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Abstract: A slender masonry wall is currently defined by the Canadian guidelines for masonry structures 
(CSA S304-14) to have a slenderness ratio greater or equal to 30.  Slender walls are an attractive structural 
option for low-rise construction, such as warehouses, school gymnasiums, and retail stores due to their low 
construction costs.  The code provisions for slender walls are based on observations from experimental 
programs dealing with these slender walls, basic principles of mechanics of materials, and practical 
considerations arising from masonry workmanship.  However, due to the difficulties in studying walls with 
high slenderness, very few experimental tests dealing with masonry walls with slenderness ratios greater 
than 30 have been conducted and in turn, aspects of the structural response of these slender masonry 
walls are still not well understood.  Such aspects include the effective stiffness at failure, deformation, 
stability, safety limits on the axial loads that these walls can carry, and the influence of the grouting extent 
(i.e., fully grouted walls vs. partially grouted walls).  In consequence, the code provisions have led to an 
uneconomical masonry solution in comparison with competing for construction alternatives, such as wood 
and steel.  In this study, a simplified, yet robust analysis model for masonry walls based on basic mechanics 
of materials is developed.  The model implements a fibre-section approach to account for the nonlinearity 
of the masonry and reinforcement materials in the moment-curvature response. Second-order effects are 
integrated into the model by solving the pertinent differential equations that govern the deformation of beam-
columns. The analysis model will be validated with experimental tests conducted by ACI-SEASC Task 
Committee on Slender Walls. The limitations of the model are discussed, and design recommendations 
have been provided. 

1 INTRODUCTION 

Canadian guidelines classify a slender masonry wall as a wall having a slenderness ratio greater or equal 
to 30.  Although slender masonry walls are desirable for low-rise construction such as gymnasium walls or 
warehouses, they are particularly susceptible to second-order effects. Design codes have provisions to 
determine the magnitude of second-order effects, but due to the nonlinearities of masonry materials and 
the difficulty in testing slender masonry walls, the variation of effective stiffness as loading is applied is not 
well understood. This has led to inaccurate estimations of slender wall deflections using current design 
code equations.   

Finite element (FE) methods have been used to analyze slender masonry walls (Liu and Dawe 2002).  FE 
models account for the variation of effective stiffness of slender walls under loading, resulting in greater 



 

   

ST47-2 

accuracy over design codes in approximating deflections.  However, FE analysis is time-consuming and 
expensive.  In this study, a mechanics-based parametric analysis is proposed as an alternative.  Mechanics-
based analysis models for slender elements under axial load have previously been developed and applied 
to prestressed concrete columns (Nathan 1985) through column deflection curves (CDC).  While CDCs 
applies only to elements with equal end moments under single curvature bending, Newmark’s Numerical 
Method was later applied to include elements under double curvature (Muqtadir 1991).  The application of 
CDCs to slender masonry walls is presented in the current study, and its performance and limitations are 
discussed. 

2 ANALYSIS MODEL 

2.1 Formulation 

Consider the deflection curves of a pinned-pinned masonry wall as illustrated in Figure 1.   

 

Figure 1: Deflection Curves for Masonry Walls 

For the deflection curve seen in Fig. 1(a) a function (ݑሺݔሻ) can be defined used to determine the horizontal 
deflection at any point (ݔ) along the height of the wall.  This function is obtained through solving the 
differential equation (Timoshenko and Gere 1961) shown below (Eq. 1).   
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Where 

݄ = The height of wall 

 The effective stiffness of the wall = ܫܧ

 The deflection of the wall = ݑ

ܲ = The axial load placed on the wall 

 ሻ = The distributed lateral load placed along the height of the wallݔሺݍ
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Due to the cracking of the masonry under tensile loads and the nonlinearity of the constitutive relationships 
for steel and masonry, the effective stiffness term (ܫܧ) in Eq. 1 is not constant.  Therefore, an exact solution 
of Eq. 1 is complex and difficult to determine. The solution of Eq. 1 can be approximated by a Taylor Series 
expansion (Eq. 2) as 

