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Abstract: An accurate prediction of the response and strength of concrete in elements subjected to biaxial 
stresses is important to assess their safety and serviceability. Continuum damage mechanics has been 
used to develop damage models of concrete, which aim to describe the nonlocal behavior of this material. 
The objective of this research is to study the performance of simple, yet accurate biaxial concrete materials 
that are amenable for FE analysis and that have the capacity to account for stiffness recovery in reversal 
loading (crack closing), permanent strains, and confinement. Two existing damage models will be used to 
create two new OpenSEES biaxial concrete materials: the “μ” Model (Mazars 2013) and “PRM Model” 
(Mazars et al 2010). A comparison between analytical and experimental data is used to evaluate the 
performance of the new materials. 

1 INTRODUCTION 

Reinforced Concrete is one of the most important and widely used materials. The ultimate goal of structural 
design is to achieve economic and safety structures. Determining an adequate safety margin requires an 
accurate prediction of the ultimate capacity of concrete, which exhibits nonlinear behavior even under 
moderate loading. Continuum damage mechanics have been used in the last decades to develop damage 
models for concrete, which aim to describe the nonlocal behavior of this material.  

Finite element analysis has been widely used in the last decades as a tool in the analysis of RC structures. 
OpenSEES is an open source code software framework for simulation in earthquake engineering using 
FEA techniques. It was developed by PEER (Pacific Earthquake Engineering Research), University of 
California, Berkeley; with the objective to be a mechanism for exchanging and building upon research 
accomplishments (Fenves, 2001).  

An isotropic scalar damage model with multiple damage variables was introduced for the first time by 
Mazars (1984), it uses a combination of elastic damage mechanics and linear elastic fracture Mechanics 
within the framework of thermodynamics. This model is adept at predicting the nonlinear behavior of 
concrete elements without requiring complex solution formulations. Although this model has rendered 
accurate results, it should not be employed when the material is confined or subjected to alternate loading.  

Garcia Ramirez (2017) developed a new OpenSEES concrete material using the “Mazars Scalar Model” 
(Mazars, 1984) and compared the analytical results with experimental data for an RC beam under 
monotonic loading, an RC shear wall under reverse-cyclic loading, and a full-scale building subjected to 
earthquake loading. This software material accurately predicted the failure load of the beam, but it was not 
capable of determining the failure deflection, nor the cracking and yielding moments. It exhibited moderate 
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agreement in the hysteretic analysis of the shear wall but failed to predict the energy dissipation capacity 
and residual displacements.  

The objective of this research is to assess the performance of biaxial concrete materials capable of 
determining stiffness recovery in reversal loading (crack closing), permanent strains, and confinement. Two 
existing damage models will be used to develop two independent OpenSEES concrete materials: Mazars’ 
damage “μ Model” (2013) and the “PRM Coupled Model” (Mazars et al 2010). The analytical analysis 
generated by these new materials will be compared with experimental tests to check their accuracy and 
performance. In contrast with most FEA software, this project will provide a tool for modeling large-scale 
3D or 2D concrete structures using 2D nonlinear elements, without having any restrictions on the number 
of nodes or elements that can be used. This project will also provide some hints concerning the performance 
of each material for different types of analysis. 

Experimental research is driven by the need to develop more accurate analysis and design methods for 
RC structures. The ultimate objective of this investigation project is to provide the research community a 
new and sophisticated, yet simple tool to implement precise concrete nonlinear models, allowing them to 
compare their analytical and experimental data for any concrete element they are testing. 

2 CONCRETE MODELS FOR FEA 

The basic information needed for reinforced concrete FE calculations is the multi-dimensional stress-strain 
relationships of the material, which describe the material response under monotonic, cyclic, and dynamic 
loading. In the last decades, the framework of continuum mechanics has been used to create multiple 
models to describe concrete behavior. Some approaches are plasticity models (Argyris, 1981), fracture-
based models (Bazant, 1994), damage models (Mazars, 1984), or plastic-damage models (Lee, 1998).   

Due to its simplicity for modeling, a damage-based approach is selected for this study. These models can 
explicitly solve the material constitutive, equilibrium and compatibility equations without needing an iterative 
procedure to calculate stresses from a given set of strains. 

