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Abstract: Cycling has gained increased attention among both researchers and public planners in the last 
two decades as a sustainable means of transportation. Compared to users of other modes of 
transportation, cyclists are more exposed to weather conditions. For example, harsh weather conditions 
such as cold temperatures or rain negatively affect an individual’s decision to use a bicycle for 
transportation. As a result, cycling infrastructure usage changes throughout the year because of highly 
variable weather conditions. On the other hand, in recent years North American cities try to encourage 
cycling through the development of cycling infrastructure networks. For that, municipalities require 
estimates of infrastructure network usage throughout the entire year to make decisions about investments 
and maintenance costs. However, collecting data for all cycling infrastructure throughout the year is not 
economically feasible.  The objective of this paper is to develop a model capable of estimating changes in 
cycling infrastructure usage for different months of the year based on observations from only one month. 
An estimation model will be developed using Generalized Estimating Equations (GEE). Changes in 
cycling frequency for each month will be estimated relative to a reference month. The usage change will 
be estimated based on weather variables, namely temperature, precipitation (i.e. rain, snow, hail), 
collected snow on the ground, wind speed and the number of sunlight hours in a day. As the model was 
developed, it was noticed that the effect of weather conditions on commuter cyclists and reactional 
cyclists is not the same. As a result, two separate sub-models will be developed. The first sub-model will 
be based on weekday usage data which will evaluate the impact of weather conditions on commuter 
cyclists. The second sub-model will be based on weekend usage to evaluate the impact of weather 
condition on utilitarian (non-commuter) cyclists. Additionally, it will be examined to what extent the above-
mentioned weather variables are accountable for estimating cycling infrastructure usage. The developed 
model can help Cities and municipalities in decision making on investments, maintenance and 
modifications to the cycling infrastructure.  

1 INTRODUCTION 

In the last few decades, transportation planning efforts in North America has aimed to increase the share 
of active modes of transportation such as cycling and walking due to its benefits over the vehicular mode 
of transportation. While walking is limited to only close destinations, cycling offers a greater access range 
to users. Cycling is also an environmentally friendly mode of transportation, is cost-efficient, and increase 
in cycling will lead to higher social interaction and livelihood on streets. Since environment, social and 
economic are the three pillars of sustainability (Bell and Morse, 2008), increasing the share of cycling can 
help cities to move toward more sustainable transportation system (Buehler and Pucher 2012). To 
encourage cycling, it is important to improve infrastructure network (i.e. providing better conditions for 
cycling infrastructures) and expanding the infrastructure network (i.e. building new road sections).  
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Due to limited budget available within municipalities, planners and decision makers use infrastructure 
usage data as an evidence for identifying the optimal place to spend the money to improve the 
infrastructure network more efficiently. While using annual infrastructure usage is more reliable for 
decision making, currently municipalities use short count usage (partial data) which is collected for a 
limited period of the year (i.e. one month). Collecting infrastructure usage for an entire city throughout the 
year is not economically feasible. Since data collection requires either numerous bicycle counters 
installed on every road section or manpower assigned to each road section for the entire year. Hence, 
currently, short count usage data is used and it implement limitations for decision making since short 
count data does not provide any information about the usage variation throughout the year. Infrastructure 
usage variation throughout the year is needed especially in cities with cold climate such as most 
Canadian cities. There is a debate on whether keeping or removing cycling infrastructure during cold 
months of the year. It is assumed that cycling infrastructure will remain unused or will have a low usage 
during cold months.  

The objective of this study is to develop a model with the goal of estimating cycling infrastructure usage 
through the year using observations from only one month. Literature suggests that many variables affect 
cycling. These variables can be categorized into five main group namely, cyclists’ characteristics, 
attitudes toward cycling, cycling infrastructure, network connectivity and built environment and weather 
conditions. This study will focus on variables from the last group referred to as weather conditions. All the 
variables that affect infrastructure usage are constant for a specific infrastructure during a year except 
weather variables. Hence the variation in usage is attributed to weather variables. The weather variables 
examined in this study are temperature, precipitation (i.e. rain, snow, hail), snow on the ground, wind 
speed and sunlight hours in a day. This study first evaluates the impact of above-mentioned weather 
variables on cycling infrastructure usage and then estimates the change in usage during a year using 
weather variables. Generalized Estimated Equation (GEE) is used to develop the model since data used 
in this study was correlated over time. The model presented in this study estimates usage throughout the 
year and consequently the annual usage and can be used as a guide for decision making about funding 
allocation in municipalities.  

