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Abstract: Quantification of curvature ductility in concrete columns provides a basis for more accurately 
describing the warning of failure of a structural element. Curvature ductility, defined as the ratio of ultimate 
curvature to yield curvature, is a metric for warning of failure. In this study, cross sections having total 
reinforcing ratios ranging from 0.01 to 0.04, normalized spacing of outermost reinforcing layers, γ, ranging 
from 0.6 to 0.9, and concrete strengths ranging from 25 to 50 MPa are considered. Using typical 
idealizations for ultimate and yield moment calculations, cross sections were analyzed under a range of 
axial forces. The maximum axial load was taken as that corresponding to the balance point, where concrete 
crushing and steel yielding occur simultaneously. Curvatures at ultimate and yield limit states for each 
combination of parameters were used to form generalized equations for ductility ratios using multiple linear 
regression. Response-2000 analysis of an array of cross sections was used to validate the results 
independently. The generalized equations were found to be consistent lower bounds to the Response-2000 
results. Curvature ductility ratios from one to twenty-five were observed over the parameter ranges 
considered. High ductility was observed for low axial loads, where behavior approached that of a beam in 
pure bending. Maximum ductility was achieved when the lever arm created by the outermost layers of 
reinforcement was large and the reinforcing ratio was small. Curvature ductility decreased with greater axial 
loads. Trends in observed ductility ratios allowed the warning of cross-section failure to be quantified using 
the basic parameters investigated. 

1 INTRODUCTION 

When designing and assessing structures, nominal probabilities of failure may be expressed using reliability 
indices [e.g. Canadian Standards Association 1981, Construction Industry Research and Information 
Association 1977]. The acceptable probability of failure depends on the consequences of a potential 
collapse with respect to the life safety of the occupants and therefore on the warning of structural failure 
provided. These considerations are captured by the structural redundancy and ductility of the cross section, 
which relate to reliability methods as outlined in Figure 1. 

 

Figure 1: Reliability methods concept map 

The present research focuses on the ductility aspect of warning factor, and subsequent study will 
investigate the influence of redundant structural systems. Current methods use reliability indices to provide 
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design. The target reliability index is defined as βT= -Φ-1(Pf), where Pf is the nominal probability of failure, 
and Φ is the standard normal distribution. The target probability of failure can be expressed as a function 
of the number of people at risk, n, and the warning of failure, w: 

[1] Pf = 
Ak

w√n
 

where A is an activity factor specific to the type of structure being assessed, and k is a calibration factor 
(10-4) (Canadian Standards Association, 1981). 

For the assessment of an element in an existing structure, a target reliability index may be assigned that is 
different from that used for the design of a new structure. For an existing element, an assessment of the 
structure provides information about the element under consideration, and the structure as a whole. The 
cross-sectional and material properties may be known with a degree of relative certainty compared to those 
for structures in the design phase. Therefore, a target reliability index may be selected that accounts for the 
actual field conditions, which may then correspond to more or less stringent requirements than those 
associated with the design of an equivalent new element.  

Several methods to assign target reliability indices have been developed for use in design and assessment. 
CSA S408-81 (1981) outlines the theory behind the application of warning factor concepts to probability of 
failure calculations. CIRIA Report 63 (Construction Industry Research and Information Association, 1977) 
provides a similar definition for probability of failure, without the explicit consideration of a warning factor; 
instead it proposes the use of a combination of a social criterion factor, Ks, and the design life of the 
structure, nd.  

Allen (1991), and the provisions in the National Building Code of Canada Commentary L (2010) developed 
subsequently, use a set of additive components to provide a target “reliability level”. These correspond to 
load factors to be used in the assessment procedure to determine the structural demand. Similarly, in Allen 
(1992) and CSA S6-06 (2006), load factors are selected based on a target reliability index. Here, target 
reliability indices are quantified based on traffic type, inspection level, system behaviour, and element 
behaviour.  

A drawback of methods formulated in this way is that they use discrete categories for warning factors. The 
categories lack quantifiable criteria for classifying elements, which introduces inconsistency in how the 
provisions are applied. Additional concerns arise due to the application of target reliability concepts to the 
factored demand rather than the factored resistance. Consequently, each load combination must be 
checked separately, while material-specific effects are ignored. In design codes, partial resistance factors 
have been calibrated to empirical statistical data, whereas for assessment, material and cross-sectional 
parameters can be field measured and used for calibration of element-specific resistance factors. 