3 DAMAGE-BASED MODELS USED TO IMPLEMENT NEW MATERIALS FOR OPENSEES 

Concrete damaged-based models are formulated using continuum damage mechanics and aim to describe 
the nonlinear behavior of concrete. Many materials, including concrete, can exhibit internal failures at the 
micro- and macro- scale produced by different types of effects such as creep, fatigue, constant load and 
chemical reactions. These internal failures are produced in form of microcracks, their propagation and 
coalescence in concrete elements is known as “damage” (Kachanov, 1958). 

Concrete is a composite material formed by granulates in a hydrated cement paste or brittle matrix. Damage 
mechanics is able to describe the interface between the aggregate grains and the cement matrix under 
loading. Stiffness degradation of concrete is presented due to the failure of the cement matrix which leads 
to the apparition and propagation cracks. Damage mechanics is a simplified strategy to describe the 
behavior of concrete upon its complex microstructure. 

The concrete models used in this research are based on the work done by J. Mazars through the last three 
decades. The first model that will be discussed was formulated in 1984, which is an isotropic scalar damage 
model implemented in OpenSEES by García Ramírez in 2017. The second one is the “PRM” model, which 
is capable to account for permanent strains. And finally the “” model, which includes effects that weren’t 
contemplated in other models as unilateral effects.  

These concrete damage models assume the material being elastic, isotropic and with constant stiffness. 
The stiffness of the material is modified using a scalar damage parameter (D), which ranges from 0 for the 
undamaged material to 1 for the complete failure of the material. Mazars’ models account for all the micro 
and macro effects of loading, the rearranging of concrete particles, collapse of the micro-voids in the 
mixture, and the interaction of the cement matrix with the aggregates.  Figure 3.1 describes the behavior 
of stress-strain (-) curves for concrete elements using damage models, where the parameter ߁ is defined 
as the stiffness matrix. 
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Figure 3.1. Stress-strain relationship of concrete using damage models. 

3.1 Mazars Scalar Damage Model 

Mazars (1984) formulated a scalar damage model to predict the triaxial behavior of concrete. This model 
describes the behavior of concrete as isotropic, elastic-damageable. The damage parameter (D) is 
calculated starting from an equivalent strain, which is the average of the tensile principal strains of the 
element, meaning that all compressive strains can be represented as tensile strains in the orthogonal 
direction. 

The calculation of the stresses uses elastic theory, reducing the elastic stiffness matrix with a damage 
parameter (D). 

ߪ  [3.1.1] ൌ ሺ1 െ :߁ሻܦ :߁ሺ				ߝ       	ሻݔ݅ݎݐܽ݉	ݏݏ݂݂݁݊݅ݐܵ

The total damage of the element is composed by the weighted sum of the damage given by the tensile 
stresses and the compressive stresses. The weights have a modification factor (ߚ) that accounts for the 
presence of shear resistance in the interaction of compression and tension. 

ܦ  [3.1.2] ൌ ௧ఉߙ ∗ ௧ܦ ൅ ௖ఉߙ ∗ ;௖ܦ 								0 ൑ ܦ ൑ 1                             

The formulation of the damage in tension and compression depends either on the tensile or compressive 
material parameters that can be obtained from tests (Ac, Bc, At, Bt). All the calculations are made with the 
equivalent strain of the element (ݍ݁ߝ), and damage starts only when the strain crosses the initial damage 

strain threshold (0ܦߝ). 

ݐܦ  [3.1.3] ൌ 1 െ
ሻݐܣሺ1െ∗0ܦߝ

ݍ݁ߝ
െ ݐܣ ∗ ݐܤെൣ݌ݔ݁ ∗ ൫ݍ݁ߝ െ                                                                   0൯൧ܦߝ

ܿܦ  [3.1.4] ൌ 1 െ
ሻܿܣሺ1െ∗0ܦߝ

ݍ݁ߝ
െ ܿܣ ∗ ܿܤെൣ݌ݔ݁ ∗ ൫ݍ݁ߝ െ                               0൯൧ܦߝ

The weights of the tensile and compressive contribution to the total damage are calculated analyzing each 
of the principal strains obtained from the positive and negative principal elastic stresses. The weight is only 
considered if the total strain is tensile, thus the use of the H parameter. 

