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Abstract: In last few decades, vibration-based structural health monitoring has gained significant popularity 
to perform condition assessment of civil structures. A wide range of system identification methods has been 
developed by different researchers to identify modal parameters accurately from the measured vibration 
data. One of the time-frequency methods, namely empirical mode decomposition (EMD), has been very 
popular owing to its basis-free nature and applicability to any nonlinear and nonstationary signals of 
dynamical systems. However, the EMD results in significant mode-mixing in the separated signals that 
causes inaccuracies in the estimated modal parameters. In this paper, two different newer classes of EMD 
methods are explored and compared to undertake ambient modal identification using just single channel 
measurement. The proposed method is perfectly suitable for automation and has significant potential for 
real-time monitoring since it uses only one channel of data at a time. The performance of the proposed 
EMD method is verified using a suite of numerical and experimental studies. 

1 INTRODUCTION  
Large-scale infrastructure such as bridges, buildings, wind turbines, dams and tall towers may lose 
structural integrity due to exposure to severe earthquakes, strong winds or other operational loads. 
Structural Health Monitoring (SHM) is an essential tool to evaluate the current state of the structure, predict 
the future damage, and conduct appropriate maintenance and retrofitting. SHM is primarily consisted of 
sensor-intensive data collection and signal processing-based system identification followed by condition 
assessment and hazard mitigation. In this paper, two different classes of signal processing methods are 
explored as a possible tool for modal identification of civil structures. 

System identification (SI) addresses the problem of deriving mathematical models to describe dynamical 
systems based on the observed measurement of civil and mechanical structures (Reynders 2012). 
Consequently, condition assessment and retrofitting are undertaken based on current modal parameters 
of the structures. In spite of significant development of a wide range of modal identification methods, time-
frequency (TF) analysis is considered as a prominent SI method that shows the variation of modal 
parameters in time and frequency domain simultaneously. Linear TF methods include short-time Fourier 
transforms (STFTs), and wavelet transforms (WTs), whereas most quadratic methods are variations of the 
Wigner-Ville distribution and Cohen’s class distribution.  However, none of these approaches leads to a 
unique transform that can be used in all scenarios independent of its own characteristics. Due to the 
uncertainty relation that links time and frequency, the results from any transformation depend not only on 
the intrinsic characteristics of the signal but also on the properties of the chosen transform (Auger et al. 
2013). In last two decades, time-frequency domain methods have acquired a considerable interest, 
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particularly in civil and mechanical systems. Wavelet transform (Hou et al. 2000), blind source separation 
(BSS) (Sadhu et al. 2017) and EMD (Huang et al. 1998) are used as modal identification techniques for 
large-scale civil infrastructure.  

EMD is one of the popular time-frequency domain methods which is a data-driven in nature that does not 
require any basis functions and can work with nonlinear and nonstationary signals (Li et al. 2017). EMD 
decomposes the signal into a set of oscillatory waveforms known as intrinsic mode functions (IMF). IMFs 
are extracted by using successive averaging and interpolation steps which are known as sifting operation.  
However, sifting operations cause considerable mode mixing in the IMFs. Recently, many studies are 
developed within EMD to solve this issue. (Qin et al. 2015) developed an output-only modal analysis method 
using improved EMD to solve mode-mixing problems with closely spaced frequencies. Wavelet-bounded 
empirical mode decomposition was used to solve the problem of mode mixing in EMD (Moore et al. 2018). 
(Zhang et al. 2012) developed a frequency modulated EMD to determine the variations in the modal 
parameters of a bridge-air system. (Li et al. 2007) combined EMD and wavelet transform for damage 
detection. Multi-variate EMD was explored with ensemble EMD (Sadhu 2017) and BSS (Barbosh et al. 
2018) to alleviate mode-mixing in multichannel measurements. Synchro-squeezing transform (SST) was 
considered as an evolved EMD with reassignment allowing reconstruction of the signal (Daubechies et al. 
2010). This article presents the theoretical background and application of the newer EMD methods that can 
be considered as a potential modal identification method for civil structures. The novel aspect of the 
presented techniques lies in improving the frequency separation performance, as well as achieving stability 
under lower sampling rates. On the similar lines, the SST improves the traditional CWT by re-allocating 
each value of the original transform to a new frequency during squeezing on the time-frequency plane. 

2 NEWER CLASS OF EMD  
 
2.1  Empirical mode decomposition 

 
The empirical mode decomposition (EMD) is a popular method which is a unique time-frequency domain 
method to decompose a signal that could be nonlinear and nonstationary in nature. In general, EMD 
decomposes the signal into a set of oscillatory waveforms known as intrinsic mode functions (IMF). An IMF 
is a function that satisfies following two conditions (Huang et al. 1998): 
 
(a) In the whole data set, the number of extrema and the number of zero crossings must be either equal 

or differ but not more than one. 
(b) At any point, the average of the envelope set by the local maxima and the envelope set by the local 

minima is zero. 
 