2 LITERATURE REVIEW 

In recent years, two studies in particular investigated cycling infrastructure usage trends and a number of 
studies developed estimation models to estimate infrastructure usage. Investigating cycling infrastructure 
usage trends helps us to better understand usage variation and the possible causes of the variation. A 
better understanding of cycling usage trends enables us to develop more accurate estimation models. 

2.1 Infrastructure Usage Trends 

Studies have shown that cycling infrastructure usage varies throughout the year and showed that cycling 
infrastructure usage during a year was affected by weather conditions (Lindsey et al., 2013; Miranda-
Moreno et al. 2013). One study from Minneapolis found that traffic volumes for cyclists and pedestrians 
(non-motorized usage) varied over time. The usage varied depending on the month and day of the week. 
Usage variation trends were similar for different locations with different magnitudes. (Lindsey et al., 2012). 
Another research studied cycling patterns in five North-American cities namely, Montreal, Ottawa, 
Portland, San Francisco, and Vancouver. It was found that that monthly usage in cities with cold climates 
decreased more compared to usage in warmer cities. Cycling usage pattern was categorized into 
commuter, mixed commuter, recreational, and mixed recreational. The study showed that the impact of 
weather on recreational and commuter cyclists was not the same; infrastructure usage used by 
recreational cyclists decreased more compared to the usage of infrastructure used by commuter cyclists 
(Miranda-Moreno et al. 2013).  

2.2 Weather Impact on Usage 

Several studies have been published on the impact of weather conditions on cycling. These studies 
indicated that weather variables significantly impacted cycling infrastructure usage. Harsh weather 
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conditions, such as days with extremely low or high temperatures and high precipitation, reduced the 
number of cyclists. 

Temperature: Temperature was positively correlated with cycling frequency according to relevant 
studies. Different studies have confirmed that days with higher temperatures caused more people to cycle 
(Bergström and Magnusson, 2003; Buehler 2012; Flynn et al., 2012; Saneinejad et al., 2012; 
Brandenburg et al. 2007). A study surveyed employees of four companies in two Swedish cities showed a 
difference in mode choice between seasons. People cycled more during summer compared to winter. 
Instead of cycling, the majority of people used their cars in winter. Moreover, distance became a more 
important factor when choosing the mode of transportation during winter. For long distances, the number 
of cyclists remarkably dropped as distance increased in winter. The study showed that people almost 
never used bicycle for trips of more than 10 km in winter (Bergström and Magnusson, 2003). Similarly, 
Buehler (2012) showed that the likelihood of commuting to work by bicycle in summer was 73% more 
than the likelihood of using a bicycle to commute in winter. Another study from Vermont showed that 
people tended to cycle more on warmer days. The regression likelihood model presented in the study 
showed that an increase in one degree of Fahrenheit resulted in a 3% increase in the likelihood of cycling 
(Flynn et al., 2012). Similarly, another study from Toronto showed that cold temperatures negatively 
affected people’s tendencies to cycle. In that study, it was found that using a bicycle was only sensitive to 
temperatures below 15° C (Saneinejad et al., 2012). Another study investigated the impact of weather 
conditions on different types of cyclists. With, using data from a suburban recreation area in Vienna, the 
study found that recreational cyclists were more affected by weather conditions compared to commuter 
cyclists. Consequently, it is possible that recreational cyclists checked the weather conditions beforehand, 
and as a result, they avoided cycling in harsh weather (Brandenburg et al. 2007). 

