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Abstract: A Particle Swarm Optimization algorithm (PSO) was used to find the optimal design of unbraced 
frame configuration systems in multi-storey buildings. The unbraced frames were optimized by minimizing 
the weight of their members while respecting the design requirements of the National Building Code of 
Canada (NBC 2010) and the Canadian standard for the Design of Steel Structures (CAN/CSA S16-09). 
The algorithm finds the optimal member sizes of the lateral force resisting system of a rectangular building 
consisting of four unbraced frames. Since a symmetrical rectangular building is implied, only two distinct 
frames are optimized, perpendicular to one another. The frames with the smallest weight are found by 
selecting appropriate sections from a commercially available set of wide flange steel sections. The algorithm 
accounts for the serviceability and strength constraints as specified in CSA S16. Two major changes to the 
standard PSO were used in this study. During the iteration process, a fly-back method was implemented 
for members that do not meet all design criteria. Furthermore, the particle velocity of the PSO is limited to 
a minimum value to avoid premature stagnation of the solution. This prevents the PSO from being stuck in 
a non-optimal solution. For a four-story building and 100 trials, the difference in weight between the optimal 
and worst solutions obtained by the PSO is less than 2.2% and 2.5% for the two frames, respectively. The 
weights of the best solution obtained by the algorithm for the two frames were validated with a commercial 
software. 

1 INTRODUCTION 

In recent years, the use of heuristic algorithms for the design of structures has become a more common 
practice. The Particle Swarm Optimization (PSO) algorithm is an optimization method to solve complex 
optimization problems. This algorithm was first introduced by Kennedy and Eberhart (1995). Furthermore, 
Kennedy and Eberhart (2001) demonstrated that this type of algorithm converges to the optimal solution 
quicker than other types of heuristic algorithms at that time. The PSO algorithm is based on the social 
behaviour of groups of animals such as bees, insects and birds. When these groups of animals and insects 
are looking for food, there is normally a leader who influences the other group members. In addition, each 
member is able to memorize its position in the group. The displacements made by each member of the 
group are based on their personal knowledge and the behaviour of the other group members. The PSO 
algorithm operates in a similar manner. Many studies have used the PSO algorithm for different types of 
optimization problems, including design optimization of structures. In addition, Eberhart and Shi (2001) 
showed the developments and potential areas of application of the PSO algorithm. 

Even though the PSO algorithm was developed for specific applications such as the optimization of a 
mathematical function, it was used by Fourie and Groenwold (2002), Schutte and Groenwold (2003) and 
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Perez and Behdinan (2007) to optimize members of truss structures. The PSO algorithm was also used for 
the design of different types of structures. Lefrançois et al. (2011) used the algorithm to optimize composite 
and non-composite floor systems. The purpose of their study was to minimize the cost of each floor 
configuration. They demonstrated that the algorithm was effective and found that the PSO algorithm 
regularly found the optimum solution for each floor configuration.  

Saka and Kameshki (1998) used a genetic algorithm for the design of multi-stories steel frames subjected 
to multiple loading cases. The design included serviceability and strength constraints according to the 
British Standards BS5950. Lateral torsional bucking of beam columns was also considered for the design 
of these frames. Kameshki and Saka (2001a) used a genetic algorithm to optimize multi-storied steel frames 
with semi-rigid connections. A nonlinear empirical model was used to include the moment–rotation relation 
of beam-to-column connections. Kameshki and Saka (2001b) also used a genetic algorithm based optimum 
design method for multi-storied non-swaying steel frames with different types of lateral load resisting 
systems. The design method obtains a lateral load resisting system with the least weight by selecting 
appropriate sections for beams, columns and bracing members from a standard set of steel sections. The 
algorithm accounts for serviceability and strength constraints. A similar type of genetic algorithm was used 
by Kameshki and Saka (2003) for nonlinear multi-storied steel frames with semi-rigid connections. The 
algorithm accounts for the effect of the flexibility of the connections with a polynomial model and for the 
geometric non-linearity of the members.  

Camp et al. (2005) performed the optimization of steel frames using an Ant Colony Optimization (ACO) 
algorithm. The frame is minimized with a penalty function to enforce strength and serviceability constraints. 
A comparison was presented between the ACO frame designs and designs developed using a genetic 
algorithm and classical continuous optimization methods. Saka (2009) used a harmony search method 
algorithm for the optimum design of unbraced steel frames. Member grouping was used so the same 
section can be adopted for each group. Again, the selection is carried out so the design limitations are 
satisfied while minimizing the weight of the steel frame. Kaveh and Talatahari (2010) proposed a two-phase 
ACO algorithm to optimize unbraced steel frames. The first phase was executed with a sub-optimization 
mechanism to reduce the search space and the computation time of the algorithm. During the second 
phase, searches were concentrated on the regions neighbouring the best solution obtained in the first 
phase. They compared their results with those of a conventional ACO, a genetic algorithm and a harmonic 
search algorithm. They demonstrated that the results of the algorithm were achieved faster than other 
methods. 