ሻݔሺݑ [2] ൌ ሺܽሻݑ ൅
௨ᇲሺ௔ሻ

ଵ!
ሺݔ െ ܽሻ ൅

௨ᇲᇲሺ௔ሻ

ଶ!
ሺݔ െ ܽሻଶ ൅ ⋯ 

Where 

 ݔ ሻ = The value of the deflection function at pointݔሺݑ

 ܽ ሺܽሻ = The value of the deflection function at pointݑ

 ܽ ሺܽሻ = The value of the deflection functions first derivative at point′ݑ

 ܽ ሺܽሻ = The value of the deflection functions second derivative at point′′ݑ

ሺݔ െ ܽሻ = The distance between points ݔ and ܽ 

Equation (2) indicates that the horizontal deflection at any point (ݔ) along the masonry wall may be 
determined if the parameters of another point (ܽ) are known.  Equation 2 can also be further simplified using 
the relationships between deflection, slope and curvature shown below: 

ሻݔሺ′ݑ [3] ൌ  ሻݔሺߙ

ሻݔሺ′′ݑ [4] ൌ ߶ሺݔሻ 

Where 

 ݔ ሻ = The slope at pointݔሺߙ

߶ሺݔሻ = The curvature at point ݔ 

If the wall is discretized into ݊ െ 1 elements connected by ݊ nodes, a piecewise deflection curve can be 
used to approximate the exact deflection of the wall as illustrated in Fig. 1(b).  Assuming the parameters of 
node ݅ െ 1 are known, a Taylor Series expansion (Eq. 2) can be used to approximate the horizontal 
deflection at node ݅: 

௜ݑ [5] ൌ ௜ିଵݑ ൅ ௜ିଵ߲݄ߙ ൅
ଵ

ଶ
߶௜ିଵ߲݄ଶ 

Where 

 ݅ ௜ = The deflection at nodeݑ

݅ ௜ିଵ = The deflection at nodeݑ െ 1 

݅ ௜ିଵ = The slope at nodeߙ െ 1 

߶௜ିଵ = The curvature of node ݅ െ 1 

߲݄ = The distance between nodes ݅ and ݅ െ 1 (The length of the element) 

Thus, to determine the deflection at each node, the deflection, slope, and curvature at the previous node 
must be known.  A relationship for slope between nodes ݅ and ݅ െ 1 can be determined using a similar 
methodology: 

௜ߙ [6] ൌ ௜ିଵߙ ൅ ߶௜ିଵ߲݄ 

Where 

 ݅ ௜ = The slope at nodeߙ



 

   

ST47-4 

The curvature of each node is determined by equating the external moment to the internal moment (both 
depicted in Fig. 2) as expressed below:   

௘௫௧,௜ܯ [7] ൌ  ௜௡௧,௜ܯ

Where 

 ݅ ௘௫௧,௜ = The external moment at nodeܯ

 ݅ ௜௡௧,௜ = The internal moment at nodeܯ

 

Figure 2: External and Internal Moments 

Referring to Fig. 2, the external moment at a node can be determined using statics.  Both first- and 
second-order effects must be considered; first-order moments are caused by lateral loads and concentrated 
moments, while second-order moments are caused by the deflection of the wall producing an eccentricity 
associated with the axial load acting on the wall.  The total external moment of a node can be determined 
through: 

௘௫௧,௜ܯ [8] ൌ ௢,௜ܯ ൅ ሺܲ ൅ ܵ ௜ܹሻ ቀݑ௜ିଵ ൅
ఈ೔షభడ௛

ଶ
ቁ 

Where 

 ݅ ௢,௜ = The first order moment at nodeܯ

ܵ ௜ܹ = The self-weight of the masonry above node ݅ 

Once the internal moment at a node is known, the associated value of curvature can be obtained through 
a conventional section compatibility analysis (a suitable algorithm is discussed in the next section). 

The analysis model described above was implemented in a script using MATLAB (MATLAB 2016).   

2.2 Moment-Curvature Relationship 

A moment-curvature relationship is developed using strain compatibility. The cross-section is discretized 
into fibres.  Material properties and geometry of the fibres are used to determine the forces present in each 
fibre for different values of strain (Figure 4) using suitable constitutive relationships.   Once equilibrium is 
satisfied, the resisting moment can be obtained by taking the moment of the forces in the fibres about a 
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reference axis (e.g., the outermost fibre in compression, Eq. 9) and the curvature can be obtained by 
dividing the outermost compressive stresses of the masonry by the depth of the neutral axis (Eq. 10), as 
follows: 

௜௡௧ܯ [9] ൌ ௠௜݀௜ܥ∑ ൅ ∑ ௠ܶ௜݀௜ ൅ ௦௜݀௜ܨ∑ ൅ ሺܲ ൅ ܹܵሻ ቀ
௧

ଶ
ቁ 

[10] ߶ ൌ
ఢ

ே.஺.
 