The fundamental steps of EMD to decompose a signal ݕሺݐሻ are as follows (Huang et al. 1998):  
1. Select all the local extrema then prepare a cubic spline line on all of the local minima and local maxima 

as the lower and upper envelopes. All the data between them have to be covered by the lower and 
upper envelopes. Their mean is denoted as ݇ଵ and the difference between the data ݕሺݐሻ	and ݇ଵis 
defined by        

ሾ1ሿ	݄ଵ ൌ ሻݐሺݕ െ ݇ଵ 
If ݄ଵ satisfies the two conditions of IMF that are mentioned above, then ݄ଵ should be the first IMF of signal 
 .ሻݐሺݕ
2. Otherwise, presume ݄ଵ as the original data ݕሺݐሻ ൌ ݄ଵሺݐሻ	and repeat the sifting process with ݅݉ ଵ݂ ൌ

݄ଵ	until the requirements are realized, and the first IMF is obtained. 
 is then deducted from the IMF and another IMF is obtained by applying the sifting process again	ሻݐሺݕ .3

to the remaining signal. The process is reiterated to gain n IMFs, as shown in: 

ሾ2ሿ	ݕሺݐሻ ൌ෍݅݉ ௝݂ሺݐሻ ൅ ሻݐ௡ሺ݌

௡

௝ୀଵ

 

Where ݅݉ ଵ݂ሺݐሻ	ሺ݅ ൌ 1,2, … . . , ݊ሻ	represents the IMFs of the signal ݕሺݐሻ from high to low frequency 
components and each ݅݉ ௝݂ሺݐሻ	includes a different frequency component. ݌௡ is the mean residual trend of 
the signal or a constant. 
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2.2 Time-Varying Filter EMD (TVF-EMD) 
 
In traditional EMD method, the estimation of the local mean can be observed as a unique form of low pass 
filtering (Flandrin et al. 2004). In Time-Varying Filtering-based EMD method (TVF-EMD), a B-spline 
approximation is adopted as a TVF which is easier to be constructed from the filter cut-off frequency. In 
general, B-splines is mostly used as an interpolation tool. However, a B-spline approximation is used as a 
filter in the TVF-EMD method, whose cut-off frequency is time-varying. The B-spline approximation creates 
polynomial splines that approximate the input signal and uses B-spline functions which are piecewise 
polynomials. In order to form the desired signal, the polynomial portions are joined together. The joining 
points of the polynomial sections are denoted as knots. Every signal (i.e., IMF) in B-spline space is 
determined by (Li et al. 2017) 

ሾ3ሿ	݃௠௡ ሺݐሻ ൌ ෍ ݉/ݐሺ	௡ߚ	ሺ݆ሻݎ

ାஶ

௝ୀିஶ

െ ݆ሻ 

Where ݎሺ݆ሻ	is the B-spline coefficients and it is enlarged by a factor of ݉. The signal (or approximation 
result) is determined by ݊,݉, and ݎሺ݆ሻ. Therefore, given the B-spline order and knots, the B-spline 
approximation is used to determine the B-spline coefficients ݎሺ݆ሻ	that minimizes the approximation error. 
Let ܾ௠௡ 	ሺݐሻ ൌ  ሺ݆ሻ isݎ  ,ሻݐሺݕ ሻ and the asterisk denotes the convolution operator, For any signal݉/ݐሺ	௡ߚ
determined by minimizing the approximation error ߝ௠ଶ : 

ሾ4ሿ	ߝ௠ଶ ൌ ෍ ሺ	ݕሺݐሻ െ ሾݎሿ↑௠ ൈ ܾ௠௡ ሺݐሻሻଶ
ାஶ

௧ୀିஶ

 

where ሾ	. ሿ↑௠	is the up-sampling operation by m.  
 
 
2.3  Synchro-squeezing transform (SST) 
 
The majority of time-frequency decomposition methods fall under linear or quadratic methods. However, 
with few setbacks due to lack of interpretation or reconstruction of signals in case of quadratic methods 
(Daubechies et al. 2010), advancements are always sought to improve time-frequency representation. A 
general SST is an adaptive and invertible transform developed to improve the quality or readability of the 
wavelet-based time-frequency representation by squeezing it along the frequency axis. It is a particular 
case of relocation methods which aim to sharpen a time-frequency representation by allocating its value to 
a different point in the time-frequency plane determined by the local behaviour. The SST uses these steps 
(Deubechies et al. 2010): 
 
1. Obtain the continuous wavelet transform (CWT) of the input signal. The CWT must be an analytical 

wavelet to capture instantaneous frequency information. 
2. Extract the instantaneous frequencies from the CWT output, Wf, using a phase transform, ωf. This 

phase transform is proportional to the first derivative of the CWT with respect to the translation, u. In 
this definition of the phase transform, s is the scale. 

ሾ5ሿ	߱௙ሺݏ, ሻݑ ൌ
ݐ߲ ௙ܹሺݏ, ሻݑ
݅ߨ2 ௙ܹሺݏ, ሻݑ

 

The scales are defined as ݏ ൌ
௙ೣ

௙
, where ௫݂ is peak frequency and ݂ is the frequency. 

