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Abstract: Significant effort has been vested over the years in quantifying the contribution of concrete to 
the shear strength of RC members. Design code expressions have been calibrated to a carefully assembled 
database of tests, where success of each design proposal is tested from its concurrence with the 
experimental sensitivities for the range of the design parameters, including size-related phenomena which 
are attributed to the brittle fracture of concrete.  Recent advances in the study of bond and anchorage have 
provided insights into a totally new interpretation of shear failure.  It is shown that strain penetration over 
the unconfined length, which spreads further into the anchorage with increasing moment at midspan, may 
propagate over the entire length of available longitudinal reinforcement, perpetrating brittle failure and 
collapse at loads that are much lower than the nominal shear strength. With this approach it is possible to 
reproduce successfully the experimental trends and to provide an alternative interpretation to the size effect 
which seems to be owing to the reduced bond strength of larger size bars in unconfined anchorages and 
the need for longer anchorage lengths - parameters that have not been accounted for in the past when 
calibrating shear models with test results.   Examples from the experimental database of ACI 445 are solved 
using the mechanistic model for strain penetration in the shear span of a loaded beam; analytical estimates 
are calibrated against the test values.  The significance of the work lies in the prospect it offers for a totally 
different look at shear design and the determination of the ௖ܸ term for practical applications. 

1 INTRODUCTION 

The debate about the contribution of concrete term to the shear strength of prismatic Reinforced Concrete 
(RC) members has been ongoing for at least 40 years and recently it has been refueled on the occasion of 
revision of the technical guideline of ACI-ASCE Committee 445 (referred to hereon as C445) (Belarbi et al. 
2017). For reasons of simplicity and clarity, expressions estimating the concrete contribution term ௖ܸ have 
been developed with reference to the shear strength of concrete beams without transverse reinforcement. 
The debate reflects the uncertainty about the role of the crucial variables affecting ௖ܸ :  experiments indicate 
that the shear strength of concrete members does not increase proportionately with the bearing (web) area, 
ܾ௪݀ – but that instead, there is an implicit size-effect in ܸ ௖ that is owing to fracture mechanics considerations 
(Bazant and Planas 1997) and the larger aggregate size used in real life members as compared to the 
specimens tested in laboratories (Collins and Kuchma 1999).  Revisiting this problem is one more attempt 
by ACI-ASCE 445 to correct the discrepancies between test results and design expressions.  

About 20 years ago, C445 established a carefully controlled database of hundreds of concrete beam tests 
(Reineck et al. 2003, Belarbi et al. 2017). The database has been used to refine a variety of empirical 
design expressions and models for ௖ܸ; acceptance criterion is the ability of the design model to reproduce 
the experimental sensitivities over the entire range of the experimental parameters.  It was already known 
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that empirical models for shear performed adequately when used for beams having similar sizes as those 
used for model calibration; however significant deviations were observed between calibrated models and 
test results outside the range of parameters studied, the most dramatic being a systematic overestimation 
of beam strengths with larger than common size.  This became known as “the size effect in shear” and it 
has been at the center of the shear controversy for years (Kani 1967, Ozbolt and Eligehausen 1995, Collins 
and Kuchma 1999, Bažant 1999, Karihaloo et al. 2003, Cladera and Marí 2004, Grégoire and Laboratoire 
2013, Kirane et al. 2016,  Belarbi, Kuchma, and Sanders 2017).  Reineck et al. (2003) assessed the ACI 
318-14 design expression for ௖ܸ using the database, concluding that the ACI 318-14 provisions for shear 
strength of beams without stirrups becomes increasingly unsafe “as members become larger and more 
lightly reinforced.”  

