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Abstract: In structural steel buildings, one of the most common floor systems is composed of concrete-
filled ribbed steel decking supported by wide-flange beams and girders. Traditional design approaches for 
choosing the components of this typical composite floor system are usually based on the experience of the 
design engineer. Since there are many possible combinations to this problem (over a billion), it is difficult 
to guarantee that the final design is the most economical one. Different metaheuristic optimization 
algorithms have been used to address this design problem with different degrees of success. In particular, 
the efficiency of some of these algorithms is diminished because of their difficulties in dealing with integer 
numbers representing the components of the composite floor system. For this study, a novel optimization 
algorithm is presented based on peloton dynamics that occur during bicycle racing. Peloton dynamics are 
largely attributable to the physical capacity of cyclists, energy saving by the coupling effects of drafting, and 
the capacity for cyclists to pass others. It also includes cooperation with other cyclists by changing positions 
inside the peloton, competitors’ positions and their relative energy levels. The optimization procedure used 
is based on strength, serviceability, performance and cost criteria. The concrete slab + steel deck + steel 
beams floor configuration used in this study meets all the requirements of the Canadian standard for Design 
of Steel Structures (CAN/CSA S16-09). The algorithm optimizes the size of all structural elements including 
girders, beams, slab and deck. The performance of the PDO is compared with other optimization algorithms 
based on the success rate (ability to find the best solution) and computational effort required. Results 
indicate the PDO performs better than other metaheuristic optimization methods and requires less user 
input parameters. 

1 INTRODUCTION 

Structural optimization is now commonly used by designers to reduce costs. Optimized structures such as 
buildings should minimize the cost while meeting code-specified performance requirements. Optimization 
methods have gained much attention because of their direct applicability to the design of structures. One 
of the first optimization methods applied to structures is the Genetic Algorithm (GA) initially proposed by 
Holland (1975). The GA tries to find a near-optimal solution for structural optimization problems for which 
traditional optimization algorithms cannot be applied because of the discrete nature of its variables and the 
complexity of its objective function and constraints. It is a population based optimization method based on 
the theory of natural evolution, Goldberg (1989). Senouci and Al-Ansari (2009) utilised a genetic algorithm 
for the cost optimization of composite beams based on the load and resistance factor design (LRFD) 
specifications of the AISC specifications. The model formulation includes the cost of concrete, steel beam, 
and shear studs. A parametric study was also conducted to investigate the effects of beam spans and 
loadings on the cost optimization of composite beams. 
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The Particle Swarm Optimization (PSO) algorithm is another population based optimization method. This 
algorithm was first introduced by Kennedy and Eberhart (1995). The PSO algorithm is based on the social 
behaviour of groups of animals such as bees, insects and birds. When these groups of animals and insects 
are looking for food, there is normally a leader who influences the other group members. The PSO algorithm 
operates in a similar manner. The PSO algorithm was used extensively for different types of optimization 
problems, including design optimization of structures. Poitras et al. (2011) optimized composite and non-
composite steel concrete floor systems using a PSO algorithm. The design problem was the cost of a steel 
floor configuration subject to constraints related to the Canadian S16-09 (2009) design standard. The 
design output returned the girder and beams sizes, steel deck profile, concrete slab thickness, number of 
interior beams and the number of steel studs needed per beam for a typical floor bay. 

The Simulated Annealing method, Kirkpatrick et al. (1983) is a trajectory heuristic technique that 
mathematically mirrors the cooling of a set of atoms to a state of minimum energy. It draws an analogy 
between the cooling of a material (search for a minimum energy state) and the solving of an optimization 
problem. This type of algorithm uses less computational resources than population based optimization 
methods since it starts with one feasible solution and just tries to improve it. Rather than drawing its 
inspiration from biological or physical processes, the Harmony Search (HS) algorithm proposed by Geem 
et al. (2001) is inspired by an artistic creative process. The HS algorithm is based on the talent of musician 
searching for harmony and then continuing to refine the tune to achieve an increasingly better state of 
harmony. Musical harmony is analogous to an optimization solution and a musician's improvisations are 
analogous to local and global search schemes in optimization techniques. This trajectory based 
optimization method has been used successfully for a wide variety of practical structural optimization 
problems. For example, the cost optimization of a composite floor system utilizing the harmony search 
algorithm was presented by Kaveh and Abadi (2010). The composite floor system consists of a reinforced 
concrete slab and steel I-beams designed in accordance with LRFD-AISC (2005) method. The objective 
function is considered as the cost of the structure, which is minimized subjected to serviceability and 
strength requirements. Kaveh and Ahangaran (2012) presented a HS algorithm model for the cost 
optimization of composite floor systems using discrete variables. The total cost function includes the costs 
of concrete, steel beam and shear studs. The design is based on AISC load and resistance factor design 
specifications and plastic design concepts. The proposed model is compared to the original harmony 
search, its recently developed variants, and other metaheuristic algorithms. In order to investigate the 
effects of beam spans and loadings on the cost optimization of composite floor system, a parametric study 
was also conducted.  