Sunlight: Studies have shown that individuals tended to cycle during daylight hours rather than in the 
dark (Osberg et al., 1998; Rodgers, 1995; Spencer et al., 2013). A study that observed cyclists in Paris 
and Boston showed that the majority of cyclists, cycle during daylight hours. 65% and 76% of cyclists 
were observed during daylight hours in Paris and Boston, respectively (Osberg et al., 1998). 
Respondents in another study mentioned that during some parts of the year, they could not cycle safely 
due to insufficient daylight hours. Also, some respondents indicated that the effect of weather variables, 
such as rain, could compound the negative effects of cycling in the dark, which further prevented them 
from cycling (Spencer et al., 2013). 

Wind: Wind speed was found to have a negative impact on a cycling infrastructure usage. Researchers 
believe that the main reason for the negative impact is that wind makes the temperature feel colder. A 
study from Toronto found that wind speed negatively affected cyclists and pedestrians. The magnitude of 
the impact of wind was twice on cyclists compared to pedestrians (Saneinejad et al., 2012). Another study 
surveyed 24 adult bicycle commuters from Vermont, and the results showed that wind could also have a 
positive impact on cycling when it was at a cyclist’s back (Spencer et al., 2013). 

Precipitation: According to relevant studies, precipitation is one of the preventing factors for cyclists; the 
number of cyclists drops on days with precipitation (Flynn et al., 2012; Nankervis, 1999; Saneinejad et al. 
2012). A case study in Vermont found that people cycle less during rainy days. Among the weather 
variables considered in the study, rain was found to have the most negative effect on cycling. Days 
without rain had usage nearly doubled compared to rainy days. Each inch of snow resulted in a 10 % 
decrease in the likelihood of bicycle commuting (Flynn et al., 2012). Another study from Melbourne 
showed that rain was the most important preventing factor for cyclists as it caused more than half of the 
people surveyed (50.7%) to choose not to ride a bicycle on rainy days. Similarly, according to Saneinejad 
et al. (2012), precipitation in the form of rain and showers negatively impacted cyclists. However, rain was 
not always considered a negative factor for cyclists. Some respondents in Vermont described rain as 
refreshing and helpful (Spencer et al., 2013).  

Snow on the ground: Snow on the ground also considered being one of the factors that prevented 
cyclists from cycling. According to Bergstrom and Magnusson (2003), road surfaces that were not cleared 
of snow was the most important road condition for mode choice according to the opinion of the surveyed 
cyclists. 
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2.3 Usage Estimation Models 

Studies estimated cycling infrastructure usage by developing models using short count data (Nordback et 
al., 2013; El-Esawey, 2014; El-Esawey et al., 2013; El-Esawey and Mosa, 2017). These studies 
estimated cycling infrastructure usage by creating daily, monthly, and seasonal factors. Cycling 
infrastructure usage was estimated by multiplying the known short-term count by those factors.  

Recent studies estimated cycling infrastructure usage using short count duration factors. The factors were 
calculated by dividing year usage to short-term count usage. However when estimating the usage for 
years other than the year in which factors were developed on, their estimation accuracy significantly 
drops since the variation in weather conditions is different in each year. While using short count factors is 
limited for only one year, this study estimates cycling infrastructure usage with considering the effect of 
weather variables on usage which estimates the usage with better accuracy and can be used for any year 
with known weather data. 

3 METHODOLOGY 

The objective of this study is to develop a model capable of estimating cycling infrastructure usage 
variation using short count data. To develop the model, potential variables that impact usage over a year 
were identified. Previous studies suggested that weather variables had a significant impact on cycling 
infrastructure usage variation (Lindsey et al., 2012; Miranda-Moreno et al. 2013). Investigating the 
association between temperature and one infrastructure section usage, confirmed the speculation about 
the effect of weather conditions on infrastructure usage. The magnitude of the impact of weather 
variables on cycling infrastructure usage was determined, and the usage was estimated based on those 
variables. To develop the model cycling infrastructure usage data from the city of Calgary was used. The 
Transportation Department at the City of Calgary provided daily cycling infrastructure usage throughout 
the year from 25 counters mainly located in downtown area. This source of data included 15750 data 
points; each data point represented specific road section usage for a specific day of the year. Weather 
data was provided by Canadian Government and (http://www.sunrise-and-sunset.com). Weather data 
included mean temperature, precipitation, cumulated snow on the ground, wind speed and sunlight hours 
in the day. Data was split into two sections. The majority of the collected data (90%) was used to develop 
the model, and a small portion (10%) was used as test data to validate the model and to determine the 
model accuracy for estimating cycling infrastructure usage. 
 

