were statistically significant at 95% confidence level. In addition, this study documented the 
distributions’ names and parameters which best fitted the behavioral measures. By investigating the 
mean values of the behavioral measures, it was found that drivers approaching intersections had smaller 
minimum following distance and smaller TTC than when driving on segments.  This finding implies that 
the drivers are more likely to exhibit relatively aggressive behavior when approaching intersections. This 
finding highlights the importance of considering the driver location when classifying the drivers based on 
their aggressiveness. According to the current literature, the classification procedures are usually based 
only on some selected behavioral measures (e.g., acceleration, TTC, jerk, etc.) regardless the location. 
Considering the findings of this study, the proposed procedures in the literature could misclassify a driver 
as an aggressive driver when most of the data were collected in high intersection density areas (e.g., 
urban areas or downtown areas). Therefore, as the main contribution of this study, the driving data should 
be split based on the location before classifying drivers’ behavior. In addition, the driving assistance 
systems should consider the surrounding environment (i.e., proximity to intersections) by modifying these 
systems to context-aware driving assistance systems. Such context-aware systems are expected to be 
more robust and reliable since it will accommodate the changing drivers’ surrounding environment.  

One of the primary goals of understanding driver behavior is to develop innovative traffic safety solutions. 
Hence, the results of this study could be beneficial for the development of collision avoidance/warning 
systems such as FCW. Forasmuch as driver behavior at intersections is different from the behavior on 
segments, it is recommended to develop an FCW algorithm which accounts for the driver location in the 
network. To develop such FCW algorithm(s), further analysis of the results will be conducted to select 
events of interest based on the distribution of acceleration, jerk, and TTC. 

In addition, the results could enhance the calibration process of microsimulation models by updating the 
distributions of drivers’ behavioral measures in simulation packages. Also, the PDF distributions of the 
behavioral measures could be used in modeling driver following behavior mathematically as suggested by  
Gonzalez et al. (2014). The PDF distributions generated from this study is expected to lead to more 
robust simulation results because of the consideration of the driver location and the fact that these 
distributions were generated based on NDS. The NDS grants the recording of normal driving behavior 
without exposing the drivers to a test setting as in test track which will affect their behavior. 

Moreover, this study shed light on the importance of integrating the NDS with the road network map to 
deeply investigate the driver behavior. The pairing of the NDS and the road network, using ArcGIS, 
LiDAR data, or other means, is an up-and-coming area of research which will allow insightful findings in 
driver behavior understanding. Therefore, as an extension of this study, an automated approach to 
differentiate between intersection and midblock segment events could be explored. This automated 
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approach could enhance the definition of the intersection influence area which has a wide range of 
definitions in the literature (e.g., the suggested definition in this study which was based on the SSD and 
vehicle speed).  
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