Figure 2 shows the moment-curvature responses obtained from Response-2000 (Bentz & Collins, 2001) 
for a test cross section under varying axial loads. These illustrate the variability of ductility with axial load. 
Curve 1, with a normalized axial load of 0.30bhf’c, reaches the largest maximum moment, but then quickly 
fails. Curve 3 shows a much more ductile response but reaches a markedly smaller maximum moment. It 
is therefore necessary to formulate a procedure to quantify these differences and so derive more 
appropriate target reliability indices for assessment of reinforced concrete structures.  
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Figure 2: Moment-curvature responses for column cross sections with γ = 0.9, ρ = 0.01 

2  PROCEDURE 

A standard cross section with dimensions as shown in Figure 3(a) was used as the basis of the analysis. 
Sections investigated here are identified by their total reinforcing steel ratios, ρT, normalized spacing of 
outermost reinforcing layers, γ, and concrete strength, f’c. The total reinforcing ratio is defined as As/(bd) 
where As is the total area of longitudinal reinforcing in the cross section, equally divided between the top 
and bottom faces, and b and d are the width and effective depth of the section, respectively. The range of 
ρT is 0.01 to 0.04, representing a practical range of reinforcing for a column as per CSA A23.3 (Canadian 
Standards Association, 2014). The range of γ for this study was taken to be 0.6 to 0.9, and the range of f’c 
taken to be 25 to 50 MPa, representing a general range for commonly designed sections. Columns 
considered here will be subjected to a combination of flexure and relatively small compressive axial loads 
where the capacity of the member is governed by the yielding of the tension reinforcing. This implies axial 
loads ranging from zero to approximately 0.35bhf’c. 

Each section was analyzed at two resisting moment levels, corresponding to the tension steel reaching its 
yield strain, and the concrete reaching its crushing strain. These two states are referred to as the Yield Limit 
State (YLS) and the Ultimate Limit State (ULS), respectively. Stress and strain diagrams for each state are 
shown in Figure 3. For the purposes of this study, yield strain, εy, is assumed to be 0.002 and concrete 
crushing strain, εcu, to be 0.0035. Axial load was kept constant at both limit states, allowing comparison of 
ductility on the basis of normalized applied axial load.  

 

(a) Cross Section     (b) Strain (c) Stress (d) Strain (e) Stress
   

Figure 3: Cross section dimensions, stress and strain diagrams at yield and ultimate limit states 
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Axial loads and bending moments were calculated using these idealized stress-strain conditions and 
common assumptions of material and cross section behaviour. All forces and moments were normalized to 
provide a unitless representation of their magnitudes for the range of cross section parameters investigated.  

Figure 3(b) shows the neutral axis depth, kd, when tension reinforcement reaches yield while Figure 3(d) 
shows mh, the neutral axis depth when concrete begins crushing, which is commonly represented as c. 
The limits of the value of k are determined by strain limits assumed for the ultimate strength of concrete. A 
strain limit of 0.002 corresponds to both the maximum, not ultimate, stress in concrete and the yield stress 
in steel. For these strains, k = 0.64 is implied. Practically, this limit is difficult to achieve, and an upper limit 
of k = 0.5 was used for data generation. Although compression reinforcement is shown in Figure 3, it is 
neglected in the simplified analyses presented below. 

At YLS, a triangular stress distribution is assumed for concrete in compression, and the axial force may be 
calculated using stresses as shown in Figure 3(c). At ULS, the concrete stress distribution is assumed to 
be rectangular, with parameters α1 and β1 as shown in Figure 3(e).  

The curvature ductility ratio is defined as φu/φy, where the curvatures, φ, at YLS and ULS are, respectively: 

[2] φy = 
2εy

(1+γ)(1-k)h
 

[3] φu = 
εcu

mh
 

Stress and strain distributions at yield, as shown in Figure 3(b) and (c), were used to derive the following 

equations for normalized axial load, P/(bhf'c) and moment, M/(bh2f'c): 

[4]   
P

bhf'c
 = 

1

4

Ec

f'c
εy(1+γ)

k2

1-k
 + 

1

4

fy
f'c

(1+γ) ρT

k(1+γ)-1+γ

(1+γ)(1-k)
-1  

[5]   
M

bh2f'c
 = 

1

8

Ec

f'c
εy(1+γ)

k2

1-k
1-

1

3
 k(1+γ)  + 

1

8

fy
f'c 

(1+γ) ρTγ 1+
k(1+γ)-1+γ

(1+γ)(1-k)
 

Similarly, Equations 6 and 7 were formulated based on stress and strain distributions at the ultimate limit 
state as shown in Figure 3(d) and (e): 