Other optimization methods were applied to the optimization of composite floor systems including a 
Nonlinear Programming Approach (NLP) by Kravanja and Silih (2003) and Klansek and Kravanja (2007), a 
Charged System Search (CSS) by Kaveh and Behnam (2012), an Ant Colony System (ACS) by Kaveh and 
Massoudi (2012) and a Multi-parametric MINLP optimization by Kravanja et al. (2017). 

The advantages of metaheuristic optimization algorithms over calculus-based optimization algorithms 
include: not requiring complex gradient derivatives, the ability to perform global search as well as local 
searches, and can handle discrete variables. However, one of the major disadvantages with these 
algorithms is that they require algorithm specific parameters for good performance not known beforehand. 
Furthermore, discrete optimization problems are difficult to solve for many metaheuristic optimization 
algorithms. Most structural problems consist of finding member components from available standard 
members identified by discrete values. To overcome some of these difficulties, a new trajectory based 
method is presented. Thus, this study will focus on a novel approach, the Peloton Dynamics Optimization 
(PDO) algorithm which requires less setting parameters. 

A peloton may be defined as a group of cyclists that are coupled together through the mutual energy 
benefits of drafting, whereby cyclists follow others riding in sufficiently close proximity. Although the 
interactions among individual cyclists are in principle very simple, the collective behaviour of the peloton is 
very complex. One characterization of a peloton is that they employ group and individual tactics and 
strategies to obtain top position at the finish line. Interactions usually involve only a few individuals at a 
time, yet may give rise to non-trivial global phenomena. 

In competitive cycling, air resistance is by far the greatest force opposing the forward motion of the cyclist 
on a flat surface. Air resistance can be effectively reduced by riding downstream near another rider. The 
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drafting rider will then benefit from the low-pressure area behind the front rider. By exploiting the reduced 
power output requirement of drafting, a drafting cyclist’s power output is coupled to the rider ahead. Drafting 
is a major contributor of cyclists’ capacity to pass each other, in addition to their inherent physical capacity 
to accelerate. Cyclists in drafting zones expend less energy than front position cyclists. According to Olds 
(1998), taking advantage of the energy-saving benefits of drafting, cyclists’ energy expenditures/power 
outputs are coupled, and by alternating peloton positions to optimize energy expenditures, cyclists in groups 
can sustain speeds at lower power outputs than individuals riding alone. The equalizing effect of drafting is 
the basis for cyclists’ race strategy and tactics. Both on the track and on the road, cyclists often ride in 
groups, alternating between leading a peloton and moving behind front riders in a peloton. By coupling in 
this way, the overall external power requirement of cycling is reduced in that at any one time at least some 
riders are taking advantage of the effect of drafting. 

The threshold at which cyclists decouple is identified by the Peloton Divergence Ratio (PDR), Trenchard 
and Mayer-Kress (2005) : 

[1]   PDR = ((MSOa – MSOb) / MSOa) / (D/100) 

where MSOa is the maximum power output sustainable for a given period of time (in Watts) of cyclist a at 
any given moment, MSOb is the maximum sustainable power output of cyclist b at any given moment, 
assuming MSOa > MSOb and ignoring negligible differences in equipment, body mass and volume, etc., and 
D/100 is the percent energy savings due to drafting at the velocity travelled. Maximum sustainable output 
(MSO) refers to outputs sustainable for specific times to exhaustion as a fraction of VO2max (maximal oxygen 
consumption), Olds (1998). The difference between the MSO of a stronger front rider in a non-drafting 
position relative to a weaker drafting rider is equalized by the drafting benefit, Trenchard and Mayer-Kress 
(2005). 