In fact, simple comparison between the experimental values for shear strengths of beams without any 
stirrups ( ௧ܸ௘௦௧ሻ in the database with the values calculated as per ACI 318-14 ( ஺ܸ஼ூ) demonstrates significant 
scatter particularly in the case of larger members (Fig. 1). This underscores the fact that the true mechanism 
behind the shear failure is not completely understood and there might be important aspects that are 
overlooked in the established models.  This observation motivated the initiative of C445 to address the 
discrepancies between experimental shear values and analytical estimates.  So, in 2014, a campaign was 
undertaken to collect and evaluate new proposals for safer and more reliable design models for the shear 
strength of concrete beams. Litmus test for acceptance of any proposal was its performance against the 
C445 database.  A total of 10 proposals were submitted which were eventually reduced to six, as listed in 
Table 1 along with the current (ACI 318-14) design expression for the “concrete contribution to shear 
strength”, ஺ܸ஼ூ.  

 

Figure 1: (a) Measured ௖ܸ value normalized with respect to ஺ܸ஼ூ; (b)  ௖ܸ plotted against ஺ܸ஼ூ:  note that 
discrepancy increases in the range of larger forces measured (i.e. in larger beams) 

 

Table1:  Competing Design Expressions for ௖ܸ after the recent campaign by C445* 

Proposal ID Concrete contribution to shear strength, ࢉࢂ 
ACI 318-14 ௖ܸ ൌ ߣ2 ඥ ௖݂

ᇱܾ௪݀ 
(Bentz and Collins 2017) 

(for beams without stirrups and 3/4 in. 
aggregate size) 

௖ܸ ൌ
100

38 ൅ ௫ݏ
ඥ ௖݂

ᇱ ܾ௪݀ 

௫ݏ   ൌ 0.9 ݀ 

(Cladera et al. 2017) 
 

(note: the limit on c/d proposed by the 
authors has been neglected because it 
yielded unrealistic strength estimates) 

௖ܸ ൌ ߦߣ6
ܿ
݀
ඥ ௖݂

ᇱ ܾ௩,௘௙௙݀ ൏ 4 ൬1.25ߦ
ܿ
݀
൅
1
݀଴
൰ඥ ௖݂

ᇱ	ܾ௪݀ 

 

ߦ ൌ
ଶ

ටଵାௗబൗ଼
ሺ
ௗ

௔
ሻ଴.ଶ ; ܽ ൌ

ெೠ,೘ೌೣ

௏ೠ,೘ೌೣ
; 	݀଴ ൌ maxሼ݀, 4݅݊ሽ; 
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ܿ
݀
ൌ 0.75 ሺ݊ߩሻ

ଵ
ଷൗ  

(Frosch et al. 2017) 
௖ܸ ൌ ൫5ߣඥ ௖݂

ᇱ ܾ௪ܿ൯ߛௗ 

ܿ ൌ ݀ሺඥ2݊ߩ ൅ ሺ݊ߩሻଶ െ ܿ  ሻ݊ߩ ൌ ߩ	  ;   ݀݇ ൌ 	
஺ೞ
௕ೢௗ

   ;   ݊ ൌ
ாೞ
ா೎

  ;   

ௗߛ ൌ 1.4/ට1 ൅ ݀௧
10ൗ  

(Li et al. 2017) 
 
 
 
 

௖ܸ ൌ ߣ17 ൬ ௨ܸ݀
௨ܯ

൰
଴.଻

∙ ඥ ௖݂
ᇱ ܾ௪ܿ ∙

1

ට1 ൅ ݄
11.8ൗ

൏ ඥ	ߣ10 ௖݂
ᇱ ܾ௪ܿ 

ܿ ൌ ݀൫ඥ2݊ߩ ൅ ሺ݊ߩሻଶ െ ൯݊ߩ ߩ  ;  ൌ 	
஺ೞ
௕ೢௗ

  ;   ݊ ൌ
ாೞ
ா೎

 

(Park and Choi 2017) 
 
 

௖ܸ ൌ ݇௦ ௧݂ܾ௪ܿ  ߶ݐ݋ܿ

݇௦ ൌ ቀ
ଵଶ

ௗ
ቁ
଴.ଶହ

൏ 1.1      ;    ௧݂ ൌ ඥߣ2.2 ௖݂
ᇱ	; 