[6]   
P

bhf'c
=a0α1β1m + 

1

4
a1ρT(1+γ)

Es

f'c
 

[7] 
M

bh2f'c
= 

1

2
b0α1β1m + 

1

8
b1ρTγ(1+y)

Es

f'c
 

Coefficients a0, a1, b0, and b1 are defined in Table 1 and account for the specific location of the neutral axis, 
since for some values of γ the compression steel acts in tension. 
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Table 1: Coefficients for ultimate limit state equations 

Range of m a0 a1 b0 b1 

7

22
(1-γ) < m < 

7

6
(1-γ) 1 εcu(1 -

1-γ

2m
) - εy 1 - β1m εy - εcu

1-γ

2m
-1  

7

6
(1-γ) < m < 

1

2
 1 0 1 - β1m 2εy 

The selection of incremental values of k provided the starting point for generation of axial load and bending 
moment data over a range of axial loads. The value of normalized axial load for each was used in an 
iterative solution procedure to obtain a corresponding value of m, and thus the moment at ULS.  

3 ANALYSIS OF DERIVED CURVATURE DUCTILITY RATIOS 

Figure 4 shows the relationship between normalized axial load and curvature ductility ratios for the 
generated data for several concrete strengths. Sections with extreme values for both ρT and γ are shown 
in the four subfigures.  

 
(a) 

 
(b) 

 
(c) 

 
(d)

 
Figure 4: Curvature ductility ratio vs. axial load for various f’c: (a) γ = 0.6, ρ = 0.01; (b) γ = 0.6, ρ = 0.04; 

(c) γ = 0.9, ρ = 0.01; (d) γ = 0.9, ρ = 0.04. 

Figure 4(a) and (c), with data where ρT = 0.01, illustrate the considerable impact that varying γ has on 
curvature ductility ratios. Increasing γ from 0.6 to 0.9 results in maximum ductility ratios in the range of 5 to 
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10 increasing to a range of 18 to 25. A similar but less pronounced trend can be observed in Figure 4(b) 
and (d), where ρT = 0.04. The effects of varying f’c are relatively small in comparison to varying either ρ or 
γ. As axial load increases, the variation with f’c becomes less for all geometries. For this reason, variations 
in f’c were neglected in further analysis. Unless noted otherwise, subsequent comparisons will use f’c = 25 
MPa, which represents a lower bound of the data set. 
 
Figure 5 shows variation of the ductility ratio with reinforcement ratio for the extreme values of normalized 
spacing and f’c = 25 MPa. The variability is small relative to the magnitude of the ductility ratio and decreases 
as axial load approaches its maximum magnitude. The effects of varying the reinforcement ratio are most 
apparent for low axial loads where steel strains are large and yielding of the reinforcement dictates the 
behaviour of the cross section. For larger axial loads, the deformation of the steel in tension is considerably 
smaller and the behaviour of the cross section is more influenced by the concrete acting in compression.  

(a) (b)

 
Figure 5: Curvature ductility ratios for various reinforcement ratios: (a) γ = 0.6; (b) γ = 0.9. 

Similarly, Figure 6 shows the variation of ductility with normalized spacing for given values of reinforcement 
ratio. For low axial loads, the ductility ratio varies widely with γ, and gives maximum ductility ratios for 
sections having the largest normalized spacing (γ = 0.9). As axial load increases, the effects of varying γ 
diminish over the entire range of reinforcement ratios. Comparing Figures 5 and 6 indicates that the ductility 
ratio is more sensitive to the spacing of reinforcement than it is to the reinforcement ratio, especially when 
low axial loads lead to beam-like responses. 

 
Figure 6: Curvature ductility ratios for various reinforcement spacings: (a) ρT = 0.01; (b) ρT = 0.04. 
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Figure 7 shows four sets of data for γ = 0.9 with reinforcing ratios of 0.01 and 0.04 and concrete strengths 
of 25 and 50 MPa. Since the variations due to these factors are small when curvature ductility ratios are 
low, one curve fitted by least squares analysis to data with φu/φy ≤ 10 will be used to represent all sections 
with γ = 0.9. Based on curves fitted to each individual data set, a generalized curve was created to represent 
an approximate lower bound of curvature ductility as a function of normalized axial load in this region. For 
γ = 0.6, the variation with ρT is more apparent, so similar curves were fit to data for both ρT = 0.01 and ρT = 
0.04, allowing for interpolation of intermediate values.  