The Peloton Convergence Ratio (PCR) indicates how a weaker rider can sustain convergence by changing 
from a front position to a drafting position, or repeated alternations of this process and is given by: 

[2]   PCR = [Pfront – Pfront x (D/100)] / Pdraft 

where Pfront is the power output (in Watts) of the front rider at the given speed and equals the power output 
required by the drafting rider to maintain the speed set by the front rider if the drafting rider were not drafting, 
Pdraft is the maximum sustainable power (MSO) of the drafting rider and D/100 is the percentage of energy 
saved by drafting. Unlike equation [1], the front rider is not required to be stronger than the drafting rider in 
the PCR equation. It expresses coupling degrees between cyclists of different strengths. The numerator 
term of the PCR equation gives the required output of the drafting rider while drafting to maintain the speed 
set by the front rider. Hence, the PCR equation shows whether or not the drafting rider is capable of keeping 
pace with the speed set by the front rider while exploiting the power reduction benefit of drafting. As long 
as PCR ≤ 1, the riders remain coupled and all cyclists within a peloton are at PCR < 1 relative to each other. 

Olds (1998) derived an equation for a drafting coefficient based on analysis and data given in Kyle (1979). 
Drafting benefits can be defined as a ratio of cyclists’ power requirements in drafting positions to power 
requirements in non-drafting positions. According to Olds (1998), the drafting coefficient is: 

[3]   d = 0.62 − 0.0104dw + 0.0452d2
w 

and represents the ratio of the resistance under drafting conditions to where no drafting occurs. The term 
dw is the wheel-to-wheel distance (in metres) between the front and the drafting rider. For dw ≥ 3 m, d is 
assumed to be ≈ 1 and no benefit is gained by drafting more than 3 m behind another cyclist. The drafting 
coefficient applies no matter how many bicycles are in the peloton and regardless of the position of the 
cyclist in the peloton, Kyle (1979). The value 1-d is equivalent to the energy saved by the drafting rider 
which is approximately 38% for a drafting cyclist at 40 km/h, thus d = 0.62, given optimal wheel spacing and 
normalized for other lesser factors that may affect the power output of the drafting rider, Martin et al. (1998).  

The Peloton Convergence Ratio (PCR) is found according to the equation:  
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 [4]   PCR = [Pfront – Pfront x (1 – d)] / MSOdrafting = (Pfront x d) / MSOdrafting 

where Pfront = MSOdrafting x Rv, Rv is the ratio of the drafting cyclist’s current speed to his maximum 
sustainable speed when not drafting. For this algorithm, Rv = Vr/Vsmax where Vr is the race speed and the 
maximum sustainable speed Vsmax of each cyclist is calculated from the power equation found in 
http://kreuzotter.de/english/espeed.htm. Weaker cyclists can sustain the pace of the strongest rider 
between PCR = d and PCR = 1 (d < PCR < 1). In this PCR range, these cyclists cannot pass (drafting riders 
will move toward the front rider but will not pass him). However, if PCR ≤ d, passing can occur (drafting 
riders will move ahead of the front rider).  

The coupling effect is fundamental to the emergence of complex dynamics and observable phase changes 
in the peloton (Relaxed, Convection Rolls, Synchronization and Disintegrated). These phases represent 
the predicted behaviour that may be observed in a dynamic peloton simulation, Trenchard (2012). 

 

2 OPTIMIZATION ALGORITHM 

An optimization problem can be defined as finding a minimum or maximum for f(X) where f(X) is the 
objective function value and X is a vector for the independent variables of the function. In the context of this 
algorithm, the position of a cyclist during a race is a solution of the objective function. 

The proposed algorithm is based on data analyzed from mass-start bicycle races. Mass-start track races 
represent highly controlled conditions for the study of peloton dynamics. Since track topography does not 
vary, speed data may be used for a reasonable approximation of MSO, Trenchard et al. (2014). All cyclists’ 
maximum sprint speeds are obtained from sprint time trials and top speeds can be applied as benchmark 
absolute maximal sustainable outputs (MSO).  