߶ݐ݋ܿ ൌ ට1 ൅
௖௧ߪ

௧݂
ൗ ; ௖௧ߪ ൌ 	

௨ܯ

ܾ௪ܿ	ሺ݆݀ሻ
 

(Reineck 2017) 

௖ܸ ൌ ߶ ቎71 ߟ ቆߩ ௖݂
ᇱ

݀
ቇ

ଵ
ଷൗ

቏ ܾ௪	݀ ߩ													 ൌ 	
௦ܣ
ܾ௪	݀

 

* All equations are in U.S customary units (psi, in).   ܾ௩,௘௙௙ is the effective section width for shear strength; ܿ is the neutral axis depth; 
݀௧ is the distance in inches from the extreme compression fiber of the member to the centroid of the reinforcement nearest the 
tension face; ߟ and ߣ are modification factors for lightweight concrete; 

The concern regarding “size effect” in concrete beams (i.e. the disproportional increase of shear strength 
and beam depth) is reflected in the models by introducing what is considered the most critical variable in 
determining shear strength, i.e., the shear span-to-effective depth. By inspection of the proposed equations, 
it may be seen that longitudinal reinforcement is only considered as a ratio (percent) over the cross section, 
to the extent that it controls the depth of compression zone, ܿ. Note that the underlying assumption of those 
models where ௖ܸ depends on ܿ is that shear transfer in concrete only occurs over the depth of compression 
zone. Therefore, none of the proposals makes any reference to longitudinal bar size and its implications on 
the state of bond along the reinforcement, which however is essential for the composite action of the beam.  
Evidently several of the parameters that affect the concrete-reinforcement interaction, such as bar size, 
cover, and development length, have been neglected in the emerging shear strength proposals.  The 
significance of the effect of bar size is illustrated clearly in experimental test results presented by Taylor 
(1972) and Daluga et al. (2017).  While other researchers reported up to 68% reduction of mean unit shear 
strength by increase of section depth from 12 to 36 in. (305 to 914mm), Daluga et al. (2017) claimed that 
the reduction is much smaller (14%) for beam depth from 12 to 48in. (305 to 1219mm) and it is even smaller 
than the statistical error of experimental data. It is worth noting here, that size effect is explicitly recognized 
in bond research (fib bulletin 72, 2014):  Larger bar sizes have lower bond strength, whereas cover splitting, 
and anchorage length are not proportional to the bar size (fib Model Code 2010): 

[1]  ௕݂,଴ ൌ ସሺߟଷߟଶߟଵߟ
௙೎ೖ	
ଶ଴
ሻ଴.ହ ௖ൗߛ   ;                                                                        

where, ௕݂,଴ is the design bond strength; ௖݂௞		is the characteristic cylinder concrete compressive strength; ߟଵ 
accounts for the bar profile (η1=1.8 for ribbed vs. η1=0.9 smooth); ߟଶ accounts for the “top bar” effect (=1 
in the absence of top bar effect); ߟଷ accounts for the bar diameter effect (=1 for Db≤20mm, η3=(20/Db)0.3 for 
Db>20mm); ߟସ accounts for the characteristic strength of steel reinforcement (=1.2, 1.0, and 0.85 for 
fy=400, 500 and 500 MPa respectively), and ߛ௖ is the material safety factor (=1.5).  The ultimate bond 
strength, ௕݂ௗ, is obtained also considering the effect of confinement: 



 

   

ST24-4 

[2]  ௕݂ௗ ൌ 	 ሺߙଶ ൅ 	ଷሻߙ ௕݂,଴ ൅ ௧௥݌2 ൏ 2 ௕݂,଴ ൅ ௧௥݌0.4 ൏ 2.5	ඥ ௖݂௞	     

where ߙଶ,  ,represent the influence of passive confinement from cover and from transverse reinforcement	ଷߙ
respectively, and ݌௧௥ is the transverse pressure.  