3.1 Model Design 

This study estimated the usage of cycling infrastructure compared to a reference month with known 
usage (the month with observation). The estimation was conducted with evaluating the change in usage 
as a result of a change in weather variables. The usage change contained five components. Each 
component represented the impact of one weather variable on usage. Total change in usage was 
computed by adding up the changes in usage resulted from the effect of each weather variables on 
usage. The equation can be written as follows where ΔF represents the usage change. 

[1] ΔF= β1 (Δ Temp) + β2 (Δ Prec) + β3 (Δ Wind) + β4 (Δ Snow) + β5 (Δ Sunh) + E  

Where β1 to β5 represent the coefficients of weather variables, weather variables (i.e. Temp, Prec, Wind, 
Snow, Sunh) represent the mean value of each weather variable for each month and E represents 
estimation error. Generalized Linear Model (GLM) is a general statistical approach that generally is used 
to estimate β. This study uses data that was collected with counters installed on cycling infrastructure 
sections. Each infrastructure section is a part of infrastructure with different characteristics from other 
parts of infrastructure which is separated from other sections by intersections. Cycling infrastructure 
usage was measured at successive times throughout the year. When data was collected from the same 
units at successive points over time, repeated observations are correlated. Since GEE is capable to 



 

   

TR16-5 

estimate the coefficients when observations are correlated, Generalized Estimating Equations (GEE) was 
chosen over GLM analysis methods such as multiple regression, to analyze the data. 

In GEE, quasi-likelihood estimates of β’s are computed from the maximization of the normality-based log 
likelihood without assuming that the observations are normally distributed. In this study, the parameters ߚ 
are coefficients for the weather variables, which are estimated by solving the following equation:  

[2] ∑ 	ሺ
డఓ೔
డఉ
ሻ		 ௜ܸ

ିଵெ
௜ୀଵ ሺ ௜ܻ െ ௜ሻߤ ൌ 0             

where M is the number of infrastructure sections,	 ௜ܻ represent the vector of observations for each 
infrastructure section throughout the time, ߤ௜ called the mean vector of ௜ܻ which is the estimated value of 
௜ܻ  as a function of input variables (observations) and ߚ parameters, and V is the covariance matrix of 

observations, which takes into the account how changes in one variable is associated with the changes in 
other variables. The covariance matrix includes three elements:  

[3] ௜ܸ
ିଵ ൌ ɸ	ܣ௜

ଵ/ଶ	ܴ௜
	 ௜ܣ	

ଵ/ଶ           

where ɸ is an overdispersion parameter which takes into the account the difference in variability of 
dataset and model estimation;  ܣ௜

ଵ/ଶ is an n × n diagonal matrix with the square root of variances of 
observation where n represents the number of observations; and ܴ௜

	  is an n × n correlation matrix. The 
correlation between observations is carried out by using a correlation matrix in GEE. Different types of 
correlation matrixes exist such as independent, exchangeable, auto-regressive and unstructured. 
Independent matrix is used when observations are independent. Exchangeable is used when all 
observations are equally correlated. Auto regressive is used when the correlation is known to decline 
through time and unstructured is used when there is no specific correlation between observations.  

The GEE model is first fitted with computing initial estimates of 	ߚ’s, for example, using a naive linear 
regression. After computing initial ߚ	estimates, GEE estimates the dispersion parameter from residuals 
and computes the correlation matrix based on residuals. Then, the working covariance matrix is 
computed and ߚ’s are estimated again. These steps are continued until convergence of ߚ’s is obtained.  
 