3. “Squeeze” the CWT over regions where the phase transform is constant. The resulting instantaneous 
frequency value is reassigned to a single value at the centroid of the CWT time-frequency region. This 
reassignment results in a sharpened output from the SST when compared to the CWT.  
 

Recently (Mihalec et al. 2016) studied the usability of SST in obtaining damping ratio of a vibrating system, 
whereas (Hazra et al. 2017) investigated bearing fault diagnosis using the SST. However, there has been 
a limited research on the applicability of SST for structural health monitoring application, particularly in the 
vibration-based health monitoring of civil infrastructure.  
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3 NUMERICAL STUDIES  
 
In this section, a three degrees-of-freedom (DOF) model is used to explore the applicability of TVF-EMD 
and SST on a dynamic system. The lumped mass and stiffness are assumed to be 144 tonnes, and 
2 ൈ 10଼	N/m, respectively in each floor. The natural frequencies of this model are 2.66, 7.45 and 10.76 Hz, 
respectively. The dynamic system was excited at its base using Imperial Valley earthquake. Fig. 1 shows 
Fourier spectra of the 3-DOF model, whereas the signal decomposition of the SST is shown in Fig. 2. As 
shown in the figures, the third mode has significantly low energy and it is not delineated by the SST in Fig. 
2.  
 

                                 
Figure 1: Fourier spectrum of the floor vibration data                  Figure 2: SST of the vibration data    
 
Fig. 3 shows IMFs obtained from the second-floor vibration measurements by using the TVF-EMD method. 
It is clearly seen that all IMFs are mono-component signal and the TVF-EMD method has successfully 
separated the modal responses of the model even with extremely low energy modes. Once the modal 
responses are obtained, auto-correlation function of modal responses is used to extract modal damping 
ratio as shown in Fig. 4. The true and estimated frequencies as obtained from the TVF-EMD and SST are 
compared and shown in Table 1.  
                        

                                               

   Figure 3: IMFs obtained from the TVF-EMD                       Figure 4: Estimation of damping ratio of IMF-1 
 
                     

Table 1. Identification results (frequencies in Hz) of the EMD methods 
 

Mode # ω1 ω2 ω3

Analytical 2.66 7.45 10.76
TVF-EMD 2.65 7.33 10.26

SST 2.79 7.55 -
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4 EXPERIMENTAL RESULTS  
 
In this section, a six-story experimental model as shown in Fig. 5 is utilized to demonstrate the proposed 
method. The mass of first three floors is 2.47 Kg for each, and the other three floors have masses of 1.12 
kg. In order to collect the vibration data, the model was placed on a shake table, and the shaking table was 
connected to a shaker as shown in Fig. 5. The data was collected by using a wireless sensor that was 
placed in the middle of the fourth floor. The model was excited using a random shaking for 30 seconds via 
a control system attached to the modal shaker, and then the data was collected using the sensor at a 
sampling frequency of 200 Hz. Finally the data is analyzed using the TVF-EMD and SST methods. Fig. 6 
shows the Fourier spectrum of fourth floor response. The theoretical frequencies and frequencies obtained 
from the TVF-EMD and SSI are shown in Table 2. 
 
 

                                               

                                             Figure 5. Experimental model 

 
Fig. 7 shows the IMFs of the fourth floor measurement obtained from the TVF-EMD. It can be observed 
that the TVF-EMD method has extracted the mono-component modal responses successfully. However, 
the SST method could not delineate all the natural frequencies. For example, the first three modes with low 
energy content are not identified by the SST in Fig. 8. 
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                                                    Figure 6. Fourier spectrum of the floor vibration data 

 

                                            

                                        
        Figure 7. IMFs obtained from TVF-EMD                             Figure 8. SST of the floor vibration data 
 

Table 2. Identification results (frequencies in Hz) of the experimental model 
 

Mode # ω1 ω2 ω3 ω4 ω5 ω6

Analytical 4.6 11.3 18.6 25.6 28.8 39.2
TVF-EMD 4.6 11.2 18.8 25.7 28.3 40.0

SST - - - 26.0 29.2 45.01
 
 

5 CONCLUSIONS  
 
In this paper, two different EMD methods are utilized as a possible tool for modal identification method 
using a single channel measurement. Both the methods, TVF-EMD and SST, are validated using a 
numerical simulation and an experimental model subjected to random base excitation. The TVF-EMD 
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method shows excellent capabilities of identifying structural modes with low energy content, however the 
performance of the SST method is shown to be limited only to higher energy modes. The limitation of SST 
method is attributed to the instability arisen while squeezing the frequencies of the CWT. As a result, a low 
energy signal with noise compromises the capability of SST to extract low energy modes. Future work is 
reserved to validate the performance of these methods under a wide range of dynamical systems as well 
as full-scale structures. Since TVF-EMD method is capable of identifying modal parameters using just a 
single sensor, it could be considered as a potential system identification tool for real-time SHM in 
decentralized or mobile sensing network. In future, with the aid of a reference sensor, modeshape 
estimation will be pursued using the TVF-EMD. 
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