The concept that shear failure of beams without stirrups may be an indirect manifestation of bond failure is 
pursued in the present paper.  Considering the mechanics of bond, development of bar stresses in the 
shear span (i.e. over the length in which the applied moment decays from its peak value to zero) is 
calculated.  It is shown that the governing mechanism behind the failure of many tests that are treated in 
the C445 database as shear failures are in fact bond failures along the longitudinal reinforcement which is 
very much affected by the bar size. Therefore, the problem referred to “size effect” in shear, is in fact much 
more related to the scaling of the bar size.  

Recently, the solution of the governing equations of bond of a bar developed under a moment gradient was 
established (Megaloeconomou et al. 2017).  It was shown that a disturbed region forms near a 
flexural/shear crack, whereby the stresses in the reinforcing bar cannot be obtained from flexural analysis 
considering the moment acting in the cross section of interest, but rather, stresses are controlled by the 
solution of the bond equation.  As the flexural moment in critical section increases, the disturbed region 
spreads towards the support and the end of the bar anchorage.  This process is referred to as strain 
penetration.  Before, inelastic strain penetration in the anchorage of a reinforcing bar had already been 
established (Tastani and Pantazopoulou 2013a, 2013b). Megalooikonomou et al. 2018 used this solution 
to determine the plastic hinge length in the shear span of a laterally swaying column.  

In the present paper a consistent definition of shear failure and the corresponding strength of the failure 
mechanism is pursued with reference to the actual state of bond of reinforcement along the shear span of 
a beam. First, localization of each new flexural crack is evaluated.  Location of primary flexural cracks is 
the starting point for calculating the disturbed region and for monitoring its propagation with increasing load.  
The last possible flexural crack location is critical, and it depends on the ratio of ܯ௖௥ ⁄௠௔௫ܯ 	. If the residual 
development length from the last crack to the bar end is not sufficient to develop the bar force demand, 
bond failure will occur, manifested by splitting along the anchorage towards the bar end, and accompanied 
by beam failure, generally at a load that is much lower than the beam shear strength (Fig. 2). The following 
section summarizes the analytical steps of this derivation.  

 

          

                            (a)         (b) 

Figure 2: Failure patterns in a beam without stirrups with longitudinal 3-10M bars at the onset of shear 
cracking (a) and at failure (b). 

2 STATE OF STRESS IN SHEAR SPAN OF A BEAM 

The moment distribution along the shear span of a beam, of length Ls, (Fig. 3) follows Eq. 3a: 

 [3a]  								ܯ	ሺݔሻ ൌ ሺ1	଴ܯ	 െ ݔ
௦ൗܮ ሻ     

Before cracking, the strain in the bar and concrete at the level of the reinforcement, ߝ௙௟ሺݔሻ , is given by Eq. 
3b, where ݕ௚ is the distance of the reinforcement from the centroid of the cross section.  With increasing 
load, and when peak moment at midspan exceeds the cracking moment ܯ௖௥, the first crack occurs in the 
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critical region, usually under the point load; this location is used as point of reference hereon, and therefore 
௖௥ଵݔ ൌ 0 (i.e., first crack at ݔ௖௥ଵ).   From flexural analysis, bar stain is estimated from: 

[3b] 						ߝ௙௟ሺݔሻ ൌ .௖ܧ/௚ݕ		.ሻݔሺ	ܯ                                                                                                                  	௚ܫ

 

Figure 3: Moment distribution along the length of a beam:  Ls is the shear span 

 