3.2  Model Development 

The model estimated the change in usage of infrastructure for different months of the year relative to a 
reference month (a month with available usage count data), which in this study is September. A closer 
look at the daily usage revealed that there was a difference in usage during weekdays and weekends.  
Figure 1 shows daily usage of one cycling infrastructure section during weekdays and  weekends. For 
example, as it can be seen in Figure 1, during three different periods of the year 2016 (early in the year, 
middle of the year and end of the year) weekend and weekday usages were different in values (A, B and 
C). 
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Weekday usage Weekend usage 

Figure 1: Daily infrastructure usage trends during weekdays and weekends 

Due to differences in weekday and weekend usage, two separate models were developed. The first 
model (Commuter Model) was developed based on weekday usage, and the second model (Utilitarian 
Model) was developed based on weekend usage. Since cyclists who cycle on weekdays are generally 
commuter cyclists combined with utilitarian cyclists, commuter model evaluates the impact of weather 
conditions on a combination of commuters and utilitarian cyclists. The utilitarian model focuses on only 
utilitarian cyclists since in general, cyclists who cycle during weekends have only utilitarian purposes. 
They cycle for purposes such as shopping, going to restaurants, or for exercise, all of which fall into the 
category of utilitarian purposes. This study used auto regressive structure for both models since it showed 
the best fit on data compared to other correlation structures. 

The model estimates usage based on only weather variable, hence other factors that affect cycling were 
removed to increase model accuracy. For example, national holidays were excluded from the database. 
To analyze data, the change in usage for each day of the week in each month was compared to the same 
day of the week in September to eliminate the impact of the day of the week. Also, since cycling 
infrastructure usages collected in this study had different standard deviations for different infrastructure 
sections, logarithmic data transformation was applied. Consequently, the logarithmic value of cycling 
infrastructure usage was used to develop the model.  

Effect of weather variables on people’s decision to cycle is not constant over a year. The effect of 
preventing factors, such as precipitation, are assumed to be greater in cold months due to the 
compounding effect of rain and cold temperatures. The variation in the magnitude of the effect of the 
variables makes it necessary to have separate models for different time periods. (Miranda-Moreno et al. 
2013) found that hourly and weekly usage patterns were consistent in different cities with different 
characteristics while monthly usage patterns were different due to the impact of weather variables. 
Hence, monthly periods were selected for developing sub-models. Therefore, 11 sub-models were 
developed. Each sub-model evaluated the effect of weather conditions on changes in cycling frequency 
for each month of the year compared to September. 

The commuter model was developed using weekday usage and weather data. Table 1 provides the 
results of the 11 sub-models of the commuter model. The coefficients represent the impact of each 
weather variable on the log value of infrastructure usage. Some of the coefficients were not significant nor 
rational. For example, Snow on the ground in winter can not positively impact cycling infrastructure 
usage. Therefore, those coefficients were removed from the model.  
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Table 1: Commuter model coefficients  

Month Temp Total Precipitation 
Snow on 
Ground

Wind 
Speed 

Hours of 
Sunlight

January 0.021 -0.019  -0.003 0.097 

February 0.020 -0.029  -0.005 0.026 

March 0.017 -0.032 -0.008 -0.006 

April 0.025 -0.017 -0.012 -0.009 

May 0.020 -0.033  -0.006 

June 0.018 -0.011  -0.005 

July 0.027 -0.009  -0.006 

August 0.022 -0.013  -0.007 

September - - - - - 

October 0.015 -0.026 -0.052 -0.003 

November 0.014 -0.017 -0.021 -0.006 

December 0.017 -0.018 -0.035 -0.004 

    All the coefficients presented are significant at p-value <0.05. 

Table 2Error! Reference source not found. provides the results obtained from the analysis on weekend 
usage for the 11 sub-models. The utilitarian model had fewer significant coefficients compared to the 
weekday model because it had a smaller sample size.  