The design of unbraced frame configurations using a PSO algorithm was presented by Dogan and Saka 
(2012). The purpose of their study was to minimize the weight of the members of each unbraced frame that 
met the requirements of the American Institute of Steel Construction (AISC) Load and Resistance Factor 
Design standard (LRFD). They demonstrated that the PSO algorithm was an effective method for the design 
of rigid frames. 

All these studies have used heuristic algorithms for the design of swaying or non-swaying two dimensional 
frames that are part of a building structure.  They do not incorporate in their optimal design algorithms the 
three-dimensional lateral load resisting system for the whole building in one optimization calculation. For 
this study, a PSO algorithm is used to optimize a complete lateral load resisting system for a rectangular 
type building consisting of unbraced frames on each side of the building and where two symmetrical frames 
are facing each other. There is no restriction on the building’s number of floors. The design satisfies all the 
requirements of the National Building Code of Canada (NBC 2010) and the Canadian Steel Construction 
Standard (CSA S16-09). Lateral load resisting systems ensure stability when the building is subjected to 
wind loads and earthquakes. Unbraced frames are often used but are limited to low rise and medium height 
buildings since they are usually associated with higher lateral deformation compared to concentric braced 
frames. However, they can be very effective to dissipate energy in high seismic areas. One of the difficulties 
with unbraced frames is the iterative nature of the calculations and design since the inner forces in the 
members are a function of the size of the members themselves. The design of these lateral load resisting 
systems are thus time consuming. As a result, they are often oversized to reduce the computational time 
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and an optimum design is seldom obtained. An effective optimizing algorithm will provide a physically 
realizable solution where additional constraints can be specified by the user (e.g. minimum and maximum 
size of members, classes and types of members, etc.). This is easily implemented in the PSO algorithm. 

2 DESIGN PROBLEM 

The design of a building’s steel lateral load resisting system is a potentially long and complex process that 
involves many calculation steps. This process can become even more challenging when trying to get an 
optimized solution. For this project, the procedure can be divided into six stages, namely the identification 
of the geometric parameters of the building, the identification of relevant climate data, the identification of 
constraints, the analysis of potential solutions and finally the optimization of the solution. 

2.1 Building’s geometric parameters 

For this study, a typical building of rectangular shape was used as shown in Figure 1. This form is commonly 
used for commercial and industrial buildings. The locations of the unbraced frames are illustrated by the 
dotted lines. The number of stories is specified by the user and may differ from what is shown in Figure 1 
(four stories were used for this work). 

The user must specify the general data of the building in a file that can be read by the algorithm in order to 
start the optimization process. The data specified for this study are presented in Table 1. The last column 
shows the values used for this study while the previous column shows the range of values that can be used 
in the algorithm. The user is free to impose the size and number of stories of the building. However, an 
even number (e.g. 4, 6, 8, etc.) of frames must be specified for the lateral load resisting system 
configuration. This means that for a building with more than four frames, the user must ensure that the 
frames are positioned so there is symmetry between them. For this study, four unbraced frames were 
imposed, one for each side of the building. Other parameters to be provided are the length of the frames, 
the orientation of the frames, the type of members (i.e. beam or columns) and the type of restraints (i.e. 
free or restrain). Furthermore, for this work, all columns are considered unique sections. They can be 
different sizes per story and only two different perpendicular seismic load directions are considered. This 
condition was imposed in order to validate the robustness of the algorithm. 