Where 

 ௜௡௧ = The resisting moment of the section (internal moment)ܯ

 ݅ ௠௜ = The compressive force of the masonry in fibreܥ

௠ܶ௜ = The tensile force of the masonry in fibre ݅ 

 ݅ ௦௜ = The force in steel barܨ

݀௜ = The distance from fibre ݅ to the reference axis 

 The thickness of the masonry unit = ݐ

߶ = The curvature of the section 

߳ = The strain of the outmost fibre in compression 

ܰ.  The neutral axis of the section = .ܣ

The ultimate moment and curvature correspond either to the point in which the masonry crushes (Figure 3) 
in compression or when the rupture of the steel is reached. 

 

Figure 3: Moment and Curvature at Ultimate 

The location of the neutral axis is determined through an iterative procedure in which equilibrium (Eq. 11) 
is checked in the cross-section.   

௠௜ܥ∑ [11] ൅ ∑ ௠ܶ௜ ൅ ௦௜ܨ∑ ൅ ܲ ൅ ܹܵ ൌ 0 

2.3 Masonry and Steel Material Models 

To simulate the response of masonry material under compression, a modified version the model proposed 
by (Priestley and Elder 1983) has been chosen.  This model assumes the maximum stress of the masonry 
to occur at a strain of 0.002 (Drysdale and Hamid 2005).  The behavior of steel is assumed to be an elastic 
plastic material with strain hardening.   
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Figure 4: Constitutive relationships for steel (left) and masonry (right) 

3 VALIDATION 

Test results of slender masonry walls conducted by the ACI-SEASC Task Committee on Slender Walls 
(ACI-SEASC 1982) are utilized to verify the model.  The walls were tested using an airbag that applied 
uniform pressure on one side of the wall (Fig. 5).  This pressure was increased until either failure or 
judgment that failure was near. Each wall also carried an eccentric axial load. The mid-wall displacement 
and lateral pressure were recorded at intervals during the experiment. 

 

Figure 5: Testing Mechanism of the Masonry Walls (ACI-SEASC 1982) 

3.1 Masonry Wall Assemblage 

Results for 9 masonry walls panels are available.  Different thicknesses of concrete masonry units used for 
the panels were 6’’ [143.0mm], 8’’ [193.8mm] and 10’’ [246.1mm]. Material properties of the units were 
determined on site through prism testing.  Geometric and material properties of the walls are shown in 
Tables 1 and 2 respectively.  
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Table 1: Masonry Wall Panel Geometry 

Panel Panel Thickness 
(mm) 

Axial Load 
(kN) 

Slenderness  
Ratio 

Failure Mode 

1 
2 
3 
4 
5 
6 
7 

246.1 
246.1 
246.1 
193.8 
193.8 
193.8 
143.0 

5.7 
15.3 
15.3 
15.3 
15.3 
5.7 
5.7

30.6 
30.6 
30.6 
38.8 
38.8 
38.8 
52.6

Stopped Test 
Stopped Test 
Stopped Test 
Stopped Test 
Stopped Test 
Stopped Test 

Masonry Crushing
8 143.0 5.7 52.6 Masonry Crushing
9 143.0 5.7 52.6 Stopped Test

Table 2: Masonry Material Properties 

Masonry Unit Compressive 
Strength 
(MPa) 

Modulus of 
Elasticity 

(MPa) 

10’’ [246.1mm] 16.96 14962 

8’’   [193.8mm] 17.89 11859 

6’’   [143.0mm] 21.96 10963 

 
Each panel was reinforced with five bars of Grade 60 [420 MPa] steel (Fig. 5).  Material properties of the 
steel rebar are shown in Table 3. 