Table 2: Utilitarian model coefficients 

Month Temp Total Precipitation 
Snow on 
Ground

Wind 
Speed 

Hours of 
Sunlight

January 0.034 -0.023  -0.006 

February 0.032 -0.014  -0.015 0.016 

March 0.032 -0.046 -0.016 0.08 

April 0.040 -0.015 -0.597 -0.009 

May 0.030 -0.023  -0.012 

June 0.023 -0.033  -0.002 

July 0.027 -0.028  -0.002 

August 0.028 -0.016  -0.01 

September - - - - - 

October 0.025 -0.015 -0.092 -0.001 

November 0.039 -0.044 

December 0.023 -0.023 -0.017 -0.012 

   All the coefficients presented are significant at p-value <0.05. 

3.3  Model applicability  

To find which model had the best goodness of fit for estimating usage, both models were applied to 
estimate infrastructure usage during weekends and weekdays. To evaluate models accuracy, the usage 
for each month was estimated using September usage and weather variables. The mean value of 
percentage error (MAPE) was calculated as: 
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 [4] MAPE=
ଵ

ே
∑ ቚ

஺௖௧௔௟	௖௬௖௟௜௡௚	௙௥௘௤௨௘௡௖௬ିா௦௧௜௠௔௧௘ௗ	௖௬௖௟௜௡௚	௙௥௘௤௨௘௡௖௬

஺௖௧௔௟	௖௬௖௟௜௡௚	௙௥௘௤௨௘௡௖௬
ቚே

௜ୀଵ  

Where N represents the number of observations used for validation which in this case is the number of 
months used for validation for each infrastructure section. The value of MAPE was calculated for both 
models. Months with an average usage of below 100 cyclists/month were excluded from the model. The 
small difference between the estimated and actual usage in those months led to a large MAPE value 
because of the small actual usage. This increased total MAPE value unrealistically. For example, for an 
infrastructure section with actual usage of 5 cyclists in a month and the estimated usage of 9 cyclists in 
month, the difference of model estimation and actual usage was only 4 cyclists while the estimation error 
was 80%. 

Infrastructures usage during weekends was estimated with both models and the results were compared 
with actual usage. The utilitarian model showed a lower MAPE value compared to commuter model for 
estimating weekends usage for all infrastructure sections. Hence utilitarian model was selected to 
estimate infrastructure usage on weekends. Both models were applied to estimate weekday usage. By 
calculating MAPE values for two models it was noticed that for some infrastructure sections the commuter 
model had a better estimation result while for some other sections the utilitarian model better estimated 
the weekday usage. 

In general, each infrastructure section has different types of users during weekdays and weekends. 
Weekend cyclists are mainly utilitarian cyclists, while weekday cyclists are a combination of commuter 
and utilitarian cyclists. The portion of commuter and utilitarian cyclists is different for different 
infrastructure sections. To discover more about the characteristics of infrastructure section users, a user 
type ratio (UTR) was defined as follows: 

[5] UTR= 
஺௩௘௥௔௚௘	௡௨௠௕௘௥	௢௙	௖௬௖௟௜௦௧௦	௢௡	௪௘௘௞௘௡ௗ௦

்௢௧௔௟	௡௨௠௕௘௥	௢௙	௖௬௖௟௜௡௦	௧	௢௡	௪௘௘௞ௗ௔௬௦	௔௡ௗ	௪௘௘௞௘௡ௗ௦
   

A high UTR for an infrastructure section represents high usage on weekends compared to total usage. 
Usage on weekends is mainly attributed to utilitarian cyclists. Hence, infrastructure section with a high 
UTR contains a high portion of utilitarian cyclists among their users and mainly used for utilitarian 
purposes. By calculating UTR for different infrastructure sections, it was noted that sections with high 
UTR were mainly located at recreational locations. Also, looking at hourly trends of infrastructure sections 
usage, we noticed that usage trends of different sections were not the same. Sections with mainly 
commuter users (low UTR) had higher peak usage in the morning and afternoon and lower usage at 
midday during weekdays compared to infrastructure sections with utilitarian users (high UTR). While 
sections with utilitarian users had higher midday usage compared to sections with mainly commuter users 
during weekends. For the next step, we sorted infrastructure sections based on their UTR value. The 
result showed that for sections with UTR value more than 0.1,1 the utilitarian model gave a better fit while 
for sections with UTR value lower than 0.11 the commuter model gave a better estimation result. Figure 2 
shows model selection procedure. 
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Figure 2: The model selection process  