 

Eb

Db

Htot

Figure 1:  Unbraced steel frames of a typical commercial or industrial type building 
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Table 1: Geometric parameters of the building 

 

 

Building parameters Allowed values Used values 

Length, Db 

Width, Eb 

Height, Htot 

Number of stories (+1) 

Number of frames 

Frame length, LCD 

Frame length, LCE 

All 

All 

All 

All 

Even number 

≤ Db 

≤ Eb 

30 m 

21 m 

16 m 

5 

4 

10 m 

7 m 

 

The National Building Code of Canada (NBC 2010) requires that all lateral load resisting systems designed 
to resist earthquake forces must take into account their ability to dissipate seismic energy. This requirement 
is satisfied through dissipation coefficients, Rd and Ro. Each possible level of ductility is defined by a 
different combination of Rd and Ro values. For example, the lateral load resisting system shown in Figure 1 
has four possible levels of ductility.  These levels are ductile (Rd = 5 and Ro = 1.5), moderately ductile (Rd 
= 3.5 and Ro = 1.5), limited ductility (Rd = 2 and Ro = 1.3) and low ductility (Rd = 1.5 and Ro = 1.3). Low 
ductility represents conventional constructions which can be used for all lateral load resisting systems. 
Since there are fewer requirements specified in CSA-S16 for this case (e.g. capacity design of members is 
not required), they are often used by engineers for the design of lateral load resisting systems. For this 
study, the algorithm was tested by considering the level of ductility corresponding to conventional 
constructions. In future studies, the algorithm will be modified to consider other ductility levels with the 
requirements (i.e. capacity design) that accompany them. 

2.2 Loads 

Loads can be divided into two categories, gravity loads and lateral loads. The gravity loads include dead 
loads (D), live loads (L) and snow loads (S) while the lateral loads include wind loads (W) and earthquake 
loads (E). The earthquake loads are often responsible for higher forces in a building’s lateral load resisting 
system than wind loads. Earthquake loads were calculated by the algorithm as required by the NBC 2010. 
For the unbraced system example used in this study, wind loads did not control any part of the design. 

There are two unbraced frames analyzed by the algorithm in this study, one on the Eb face of the building 
and one on the Db face of the building. Load types on the beams forming the unbraced frames were either 
uniform distributions (wd, wl, ws) or concentrated loads (Pd, Pl, Ps), depending on the type of floor system. 
The load distribution for each configuration is illustrated in Figure 2. In both configurations, part of the loads 
from adjacent bays can be transferred directly to the frame columns by specifying additional axial loads at 
each level of the frames (Pad, Pal, Pas, Pbd, Pbl, Pbs).  

The equivalent static seismic load method defined in the National Building Code of Canada (NBC 2010) 
was used to determine the lateral loads on the building. The lateral seismic loads are calculated for each 
floor level where the relative stiffness of each frame, the centre of gravity relative to the centre of rigidity 
and the required minimum eccentricity limit were all considered in the calculations. Lateral earthquake loads 
obtained by the algorithm were distributed on each floor of the frames according to the scheme of Figure 
3. Furthermore, fictional lateral loads can be specified to account for a structure’s erection defects for the 
dead, the live (floor levels) and the snow loads (roof level). 
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2.3 Analysis and design 

A stiffness analysis method (matrix method) is used to determine the critical internal forces in the members 
of the lateral load resisting system. Initial selection of the members is required before performing the 
analysis of the structure. Two distinct steel section lists were used by the algorithm for this project, one for 
the columns and another one for the beams of the frames. The steel sections are taken from the tables of 
the CISC Handbook of Steel Construction (2011). The user can specify the minimum and maximum sizes 
(or nominal masses) of the beams and columns beforehand in order to create the available steel section 
list. For the initial iteration of the algorithm, the largest available sections from the section list are used for 

Figure 3:  Lateral earthquake load distribution 

FE1 / 2 FE1 / 2

FE2 / 2

FE3 / 2

FE4 / 2

FE2 / 2

FE3 / 2

FE4 / 2

Figure 2:  Gravity loads on frames with a) uniform loads on beams and b) concentrated loads on beams 
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each beam and column. The sections selected are then used to make a first analysis of the frames. The 
load combinations are created according to the requirements of the NBC 2010. 

Members are designed to meet all the requirements of the CSA-S16 standard for ultimate and serviceability 
limit states. The ultimate limit state requirements demand that the resistance of the members must be higher 
than the critical factored internal forces for all load combinations. These requirements include shear 
resistance (Vr), compression resistance (Cr), tension resistance (Tr), flexural resistance (Mr), combined 
compression and flexural resistance as well as combined tension and compression resistance. 

The serviceability limit state requirements imply that the lateral displacement of each floor due to seismic 
loads is limited to an acceptable amount (i.e. h/40). The maximum deflection of beam members is also 
controlled for live and snow loads (i.e. L/360). Furthermore, a slenderness limit is used for all members (i.e. 
L/200) and each member’s class is also limited depending on the resistance criteria to verify. 