Table 3: Steel Rebar Properties 

Grade Yield Strength 
(MPa) 

Ultimate Strength 
(MPa) 

Yield Strain Youngs Modulus 
(MPa) 

60 483 758 0.0025 197190

3.2 Results 

For the initial pre-cracked, elastic response, the analytical model predicts an accurate load-displacement 
response in the elastic region for each panel.   

After cracking, but before yielding, the model predicts greater deflections than those obtained during the 
experimental results, for the same levels of lateral loads.  The discrepancy is more prevalent in the 10’’ 
[246.1mm] panels than with the 6’’ [143.0mm] panels.  The analytical predictions for panels 1, 4, and 8 
closely resemble the behavior of the experimental tests with only minor variations.  Analytical predictions 
for panel 2, 3, 5, 6, 7 and 9, however, appear to overestimate the stiffness of the panels as the slope of 
their load-displacement curve is slightly higher than those from experimental results.   

After yielding, analytical load-displacement responses predict a large amount of deflection over small 
increases of lateral pressure.  Although this behavior is present in the experimental results as well, the 
slope of the load-displacement response of the experimental results is slightly higher than the analytical 
predictions.  This is especially present in panel 4 where this is a noticeable difference in slope after yielding 
between experimental and analytical results.  When approaching the ultimate moment of the panels, many 
of the analytical results for the panels predict a greater failure displacement than the experimental results 
with the exceptions being panels 3, 7 and 8.  This behavior is expected as experimental testing of the 
panels (except for panels 7 and 8) was stopped before failure occurred.  Investigating both panels 7 and 8, 
the failure point predicted by the analytical model and that of the experimental results match well.  The 
failure lateral pressure predicted by the analytical model also approximates that of the experimental testing 
for the remaining panels suggesting the analytical model retains a reasonable level of accuracy. 
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Graphs representing the lateral pressure as a function of midpoint deflection for all panels can be found in 
Fig. 6.   

 

Figure 6: Experimental to Analytical Comparison 
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4 APPLICATIONS 

4.1 Interaction Diagram with Slenderness Consideration 

Slenderness interaction diagrams can be used to determine any combination of axial load and moment 
placed on a wall before failure occurs.  Without the inclusion of slenderness, the failure mode of masonry 
walls governed by material failure (e.g. the masonry crushing or steel fracturing).  However, as the 
slenderness increases, the failure mode is governed by stability (e.g. the buckling of the wall). 

To generate a slenderness interaction diagram for a masonry wall, a constant axial load is placed atop the 
wall.  The eccentricity of this load will be varied until the wall has reached failure.  This process is iterated 
for various levels of axial load until enough points are determined to construct the curve (Fig. 7). It is 
observed that as the slenderness of the wall increases, the axial load and moment capacity significantly 
decreases.   

 

Figure 7: Slenderness Interaction Diagram   

4.2 Comparison to the Canadian Standard 

To demonstrate the conservatism of the Canadian standard for masonry structures (S304-14), both the 
experimental and analytical results of Panel 3 have been compared with the deflection obtained with the 
current design equations.  As seen, the design equations predict much more deflection under the same 
loads as compared to both analytical and experimental results under service conditions. 

 

Figure 8: Comparison to Canadian Design Equation 
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4.3 Model Limitations 

The process outlined above is only valid for single curvature masonry walls with simple boundary 
conditions. 

5 CONCLUSION 

Due to the nonlinearities of masonry materials and the difficulty in testing slender masonry walls, the 
effective stiffness of a masonry wall under loading is not well understood, resulting in difficulty estimating 
the true horizontal deflection.  As the effective stiffness is a key term in the differential equation governing 
the deflection of beam-column elements, solving this equation becomes quite complex.  As an alternative, 
a mechanics-based algorithm has been presented to solve this differential equation numerically through 
the segmentation of a masonry wall into a finite number of nodes and elements.  A fibre-section approach 
is used to account for the nonlinearity of the masonry and reinforcement materials in the moment-curvature 
response.  The procedure is easily programmable into spreadsheets, leading to a quick and effortless way 
to analyze the behavior of slender masonry walls.  In addition, aspects such as the changing effective 
stiffness, second-order effects, and failure modes can be determined under multiple loading scenarios.  The 
validity of the model has been verified with test results conducted by the ACI-SEASC Task Committee on 
Slender Walls and the current limitations of the algorithm are presented. 
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