   
Figure 7: Range-representative data and Response-2000 comparison for γ = 0.9 

Response-2000 (Bentz & Collins, 2001) was used to investigate the validity of the results from the idealized 
analysis. Figure 7 shows data from Reponse-2000 for the cross section presented in Figure 2 with γ = 0.9, 
ρT = 0.01 and f’c = 35 MPa for three magnitudes of axial load. Response-2000 results indicate ductility ratios 
consistent with the idealized analysis results.  

4 DERIVATION OF WARNING FACTORS 

The fitted relationships obtained between ductility ratios and axial load must be transformed into warning 
factors ranging from zero to one. Previously, these have been defined as discrete values for elements 
assumed to fall into a number of categories of behaviour. A primary goal of redefining warning factors is to 
provide a continuous function, avoiding bins, or step functions, where arbitrary discontinuities exist.  

Figure 8 illustrates the proposed concept for warning factor definition. As the curvature ductility increases, 
the warning factor must also increase. A warning factor of one corresponds to high ductility, the definition 
of which has not previously been well defined. Here, high ductility will be identified as an element with a 
curvature ductility ratio greater than or equal to ten. A warning factor approaching zero indicates a brittle 
failure mode, where the curvature at ULS is approximately equal to that at YLS, or φu/φy ≈ 1.0. This definition 
of warning factor is opposite to that used in the references above, where w = 1.0 corresponds to negligible 
ductility. Equation 1 will therefore be modified to: 

[8] Pf = 
Akw

√n
 

Reversing the scale for w creates a system where a benefit, namely increased warning of failure, 
corresponds to a positive change in the parameter value. While this definition of w has the advantage of 
producing a finite value of Pf as the warning factor approaches zero, a non-zero lower limit should be 
assigned to prevent a target probability of failure equal to zero. A lower limit, close to zero, shall be selected 
based on the calibration of target reliability indices given the finalized assessment provisions. 
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Figure 8: Warning factor-ductility ratio relationship 

Figure 8 shows possible transitional relationships, where w = 0 when φu/φy ≤ 1.0 and w = 1.0 when 
φu/φy ≥ 10. For ductility ratios between these limits, Curves (1), (2), and (3) show positive curvature, 
linearity, and negative curvature, respectively, in the transition region. Logically, Curve (1) can be deemed 
inappropriate because of its slope discontinuity at w = 1.0. Curve (3) provides estimates that are the least 
conservative and is more complicated for users to interpret. The linear relationship expressed by Curve (2) 
provides a balance of simplicity, conservativism, and smooth transitions. Therefore, all subsequent figures 
use the following equation for the determination of w:  

[9] w = 	

					0* ,													 										
φu

φy

≤1.0

1

9

φu

φy

-1 ,					1.0<
φu

φy

<10

					1,														 										
φu

φy

≥10

 

 *Nominal value equal to zero.  

Figure 9 shows the variation of warning factor with normalized axial load derived using Equation 9 to 
transform data from the fitted curves such as that shown in Figure 7. Warning factors for intermediate values 
of ρT and γ may be obtained by interpolation. The region where w is greater than one is shown for purposes 
of interpolation only; any cross sections indicating a warning factor greater than one are confined by this 
upper limit. The enforcement of an upper limit implies that there is a point at which additional ductility is will 
not provide additional warning. 

 

Figure 9: Warning factor selection curves for interpolation 
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Example. Applying the relationships shown in Figure 9 to the cross sections represented in Figure 2 
illustrates the range of w for such widely varying ductilities. The associated warning factors are shown in 
Table 2. As expected, the moment-curvature response for the lowest axial load is markedly more ductile 
than the others and therefore results in the highest warning factor.  

Table 2: Sample warning factors 

Cross Section Axial Load φu/φy w 

1 0.30bhf’c 1.96 0.11
2 0.15bhf’c 4.41 0.38
3 0.05bhf’c 10.88 1.00

5 CONCLUSIONS 

The curvature ductility ratio is a useful measure to quantify warning of failure. As axial load increases, the 
ratio of ultimate to yield curvature decreases, approaching a lower limit of one for all cross sections. Warning 
factors can be assumed to correlate linearly with ductility ratios within the transitional range from one to ten. 
Interpolation allows the selection of warning factors based on the cross-section properties. In the low axial 
load range, where ductility is most sensitive to cross section parameters, interpolated warning factors may 
be limited by the upper-bound value of one. In regions of relatively high axial loads, warning factors 
converge, approaching zero and indicating a brittle failure mode.  
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