3 PARTICLE SWARM OPTIMIZATION ALGORITHM (PSO) 

For the lateral load resisting system of this study, the search domain for the PSO algorithm is a list of steel 
sections chosen by the user. The solution is found by the algorithm among the list of steel sections for each 
member forming the lateral load resisting system. 

3.1 Basic equations 

The particles of a PSO algorithm are mathematical constructs, having three main parameters: position, 
velocity and fitness. The position represents the unknown variables of the problem, the velocity determines 
the rate of change of the position, and the fitness is a measure of how well the particle solves the 
optimization problem. For all iterations, the PSO algorithm is based on only two equations: one to modify 
the velocities of the particles (Equation 1) and the other one to change their positions (Equation 2). 

ሾ1ሿ		ݒ௞ାଵ
పሬሬሬሬሬሬሬሬሬറ ൌ ߱௞ݒ௞

పሬሬሬሬറ ൅ ܿଵݎଵ ቆ
௞݌
௜ െ ௞ݔ

௜

ݐ∆
ቇ ൅ ܿଶݎଶ ቆ

௞݌
௚ െ ௞ݔ

௜

ݐ∆
ቇ	 

ሾ2ሿ		ݔ௞ାଵ
௜ ൌ ௞ݔ

௜ ൅ ௞ାଵݒ
పሬሬሬሬሬሬሬሬሬറ∆ݐ 

In these equations, the index k represents the iterations, v	is the velocity of the particle, pi is the particle's 
best position since the beginning of the calculation, pg is the best overall position of all particles of the 
swarm,   is the inertial weight, and t  is a unit time step. The variables r1 and r2 represent random 
numbers between 0 and 1. The variable c1 is a coefficient controlling the cognitive behaviour, indicating 
how much a particle trust itself (i.e. local best) and c2 is a coefficient controlling the collective behaviour, 
indicating how much a particle has confidence in the group (i.e. global best). To select these values, 
extensive testing is required with the algorithm to find the best combination. Furthermore, it is recommended 
to choose coefficients consistent with the equations of Ruben and al. (2007) to ensure convergence of the 
algorithm.  

The inertial weight   balances the current velocity against the local and global bests and his usually smaller 
than 1.0 in order to reduce the velocity of the particles during the iteration process. For this problem, a 
linear reduction method (Perez and Behdinan (2007)) was used. This prevents the particle from oscillating 
around the optimum point. This method is applied using Equation 3. 

ሾ3ሿ		߱௞ାଵ ൌ ߱௠௔௫ െ ൬
߱௠௔௫ െ ߱௠௜௡

݇௠௔௫
൰ ݇ 

In Equation 3, ωmax is the maximum inertial weight (initial value), ωmin is the minimum inertial weight (final 
value), kmax is the maximum number of iterations and k is the number of the current iteration. The new 
position xik+1 is part of a continuous domain. However, steel sections are identified by using discrete 
numbers. Therefore, the new positions of the particles are rounded to its closest integer value. 
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3.2 Objective function 

The objective function is the total weight of the unbraced frames. Since all the beam to column connections 
of the unbraced frames are of the same type (moment connections), the extra weight for these connections 
are not included and does not influence the results. The function, represented with Equation 4, has two 
variables which are the total weights of the sections constituting the two unbraced frames.  

ሾ4ሿ		݂ሺݔଵሻ ൌ෍ݔ௜
ଵ

௡

௜ୀଵ

								,							݂ሺݔଶሻ ൌ෍ݔ௜
ଶ

௡

௜ୀଵ

 

A particle is a potential solution of the lateral load resisting system. It includes all the steel sections for all 
the members forming the two unbraced frames. Given that the steel sections are selected individually by 
the algorithm, each member of the lateral load resisting system has a velocity and a position that are 
modified using Equations 1 and 2 during the iteration process. 

The algorithm starts with a user-defined population size N (i.e. the number of initial solutions to be 
evaluated). All beams and columns forming the two unbraced frames are taken from the section lists where 
the heaviest sections in both lists (beams and columns) are assigned to all initial frames. The frames are 
then verified to determine if they satisfy all the ultimate and serviceability states of CSA S16. The algorithm 
won’t start the optimization process if any of the requirements are not met. This method has been used to 
simplify the programming of the algorithm as it provides a solution that must respect all the constraints and 
design criteria as well as record the best initial solutions (i.e. pi and pg). For subsequent iterations, potential 
solutions are adjusted by the algorithm using Equations 1 and 2 as well as the imposed constraints. The 
population size, the initial particle velocities and the number of iterations follow the recommendations from 
several studies, including those of Kennedy and Eberhart (1995) and Shi and Eberhart (1998 and 1999). A 
minimum particle velocity is used to prevent stagnation of the particles which can result in obtaining a 
solution that is not optimized. The minimum velocity is applicable in all the directions taken by the particles 
(i.e. positive and negative displacements). The PSO algorithm parameters used in this study are: N = 20, 
kmax	= 500, c1 = 0.9, c2 = 1.1, min = 0.6, max= 0.9, vmin= ± 0.5. 