ݐߙ  [3.1.5] ൌ ∑ ݅ܪ
ሻ݅ܿߝ൅݅ݐߝሺ݅ݐߝ

2ݍ݁ߝ
3
݅ൌ1 ௜ܪ		݁ݎ݄݁ݓ												    ൌ ௜ߝ	݂݅	1 ൌ ௖௜ߝ ൅ ௧௜ߝ ൒ 0, ,݁ݏ݅ݓݎ݄݁ݐ݋ ௜ܪ ൌ 0                                                       

ܿߙ  [3.1.6] ൌ ∑ ݅ܪ
ሻ݅ܿߝ൅݅ݐߝሺ݅ܿߝ

2ݍ݁ߝ
3
݅ൌ1                                                                                                          

The positive (tensile) and negative (compressive) strains are calculated from the elastic stiffness matrix, 
and the positive and negative elastic stresses respectively. 



 

   

ST84-4 

ݐߝ  [3.1.7] ൌ :െ1߁                                                                                                                                 ൅ߪ

ܿߝ  [3.1.8] ൌ :െ1߁                                                                                                                          		;െߪ

The equivalent strain is calculated as the average of the tensile principal strains (i) of the element. 

ݍ݁ߝ  [3.1.9] ൌ ඥ∑ ሺ〈݅ߝ〉ሻ2
3
݅ൌ1 ; 〈݅ߝ〉	݁ݎ݄݁ݓ						 ൌ ݅ߝ			݂݅			݅ߝ ൐ 0                      

3.2 PRM Model 

The “PRM” model (Mazars et al 2010)  is a two scalar damage model formulated from works done by 
Pontiroli (1995), Rouquand (1995,2005) and Mazars(1986). Its particular improvement over previous 
models is that keeps the simplicity of being an elastic-damage model but adding the capacity of accounting 
for permanent strains. This model uses two damage variables, Dt and Dc, for traction and compression 
damage respectively. The variables ߪ௙௧ and ߝ௙௧ are the crack closure stress and strain respectively. The 
main equations of the PRM model are shown below. 

The constitutive equation of the model: 

[3.2.1]  ሺߪ െ ௙௧ሻߪ ൌ ሺ1 െ :߁ሻܦ ሺߝ െ	ߝ௙௧ሻ		 

ௗߪ  [3.2.2] ൌ ߪ	 െ  ௙௧ߪ

ௗߝ  [3.2.3] ൌ ߝ െ	ߝ௙௧		 

Before damage in compression is presented, the crack closure stress and strain are equal to the initial 
material parameters ߪ௙௧଴ and ߝ௙௧଴respectively. Once compressive damage (Dc) is presented the crack 
closure stress (ߪ௙௧) is calculated from Dc as follows: 

௙௧ߪ  [3.2.4] ൌ ௙௧଴ሺ1ߪ െ  		ሻ2ܦ

The PRM model uses the same equivalent strain concept as the Mazars’ Scalar Damage Mode and uses 
the same equation [3.9] to determine it. The difference is that under traction the principal strains (݅ߝ) are 
obtained as: 

݅ߝ  [3.2.5] ൌ ൫ߝ െ  	௜	൯ݐ݂ߝ

The damage evolutions were taken from the original Mazars model (1984), with the main difference that 
the PRM model has two different thresholds for tensile damage (0ݐߝ) and compressive damage (0ܿߝ ). The 
damage parameter (D) remains a scalar and is obtained from the calculation of Dc and Dt. The activation 
factor (ߙ௧) evolves from 0 to 1 depending on the tensor ߪௗ, where ߙ௧=1 if ߪௗ>0 and ߙ௧=0 if ߪௗ<0: 

ݐܦ  [3.2.6] ൌ 1 െ
ሻݐܣሺ1െ∗0ݐߝ

ݍ݁ߝ
െ ݐܣ ∗ ݐܤെൣ݌ݔ݁ ∗ ൫ݍ݁ߝ െ                                                                   0൯൧ݐߝ