The three main components of the peloton dynamic optimization algorithm applied here are: (1) Passing 
rule; (2) Breakaway and (3) Positional changes. Before the iterative process begins, the algorithm only 
needs two parameters, the number of cyclists Nc and the number of iteration Ni. Cyclists are randomly 
assigned MSO values between 400 W and 500 W and the percentage of energy saved by drafting D is 
given a value of 38%, thus d = 0.62 and the race speed was set at 36 km/h. These values were chosen to 
favour convection rolls among cyclists where PCR < 1. Since the race speed is chosen beforehand, PCR 
values for all cyclists are calculated at the beginning of the race. Details of the iterative procedure used for 
the PDO algorithm is as follows: 

Step 1: For each cyclist (i.e. k=1, 2, . . . , Nc), random values respecting domain limits of the objective 
function are generated for each variable. This step represents phase I identified beforehand. 

Step 2: A random cyclist k is chosen from the group of cyclists forming the trailing haft end of the peloton. 
Another cyclist f is chosen ahead of cyclist k and the following passing rule is applied:  

[5]   pki+1 = pfi + rand x (pfi – pki)                     if  PCR ≤ d     

[6]   pki+1 = pki + rand x (pfi – pki)                     if  d < PCR < 1 

where rand is a random number between 0 and 1, pki is the position of cyclist k and pfi is the position of 
cyclist f at iteration i. This phase can be related to the convection phase of the peloton and is the most 
important step of the algorithm. 

Step 3: When a paceline is formed, a small group of riders or an individual cyclist have successfully opened 
a gap ahead of the peloton to take the front position. For this type of action, a cyclist’s position is changed 
according to the equation:  

[7]   pk+1 = pbesti + rand x (pbesti  – pji) 

where pji is the position of a random cyclist j and pbesti is the front runner of the peloton at iteration i. This 
breakaway phase can be related with the synchronization and disintegrated phases of the peloton.  
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Step 4: A change in position of the worst cyclist w in the peloton is implemented according to the following 
equation  

[8]   pwi+1 = pbesti + rand(0,1 or 2) 

where pwi+1 is the new position of the worst cyclist at iteration i, pbesti occupies the front position (the best 
solution) among all cyclists at iteration i and rand(0, 1 or 2) is an integer random number of either 0, 1 and 
2. This positional change phase can also be associated with the disintegrated and synchronizing phase of 
the peloton described beforehand and is only activated after 1/3 of the iterations are completed. The best 
and worst cyclists (solutions) are identified at the end of each iteration. 

Equations 5 through 8 are used for a maximization problem. Implementation for a minimization problem 
only requires changes in signs for these equations. These steps are repeated for each iteration until the 
final iteration is reached. The total number of function evaluations in the PDO algorithm is equal to (3Ni - 
1/3Ni) only since there is a maximum of three cyclist positional changes per iteration. 

3 DESIGN PROBLEM 

 
The layout of the concrete steel deck floor system is illustrated in Figure 1. All girders and beams are pin-
connected, the girders are laterally supported by the beams and the beams can be considered laterally 
supported or not by the steel deck. All design parameters used in the algorithm are given in Table 1. The 
beam and girder sizes are hot-rolled W shapes found in the Canadian Institute of Steel Construction 
Handbook (2016) excluding class 4 sections. The steel deck choices were taken from the Canam® Steel 
deck catalogue (PC3615, PC3623, PC2432) and the steel deck thicknesses considered are either 0.76, 
0.91, or 1.21 mm (22, 20 or 18 gauge). Each type of steel deck has six possible slab thicknesses made of 
either lightweight or normal density concrete. Slab thickness can be 90, 100, 115, 125, 140, 150, 165, 190 
or 200 mm, depending on the type of steel deck and concrete slab configuration used. 

  

Figure 1. Steel floor system configuration and physical input parameters 
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Table 1: User inputs required for the concrete steel deck configuration 

- Bay width, W (m) and bay length, L (m) 
- Additional dead load, wD (kPa) 
- Live load, wL (kPa) 
- Uniform dead loads on edge beams, qD (kN/m) 
- Uniform live loads on edge beams, qL (kN/m) 
- Deflexion limits 
- Laterally supported beams (yes or no) 

- Limits on the number of interior beams 
- Height limits on the beams and girders 
- Concrete type (normal or light weight) 
- Concrete compressive strength, f’c (MPa) 
- Vibration live load, wLv (kPa) 
- Additional vibration dead load, wDv (kPa) 
- Vibration control properties 

 