4 VALIDATION 

To validate the model, the estimation model was used to estimate usage in 2017 for two infrastructure 
sections based on their September usage. Selected infrastructure sections had different infrastructure 
types and different locations that covered a variety of infrastructure sections with different characteristics. 
The results were compared with actual usage counted by bicycle counters. Table 3 provides details about 
selected infrastructure sections. 

Table 3: Overview of selected infrastructure sections characteristics 

Infrastructure 
section 

Type of 
Infrastructure

Location UTR 
Infrastructure 

Neighbourhood

Parkdale Off-road pathways 
Outside 

downtown
0.1592 Recreational 

5 Street North of 15 
Ave 

On-road Sep. 
physically 

Downtown 0.1814 Commercial 

 

Usage on weekends and weekdays were estimated separately based on September weekend and 
weekday usage. Since UTR values for selected infrastructure sections were higher than 0.11, the 
utilitarian model was used to estimate both weekend and weekday usage. The total monthly usage was 
calculated by adding the weekend and weekday usage together. Table 4 shows the observed and 
estimated annual usage and the estimation error. The estimated cycling frequency and actual cycling 
frequency are shown in Figure 3. 

Table 4: Model result 

Infrastructure 
section 

Actual Annual 
Usage 

Estimated Annual 
Usage

Annual Estimation 
Error 

MAPE 

Parkdale 25344 22894 0.096 0.192
5 St and 15 Ave 

SW 
12265 12094 0.013 0.195 
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Figure 3: Comparison of the model result and observed usage  

5 CONCLUSION  

This study presented a framework for developing a model capable of estimating cycling infrastructure 
usage throughout the year. The results of this study showed the effect of different weather variables on 
cycling infrastructure usage. Among the weather variables, temperature and sunlight hours showed a 
positive impact on cycling infrastructure usage, while precipitation, collected snow on the ground, and 
wind speed showed a negative impact on cycling infrastructure usage. Also, the results indicated that the 
magnitude of the impact of these variables was not constant during the year. The impact of the variables 
with a negative impact, such as collected snow on the ground and precipitation, was generally higher 
during cold months of the year compared warm months. Temperature and precipitation were found as the 
two main weather variables that impact cycling as they showed higher impact on usage compared to 
other variables and their impact was significant for all months of the year. 

The impact of the weather variables was evaluated separately for weekday and weekend usage because 
usage in weekends and weekdays were different in values. While in general weekday usage is attributed 
to commuter cyclists, usage on weekends is attributed to utilitarian cyclists. As the results of the model 
showed, the impact of weather variables was generally higher for weekend usage compared to weekday 
usage. The higher magnitude of the impact of weather variables on weekend usage indicated that 
utilitarian cyclists were more affected by weather conditions than commuter cyclists which is in line with 
(Miranda-Moreno et al. 2013; Brandenburg et al. 2007). The validation showed that when estimating 
usage for different months of the year, the model had an average error of 19.35%. This error represented 
the accuracy of the model in terms of estimating usage variation for different months of the year. When 
estimating the annual usage of infrastructure, the model had an average error value of 5%.  

The developed estimation model in this study allows the usage throughout a year to be estimated based 
on the effect of weather conditions on cyclists. According to Köppen climate classification, climate can be 
classified into 5 groups namely, tropical, arid, temperate, cold, and polar. Calgary is a city with a cold 
climate. The effect of weather conditions on cyclists is not the same for people who live in different 
climate types. For example, people who live in cold cities are more resistant to cold weather compared to 
people who live in warmer cities; hence, the effect of temperature on cycling is not the same in different 
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climate types. As a result, since the model presented in this study used data from a city with a cold 
climate, the model can be used to estimate cycling infrastructure usage for cities with a similar climate to 
Calgary. 
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