ܯܿܦ  [3.2.7] ൌ 1 െ
ሻܿܣሺ1െ∗0ܿߝ

ݍ݁ߝ
െ ܿܣ ∗ ܿܤെൣ݌ݔ݁ ∗ ൫ݍ݁ߝ െ                               0൯൧ܿߝ

ܿܦ  [3.2.8] ൌ
ሻܿܣሺ1െ∗0ܿߝ

ݍ݁ߝ
         

ܦ  [3.2.9] ൌ	ߙ௧ܦ௧ ൅ ሺ1 െ  ௖ܦ௧ሻߙ
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3.3 “μ” Model 

The Mazars’ “” Model (2013) was created to include the damage effects related to monotonic and cyclic 
loading that were not incorporated in previous models, such as unilateral effects. It has proved to be capable 
of describing a broad range of nonlinear behavior: monotonic, cyclic, and dynamic loading (Mazars, 2013). 
It follows the following assumptions: 

 Describes the behavior of concrete as the combination of damage and elasticity. 
 The damage behavior is assumed as isotropic. 
 Two damage modes are assumed:  cracking (tension) and crushing (compression). This leads to 

having two independent equivalent strains, one for tension and another for compression. 
 In contrast with the PRM and SDM models, the effective damage parameter (d) describes the 

damage on the stiffness activated either by compressive or tensile loading. 
 d is able to describe the unilateral effects (crack opening and closure). 

 
The calculations needed to determine the damage parameters are shown below. The stress is obtained 
using the same equation [3.1.1] as the Mazars’ Scalar Model (1984).  
The equivalent strain for cracking (ߝ௧) and crushing (ߝ௖) are defined as follows, where ݒ is the Poisson’s 
ratio: 

௧ߝ  [3.3.1] ൌ 	
ூഄ

ଶሺଵିଶ௩ሻ
൅

ඥ௃ഄ
ଶሺଵା௩ሻ

  

                                                                               

௖ߝ  [3.3.2] ൌ
ூഄ

ହሺଵିଶ௩ሻ
൅

଺ඥ௃ഄ
ହሺଵା௩ሻ

 ,   where  ܫఌ ൌ ଵߝ ൅	ߝଶ ൅ ఌܬ ଷ  andߝ ൌ 0.5ሾሺߝଵ െ	ߝଶሻଶ ൅ ሺߝଶ െ	ߝଷሻଶ ൅ ሺߝଷ െ	ߝଵሻଶ 

 

ܻ and ݐܻ ܿ are the maximum values reached during the loading path, while ߝ଴௧ and	ߝ଴௖ are the initial threshold 
of the cracking and crushing equivalent strains respectively: 

ݐܻ  [3.3.3] ൌ ,ݐ0ߝሾ݌ݑܵ max                                                                                  ሿݐߝ

[3.3.4]  ܻܿ ൌ ,0ܿߝሾ݌ݑܵ max  ሿܿߝ

The damage parameter D is directly related to the thermodynamic variables ܻ ܻ and ݐ ܿ though the Y variable. 
The triaxial factor (r) evolves from 0 for pure compressive stress to 1 for pure tensile stress: 

[3.3.5]  ܻ ൌ ݎ	 ௧ܻ ൅ ሺ1 െ ሻݎ ௖ܻ 

ݎ  [3.3.6] ൌ
∑ழఙഥ೔வశ
∑|ఙഥ೔|

 ,     where    ߪത ൌ 	
ߪ

ሺ1െ݀ሻ
ൌ :߁	  ߝ

The damage evolution is defined as was in the Mazars’ Scalar Model, where ܻ0 is the initial threshold for 
Y. A and B define the shape of the effective damage (d), which are defined from the test parameters Ac, 
Bc, At, and Bt. 

[3.3.7]  ݀ ൌ 1 െ
௒బ∗ሺଵି஺ሻ

௒
െ ܣ ∗ exp	ሾെܤ ∗ ሺܻ െ ଴ܻሻሿ 

[3.3.8]  ܻ0 ൌ ݐ0ߝݎ ൅ ሺ1 െ  0ܿߝሻݎ

ܣ  [3.3.9] ൌ ଶሺ1ݎ௧൫2ܣ	 െ 2݇ሻ െ ሺ1ݎ െ 4݇ሻ൯ ൅	ܣ௖ሺ2ݎଶ െ ݎ3 ൅ 1ሻ 

ܤ  [3.3.10] ൌ	ݎሺ௥
మିଶ௥ାଶሻܤ௧ ൅ ሺ1 െ ሺ௥ݎ

మିଶ௥ାଶሻܤ௖ 

[3.3.11]  ݇ ൌ 	
଴.ହ

஺೟
  0.7	ݎ݋	
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3.4 Finite-element implementation 

The material formulations presented above were implemented into the open-source, finite-element software 
OpenSEES (Open System for Earthquake Engineering Simulation), which has been under development by 
PEER (Pacific Earthquake Engineering Research) since 1997.  