The user may modify the minimum and maximum number of interior beams (spacing) of the floor layout, 
reduce the number of possible combinations of girders and beams by limiting the height of girders and 
beams, use normal density (2400 kg/m3) or lightweight concrete (1840 kg/m3) or both. An option for shoring 
to support the steel deck during the pouring and curing of the concrete slab is given. For vibration 
consideration, parameters are set by the user for the floor bay in consideration (interior bay or edge bay) 
and if there are additional bays along its length or its width. Furthermore, other design parameters used are 
double span and triple span conditions for the steel deck, steel decking ribs are parallel to the girders and 
perpendicular to the beams, deflection control for beams and girders is applied for live loads only while for 
the steel deck, construction deflection criteria are also considered. Similar floor configurations were used 
by Poitras et al. (2011) to test the capacities of a Particle Swarm Optimization algorithm. 

The algorithm will provide the north girder size, GN, south girder size, GS, west edge beam size, BW, east 
edge beam size, BE, the interior beams size, the number of interior beams, NB, the type of steel deck, PC, 
the height of the concrete slab, tc, and the price of the bay configuration.  
  

3.1 Objective function 

The objective function to minimize the cost of the floor system. It is defined as 
 
[9]  fcost = c(girders) + c(edge beams) + c(int. beams) + c(deck) + c(slab) 
 
where c( ) represents the cost of each floor component. The cost of each component is calculated from 
prices given by local construction companies. The prices used for calculating the cost of the floor are 
presented in Table 2. 
 

Table 2: Prices for various floor components 

Components Price $
Steel 
Steel deck 
Steel deck (installation) 
Concrete 
Concrete (installation)

2.86 per kg 
2.25 per kg 
5.40 per m2 
131 per m3 
5.40 per m2

 

3.2 Constraints 

The components of the floor system are designed to meet all the requirements of the Canadian National 
Building Code (2010), the CSA-S16 Limit States Design of Steel Structures standard and the CSSBI_2M 
standard for composite steel deck for ultimate and serviceability limit states. Floor vibration control is applied 
according to the Steel Design Guide Series 11 for floor vibrations control, Murray 1997. The ultimate limit 
state requirements demand that the resistance of the members must be higher than the critical factored 
internal forces for all load combinations. The serviceability limit state requirements imply that the vertical 
deformation of each floor components due to construction and live loads is limited to an acceptable amount 
(i.e. L/360). The objective function is subjected to the constraints represented in Table 3 for all components 
of the floor configuration. A cyclist represents a solution of the floor system which includes one steel deck, 
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one slab thickness, five steel sections and the number of inside beams. These components are selected 
individually by the algorithm and their position (values) are modified using Equations 5 through 8 during the 
iteration process. 
 

Table 3: General design constraints 

- Moments (steel deck) 
- Web crippling (steel deck) 
- Deflection (steel deck and slab) 
- Total factored load (slab) 

cs1 :  Mfmax (+) / Mr(+) ≤ 1.0, cs2 = Mfmax (-) / Mr(-)  ≤ 1.0  
cs3 : Rfint / Brint ≤ 1.0, cs4 = Rfext / Brext ≤ 1.0  
cs5 : L / adm ≤ 1.0 (construction), cs6 : L / adm ≤ 1.0 (cured) 
cs7 : wfmax / wr ≤ 1.0 (cured) 

- Moment (girders and beams) 
- Shear (girders and beams) 
- Deflection (girders and beams) 

cs8 : Mfmax / Mr ≤ 1.0  
cs9 : Vfmax / Vr ≤ 1.0 
cs10 : L / adm ≤ 1.0 

- Floor acceleration limit(walking) cs11 : (ap /g) / (a0 /g) ≤ 1.0
 

3.3 Iteration procedure 

The algorithm starts with a user-defined peloton size Nc (i.e. the number of solutions to be evaluated). 
Random solutions are generated and their components are then verified to determine if they satisfy all the 
ultimate and serviceability states. The algorithm won’t start the optimization process if any of the 
requirements are not met. This method has been used to simplify the programming of the algorithm as it 
provides solutions that must respect all the constraints and design criteria firsthand. During the iteration 
process, the algorithm calculates the cost of each floor configuration (i.e. each cyclist) that satisfies all the 
imposed constraints. For subsequent iterations, these solutions are adjusted by the algorithm using 
Equations 5 through 8. The modified solutions are analyzed and compared with the requirements once 
again before proceeding with the next iteration. If a floor component fails only one constraint, it is rejected 
and a new solution is sought. The new solution is chosen from an existing one and only one random variable 
of the solution is changed by applying the same step (step 2, 3 or 4). Floor components are identified by 
using discrete numbers. Therefore, changes in position are done using integer value only. 