3.3 Constraints 

At the first iteration, the initial solutions were analyzed and compared with the imposed constraints. The 
execution of the algorithm will automatically stop if the slenderness, the class or any strength criterion (e.g. 
Mf > Mr) of a section of the unbraced frames does not meet the specified requirements. When this happens, 
the user must change the list of eligible sections in order to guarantee an acceptable solution. 

During the iteration process, the algorithm calculates the weight of each unbraced frame (i.e. each particle) 
that satisfies all the imposed constraints and determines if they are the best solutions obtained to date. The 
best solutions obtained beforehand are replaced by better solutions found during subsequent iterations. 
Furthermore, the best overall solution is also determined by the algorithm. During the iteration process, the 
best overall solution previously obtained is replaced by a better solution when one is found. However, when 
the solutions don’t meet all the specified requirements, coefficients assigned individually to each member 
of the unbraced frames are used. The coefficient of a member, whose initial value is zero, is increased by 
one each time a requirement is not met. Each section whose coefficient has a value other than zero is 
replaced by the corresponding section of the best solution previously obtained for that particle. The particle 
velocities of the modified sections are reduced by a reduction factor FR (e.g. 0.99). In addition, the modified 
solutions are analyzed and compared with the requirements once again before proceeding with the next 
iteration. The modified solutions that meet all requirements are handled in the same way that was presented 
earlier while the modified solutions that still do not meet all the requirements are rejected. 

 

4 RESULTS 

The best solutions are those which have the lowest weight while satisfying all design requirements. The 
weights of the potential solutions are initially high but they gradually diminish during the iteration process 
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of the algorithm. It takes approximately 300 to 400 iterations before the best solution is found. To validate 
the algorithm’s effectiveness, it must be executed repeatedly. This will verify if the algorithm can regularly 
get the same solution or a solution that almost has the same weight. For this project, the algorithm was run 
100 times and a basic statistical analysis was performed. The minimum weight obtained by the algorithm 
was registered and the results are presented in Table 2. The weight of the best solution found by the 

algorithm is 47.99 kN for the unbraced frame Eb and 69.73 kN for the unbraced frame Db. The difference 
between the weight of the best solution and the weight of the worst solution is less than 1.1 kN (2.2%) for 
the unbraced frame Eb and about 1.7 kN (2.5%) for the unbraced frame Db. The average weight found is 
48.52 kN and 70.50 kN with standard deviations of 0.24 kN and 0.62 kN, respectively. 

Unbraced frame Eb Unbraced frame Db 

 Weight (kN) Weight (kN) 

Best 

Worst 

Mean 

Standard deviation 

47.99 

49.02 

48.52 

0.24 

Best 

Worst 

Mean 

Standard deviation 

69.73 

71.39 

70.50 

0.62 
 

 

The effectiveness of the algorithm is verified by determining whether the final solution obtained by the 
algorithm is the optimal solution. Since unbraced frames are indeterminate structures, the results of the 
analysis are a function of the section type of the members. When a member’s section changes, the results 
of the analysis will change and the design requirements that have been all satisfied beforehand may now 
be non-satisfactory. Since there is an enormous amount of possible configurations of member sections, 
finding the absolute optimal solution cannot be guaranteed. Commercial structural programs also have this 
problem. However, an attempt to validate the results with commercial software was performed. A 3D model 
of the same building was created and analyzed. The same unbraced frame members (i.e. the sections 
constituting the best solution) found by the PSO algorithm was used (i.e. specified by the user). The best 
solution for the unbraced frames Eb and Db are presented in Figure 4.  