The general steps for the FEA procedure that OpenSEES.exe application follows using the new materials 
are shown below: 

1. Within the input data provided by the user, initialize elements stiffness matrix [K] and determine the 
residual force {ΔR}. 

2. Solve for nodal displacement increments {Δu}, using the equilibrium equation [K]{Δu} ={ΔR}. 

3. Find the nodal displacement and determine strains of the element. 

4. Use the new material code within the plane stress framework to determine the damaged stiffness matrix 
and the stresses in the original direction {σ}. 

5. Obtain the principal strain direction θ1 and the principal strain vector {εp}. 

6. Obtain the scalar damage variable Di of the material. Equations [3.1.1] to [3.1.9]  for the Scalar Damage 
Model (Mazars, 1984), equations [3.2.1]  to [3.2.9]  for the PRM model (Mazars et al., 2010), and 
equations [3.3.1]  to [3.3.11]   for the “” model (Mazars, 2013). 

7. Calculate the damaged stiffness matrix [߁c]D=[	߁c](1-Di).  

8. Calculate the principal stress vector {σp} and the stresses in the original direction {σ}. 

9. Establishes the element stiffness matrix [K]=׬ሾܤሿ்ሾ߁௖ሿ஽ሾܤሿܸ݀  and element resisting force increment 
{ΔF}=[K]{ΔU}. 

10. Check for the residual force {ΔR’} = {ΔR} - {ΔF}. If convergence is achieved, proceed to next step of 
the loading, if it doesn't go back to step 2. 

4 VALIDATION & DISCUSSION 

Two concrete material models were introduced to OpenSEES for 3D finite model analysis: PRM model and 
“” model. The performance of these materials was studied by comparing two concrete experimental test 
data with analytical models, elaborated in the OpenSEES framework. The first one consists in an 
experimental study realized by Kupfer (1969), which describes the behavior of concrete specimens under 
biaxial stress states. The second one is a simply supported beam under monotonic loading tested at the 
University of Alberta in 2013. 

4.1 Kupfer Experiment 

Kupfer (1969) conducted a series of experiments to investigate the biaxial behavior of concrete. He tested 
concrete specimens of 200x200x50 mm under biaxial stress, for the conditions of biaxial compression, 
compression-tension, and biaxial tension. The experimental parameters consisted of a compression 
strength (f’c) of 32.7 MPa, a tensile strength (ft) of 3.2 MPa, and Young’s modulus (E) of 30 GPa. 

4.1.1 FEM Model 

The biaxial tests conducted by Kupfer were simulated in OpenSEES via a “Quad” element with dimensions 
of 200x200x50 mm. Different displacement conditions were applied, combining compression and tensile 
displacements. The stresses of the element in each one of the two principal directions were obtained for 
each combination and normalized with the compressive strength (f’c). The model parameters are shown in 
table 4.1.  
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Table 4.1. Model Parameters for biaxial test. 

Material E(GPa) ߝ 0ܦߝ/ݐ0ߝ 0ܿߝ௙௖ ߪ௙௖ ߝ௙௧଴ ߪ௙௧଴ 
SDM Mazars 30.0 - 1.0e-4 - - - -
PRM Model 30.0 1.0e-4 1.38e-4 5.0e-4 37.2e6 -3.3e-5 -0.99e-6
 Model 30.0 3.0e-4 1.1e-4 - - - - 

 
Material Ac Bc At Bt ߭ 

SDM Mazars 1.275 1850.0 1.0 1.0e4 0.21 
PRM Model 1.29 1550.0 0.8 1.0e4 0.21 
 Model 1.7 570.5 1.0 1.0e4 0.21 

*SDM stands for Scalar Damage Model (Mazars,1984). 