 
4 RESULTS 

The preceding PDO algorithm was applied on three steel floor bays. The three examples are, 

- a corner bay 6 m x 8 m floor with laterally supported beams; 
- an interior bay 10 m x 8 m floor with laterally supported beams; 
- an interior bay 10 m x 8 m floor with non-laterally supported beams. 

The first example was used to test the capability of the PDO algorithm to find the best corner bay floor 
configuration that includes these restraints: 200 mm to 650 mm girders (2) and beams (3) with three to six 
spaces, six different thicknesses of normal density concrete, nine types of steel decks, which gives 1615 
(girders and beams) x 4 (spaces) x 6 (concrete thickness) x 9 (steel deck) = 23.4x1012 possible 
configurations. The design parameters used for this example are shown in Table 4. The additional dead 
and live loads take into account the load attributed to the adjacent bays and exterior walls. 

Table 4. Design parameters used for the corner bay floor configuration 

Bay size 
 (mm) 

Dead load (kPa) Live load  
(kPa)

Additional dead 
load (kN/m)

Additional live 
load (kN/m) 

Load for vibration 
criteria (kPa)

Corner bay 
W = 8000 
L = 6000 

WD = 1.6 
+deck +concrete 

+steel 

WL = 4.8 wD = 10 (north) 
wD = 6 (south) 
wD = 4 (west) 
wD = 6 (south)

wL= 14 (north) 
wL = 0 (south) 
wL = 4 (west) 
wL = 0 (south) 

wD=0.5 +deck 
+concrete +steel 

wL=0.5 

Interior bay 
W = 10000 
L = 8000 

WD = 2.0 +deck 
+concrete +steel 

WL = 2.4 wD = 16 (north) 
wD = 16 (south) 
wD = 10 (west) 
wD = 10 (south)

wL = 9.6 (north) 
wL = 9.6 (south) 
wL = 6 (west) 
wL = 6 (south) 

wD=0.5 +deck 
+concrete +steel 

wL=0.5 
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The best solution for the corner bay example is a steel floor system consisting of a W530x74 north girder, 
a W460x52 south girder, a W310x24 west beam, a W310x21 east beam, 4-W310x24 interior beams, a PC-
3615x0.76 mm steel deck and a 90 mm concrete slab. The total cost of this floor configuration is $7149. 
The second-best configuration for this floor is a W530x74 north girder, a W460x52 south girder, a W310x28 
west beam, a W310x21 east beam, 3-W310x28 interior beams, PC-3615x0.91 mm steel deck and a 90 mm 
concrete slab for a total cost of $7180. There is only a difference of $30 between these two floor 
configurations. This last configuration was only found by the PDO algorithm a few times since the W460x52 
beam has a 0.998 solicitation rate whereas the second-best three interior beam configuration has a cost of 
$7254. This configuration consist of a W530x74 north girder, a W460x60 south girder, a W310x28 west 
beam, a W310x21 east beam, 3-W310x28 interior beams and a P3623x0.76 steel deck with a 100 mm 
concrete slab. 

Two other interior bay configurations were design using the parameters presented in Table 4. The first bay 
configuration used beams that were laterally supported by the steel deck while for the other bay 
configuration, the beams were designed considering they were laterally unsupported. For the interior bay, 
the most economical floor configuration consists of 2-W610x101 girders, 2-W410x46 edge beams, 3-
W310x39 interior beams, a PC-3615x0.91 mm steel deck and a 100 mm concrete slab. The cost of this 
floor system is $14016. For the same interior bay with laterally unsupported beams, the most economical 
floor configuration is 2-W610x101girders, 2-W310x79 edge beams, 3-W250x67 interior beams, a PC-
3615x0.91 mm steel deck and a 100 mm concrete slab for a total cost of $17448. 