W250 X 33

W460 X 74

W610 X 101

W610 X 113

Frame Eb

W250
X 33

W310
X 74

W310
X 79

W310
X 107

W310
X 45

W250
X 73

W310
X 107

W310
X 143

W410 X 54

W530 X 101

W690 X 125

W690 X 140

Frame Db

W310
X 45

W310
X 60

W310
X 74

W310
X 118

W310
X 45

W250
X 101

W310
X 129

W310
X 158

Figure 4:  Sections constituting the best solutions for the unbraced frames Eb and Db 

Table 2.  Results from 100 trials for the unbraced frames 
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Table 3: Maximum solicitation ratios (Cf / Cr + Mf / Mr ) of the selected sections 

The maximum solicitation ratios (Cf / Cr + Mf / Mr) of the selected sections for the two unbraced frames and 
their critical load combinations are presented in Table 3. The ratios of the sections selected by the PSO 
algorithm were generally greater than 90% for the beams and for most of the columns. For the unbraced 
frames obtained by the PSO algorithm, only two sections per frame can be replaced by smaller sections 
and still be an acceptable solution. 
 

 

Frame Eb Frame Db 

Sections Maximum 
ratio 

Critical load 
combination

Sections Maximum 
ratio

Critical load 
combination

W310x107 

W310x79 

W310x74 

W250x33 

W250x33 

W460x74 

W610x101 

W610x113 

W310x45 

W250x73 

W310x107 

W310x143 

  0.98 * 

  0.99 * 

0.92 

0.59 

0.94 

0.98 

0.95 

0.98 

0.73 

0.93 

0.97 

0.97 

1.0D+1.0E 

1.0D+1.0E 

1.0D+1.0E 

1.0D+1.0E 

1.0D+1.0E+0.5L+0.25S

1.0D+1.0E+0.5L+0.25S

1.0D+1.0E+0.5L+0.25S

1.0D+1.0E+0.5L+0.25S

1.0D+1.0E+0.5L+0.25S

1.0D+1.0E+0.5L+0.25S

1.0D+1.0E+0.5L+0.25S

1.0D+1.0E+0.5L+0.25S

W310x118 

W310x74 

W310x60 

W310x45 

W410x54 

W530x101 

W690x125 

W690x140 

W310x45 

W250x101 

W310x129 

W310x158

0.82 

0.87 

0.81 

0.83 

0.90 

0.99 

0.98 

0.95 

0.83 

0.97 

0.95 

0.97

1.0D+1.0E 

1.0D+1.0E+0.5L+0.25S

1.0D+1.0E+0.5L+0.25S

1.25D+1.5S+0.5L 

1.0D+1.0E+0.5L+0.25S

1.0D+1.0E+0.5L+0.25S

1.0D+1.0E+0.5L+0.25S

1.0D+1.0E+0.5L+0.25S

1.25D+1.5S 

1.0D+1.0E+0.5L+0.25S

1.0D+1.0E+0.5L+0.25S

1.0D+1.0E+0.5L+0.25S

Note: Maximum solicitation ratios mark with an * are for Tf / Tr + Mf / Mr. 

 

They are the columns supporting the roof and have a solicitation rate of 0.83 or less. When these sections 
were changed in the commercial software, the next smaller sections available in the list of columns passed 
all of the requirements. However, only one section can be changed at a time on frame Eb since the internal 
forces of both sections are affected by these modifications. For this example, serviceability limits did not 
control the design of the sections. 

5 CONCLUSION 

A PSO algorithm was developed to obtain the optimal design of a steel lateral load resisting system 
according to the requirements of CSA S16-09, the National Building Code of Canada (NBC 2010) and any 
other constraints imposed by the designer (e.g. dimensions and classes of the sections).The results have 
determined that by using the appropriate parameters, it was possible to obtain a solution that can be 
considered an optimal solution. With 100 trials, the difference in weight between the best solution obtained 
by the PSO algorithm and the worst solution is less than 1.7 kN and the standard deviation is less than 0.62 
kN. Furthermore, the efficiency of the PSO algorithm was validated by the solicitation rates of all member 
sections for each load combinations. The maximum solicitation rate of the members was generally greater 
than 90%, except for a few sections. An innovative approach used in this study for minimizing the effect of 
stagnation of the algorithm is the use of a minimum velocity and a reduction factor. Since the sections are 
referenced by integers, the minimum velocity allowed the particles to continue searching the domain once 
the velocities of the particles were too small (i.e. lower than 1). Furthermore, a fly back process was 
implemented to each individual section of the unbraced frames that did not satisfy all the design 
requirements. The reduction factor was then used on the velocities of those sections. These slower moving 
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particles would try to find the best solution at the next iteration, increasing the likelihood of obtaining a 
feasible solution.  The combination of the fly-back process and the velocity reduction factor favoured a 
better convergence of the PSO algorithm. Future studies will include a seismic dynamic analysis and design 
requirements including the capacity design requirements of the CSA S16-09 standard. 
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