4.1.2 Comparison of predictions with experimental results 

The experimental biaxial behavior of concrete panels is compared with the calculated using each material 
in OpenSEES. We can observe how the three models are excellent candidates to describe the biaxial 
behavior of concrete under the uniaxial compression, compression-tension, and biaxial tension domains, 
but the PRM and Mazars’ Scalar Damage models fail to accurately describe the biaxial compression 
domain. On the other hand, the “” model shows proficient results when describing each domain of the 
biaxial experiment. The experimental and analytical results are shown in fig. 4.1.  

 

Figure 4.1. Biaxial behavior of concrete. Adapted from Kupfer et al. (1969). 
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4.2 Analysis of an RC Beam Under Monotonical Loading 

A beam under 4-point bending tested at the University of Alberta in 2013 was selected to assess the 
performance of different models in OpenSEES. The experimental parameters consisted in an f’c of 40 MPa, 
and Young’s modulus (E) of 37.2 GPa. The yield stress of the steel (fy) was measured as 475 MPa, with 
Young’s modulus (E) of 183.33 GPa. The dimensions, loading points, and reinforcement specifications are 
shown in figure 4.2. 

 
 
 

 

Figure 4.2. Beam specifications. 

4.2.1 FEM Model 

The OpenSEES beam was modeled using 312 four-node multilayer shell elements; each one was made 
up of three layers of 50 mm. For the steel reinforcement, 140 truss elements were needed. The pushover 
analysis was done using a displacement controlled analysis, applying a descending displacement at nodes 
337 and 353. Boundary conditions were introduced at nodes 5 and 49, restricting the vertical displacement. 
The OpenSEES beam model can be observed in fig. 4.3. The parameters used for each concrete material 
are shown in table 4.2. 

 

Figure 4.3. Beam OpenSEES model. 
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Table 4.2: Model Parameters for beam analysis. 

Material E(GPa) ߝ 0ܦߝ/ݐ0ߝ 0ܿߝ௙௖ ߪ௙௖ ߝ௙௧଴ ߪ௙௧଴ 
SDM Mazars 37.2 - 5.0e-5 - - - -
PRM Model 37.2 1.3e-4 1.25e-4 5.0e-4 37.2e6 -3.3e-5 -1.2276e6
 Model 37.2 4e-4 5.0e-5 - - - - 

 
Material Ac Bc At Bt ߭ 

SDM Mazars 0.73 1065.0 0.97 1.0e4 0.18 
PRM Model 0.6 1100.0 0.68 1.0e4 0.18 
 Model 0.645 280.0 0.97 1.0e4 0.18 

*SDM stands for Scalar Damage Model (Mazars,1984). 

4.2.2 Comparison of predictions with experimental results 

The comparison between the experimental and analytical results can be found in figure 4.4. The flexural 
failure of the beam was due to concrete crushing on the compressive side of the beam. It can be observed 
that the three model materials show an accurate prediction for the force-displacement curve, but the PRM 
and Mazars’ Scalar Damage (1984) models fail to predict the failure strain of the beam, whereas the “” 
model is able to accurately predict the strain at which the beam fails. None of the three materials accurately 
predicted the cracking load, but the “” model provided a better prediction for the yielding moment. For this 
experiment, the “” model performed best. 

 

 

Figure 4.4. Analysis results of RC beam. 

5 SUMMARY AND CONCLUSIONS 

Building upon the work of García (2017), two biaxial concrete material models were implemented into the 
open-source finite element framework –PRM model and “” model –with the objective of evaluating their 
performance under a broad type loading for various structures. The three OpenSEES material models are 
capable of accurately describing the biaxial behavior of concrete, but only the “μ” model showed being able 
to successfully describe the biaxial compression domain. The three materials are good candidates to 
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describe the pushover done to a simply supported beam, but only the “μ” model could predict the strain at 
which the beam crushed and the yielding force. 

More experimental tests are being modeled and compared using these materials in order to improve our 
general knowledge regarding the breadth of potential applications and the most appropriate selection in 
individual cases. These include a four-point bending beam under cyclic loading, a squat shear wall under 
cyclic loading, and a full-scale concrete building under seismic loading.  
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