 

Table 5. Design parameters used for the corner bay floor 
Bay size 

 (mm) 
Floor components Maximum 

design ratio
Controlling design parameter 

Corner bay 
W = 8000 mm 
L = 6000 mm 
 
$ 7149 

W530x74 north beam 
W460x52 south beam  
W310x24 west beam 
W310x21 east beam 

4-W310x24 int. beams 
PC-3615x0.76 deck + 

90 mm slab

0.975 
0.998 
0.929 
0.845 
0.911 
0.751 

Mf / Mr 
Mf / Mr 
L / 360 
Mf / Mr 
L / 360 
Mf(+) / Mr(+) (construction) 

Interior bay 
W = 10000 mm 
L = 8000 mm 
(laterally supported 
beams) 
 
$ 14016 

W610x101 north beam 
W610x101 south beam  
W410x46 west beam 
W410x46 east beam 

3-W310x39 int. beams 
PC-3623x0.91 deck + 

100 mm slab

0.971 
0.971 
0.949 
0.949 
0.907 
0.737 

Mf / Mr 
Mf / Mr 
Mf / Mr 
Mf / Mr 
Mf / Mr 
Mf(-) / Mr(-) (construction) 

Interior bay 
W = 10000 mm 
L = 8000 mm 
(laterally 
unsupported beams) 
 
$ 17448 

W610x101 north beam 
W610x101 south beam 
W310x79 west beam 
W310x79 east beam 

3-W250x67 int. beams 
PC-3623x0.91 deck 

100 mm slab

0.971 
0.971 
0.966 
0.966 
0.972 
0.737 

Mf / Mr 
Mf / Mr 
Mf / Mr (Ls = 8000 mm) 
Mf / Mr (Ls = 8000 mm) 
Mf / Mr (Ls = 8000 mm) 
Mf(-) / Mr(-) (construction) 

 

Table 5 presents the results obtained for the three floor configurations, the maximum design ratio for each 
floor components and the controlling design parameter. Most of those ratios are in the high 90% solicitation 
rate for the girders and beams. For the deck design, a 75% solicitation rate is the highest value obtained. 
This lower value is expected since they are only fifty-four possible deck + slab configurations. Small 



 

   

ST48-9 

changes for this component can result in important design differences where higher design ratios do not 
exist. 

A hundred trial runs were realized for the 8 m x 6 m corner bay configuration to compare the PDO results 
with other metaheuristic methods (PSO and HS algorithm) as shown in Table 6. For all the trial runs, the 
number of solutions during the iteration process was fixed at twenty and the total number of iterations was 
5000. Since the PSO algorithm is a population base optimization method compared with the trajectory 
methods for the HS and PDO algorithm, it was expected that the calculation time used by the PSO algorithm 
was much larger. However, this did not result in a better success rate (6%) since this method requires a 
higher number of iterations for this application. The HS result shows a better success rate (23%) compared 
to the PSO algorithm combined with the fastest overall performance since only one solution is changed per 
iteration. The only algorithm with a 100% success rate for this floor configuration is the PDO algorithm. 
Furthermore, the PSO and HS algorithm did not find the second-best floor configuration of $7180. Even 
with 2000 iteration, the PDO algorithm still has a 92% success rate with a total calculation time of 110 
seconds. 

Table 6. Results from 100 trials, 5000 iterations, 4 interior beams 

  PSO (20 particles) HS (20 harmonies) PDO (20 cyclists)
Corner bay 
W = 8000 mm 
L = 6000 mm 
 

$7149 

Success rate 

Mean 

Worst 

Standard dev. 

Execution time 

6% 

$7473 

$8145 

$191 

2030 s

23% 

$7325 

$7683 

$157 

126 s

100% 

$7149 

$7149 

$0 

303 s

 

5 CONCLUSION 
 
For this work, a new optimization algorithm, the Peloton Dynamic Optimization (PDO) was presented for 
the design of a steel floor system. The optimization problem was the minimization of the cost of a steel floor 
configuration. The performance of the PDO algorithm was tested for three steel floor design configurations. 
For all test cases, the optimum design was consistently found where all components chosen by the 
algorithm satisfied all design constraints. Despite the fact that over a billion combinations were possible, a 
small peloton of 20 cyclists is sufficient to find the optimum floor configuration with a very high success rate. 
It was shown that this new algorithm is more efficient than the PSO and HS algorithms for finding the least 
cost of a composite floor system. The number of iterations and convergence rate can be improved by 
making an initial run with a large number of combinations (e.g. two to eight beam spacing) and then, once 
the preceding results are known, limiting the number of components available (e.g. imposing a fix value for 
the number of spacing). Further studies are being conducted to apply this method to composite floor 
systems with studs, to building bracing systems and to develop a real number version of this algorithm. 
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