Upon fist crack formation, the effective section stiffness is reduced drastically (e.g. 1/3 of uncracked 
stiffness). Therefore, with an imperceptible increase of moment at the critical section to ܯ௖௥ ൅  the bar ߜ	
strain experiences a significant jump in order to maintain equilibrium. At the crack, the concrete strain at 
the bar level reduces to zero due to cracking whereas the reinforcement strain increases dramatically to  
ݔሺ	௦௢ߝ ൌ 0ሻ, where it is assumed that the post-cracking relationship between flexural moment, curvature and 
bar strain has been computed from classical sectional analysis of the critical section.  Once the compatibility 
between bar and concrete normal strain is violated by cracking, it ceases to be valid over a distance, ݈஽ଵ, 
away from the crack.  The distance, referred to as “disturbed region”, ݈஽ଵ, is a necessary development 
length for bar stresses before concrete may be fully engaged again through bond. Thus, Eq. 3b is no longer 
valid over ݈஽ଵ.  Instead, the bar strain is calculated over ݈஽ଵ from bond. Note that the governing equations 
that describe the transfer of force from bar to the surrounding concrete cover, and the corresponding 
compatibility between bar slip ݏ, concrete strain,ߝ௖, and bar strain, ߝ௦, are as follows:  

[4a] 						
݂݀
ݔ݀
ൌ ൬െ 4

ܾܦ
൰݂ܾ      

[4b] 					ௗ௦
ௗ௫
ൌ 	െሺߝ௦ െ ௖ሻߝ ൌ 	െߝ௦  (Here it is assumed that ߝ௖ is negligible in comparison with ߝ௦ ).   

Considering the stress-strain and bond-slip relationships for the reinforcement (ascending branch in Fig. 
4): ௦݂ ൌ ௦݂ሺߝ௦ሻ	and ௕݂ ൌ 	 ௕݂	ሺݏሻ, the bar strain, ߝ௦ሺݔሻ, may be calculated for segment ݈ௗ from solution of Eq. 
4a and Eq. 4b. Here, the reinforcing bar stress-strain relationship, ௦݂ሺߝ௦ሻ, is considered elastic-plastic with 
hardening (Fig. 4a) whereas the local bond-slip relationship ݂ ௕	ሺݏሻ is assumed to be a linear elastic, perfectly 
plastic curve with zero residual bond (Fig. 4b). Upon substitution in Eq. 4a and Eq. 4b of the ascending 
linear equations of ௦݂ሺߝ௦ሻ	 and ௕݂	ሺݏሻ	the following differential equation of bond is obtained (Eq. 5):  

[5]      
ௗమఌೞ
ௗ௫మ

ൌ ቀെ
ସ௙್೘ೌೣ

௦భாೞ஽್
ቁ   

which is solved for the bar strain, ߝ௦	ሺݔሻ, over ݈஽ଵ:   

ሻݔ௦ሺߝ		     [6] ൌ ଵ݁ିఠ௫ܥ	 ൅ ߱  ,, where		ଶ݁ఠ௫ܥ ൌ	ඥ4 ௕݂
௠௔௫/ܧ௦	ܦ௕ݏଵ     

Thus, if slip remains below the value of ݏଵ, (Fig. 4(b)) over the disturbed length, ݈஽ଵ, the reinforcement strain 
is calculated by the solution of the bond equation. The end of the disturbed length  ݈஽ଵ is defined by the 
requirement that the bar strains obtained at ݔ ൌ 	 ݈஽ଵ from bond (Eq. 6) and from flexural action (Eq. 3) 
converge – so that at ݔ ൌ 	 ݈஽ଵ the bar strain compatibility with the surrounding concrete cover is satisfied.  
This is expressed by the boundary conditions given by Eq. 7 and 8.  For this stage, the following conditions 
are solved for calculating  ݈஽ଵ : 

1) Slope of the strain distribution obtained from bond solution and flexure are equal:  

Ls Ls 

h 

x M0 
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[7]     ߱	ሺെܥଵ݁ିఠ௟ವభ ൅ ଶ݁ఠ௟ವభሻܥ ൌ ௚ݕ		.଴ܯ .௖ܧ .௚ܫ ⁄௦ܮ 	                                                                  

2) Bar strain calculated from Eq. 6 and Eq. 3b are equal: 

ଵ݁ିఠ௟ವభܥ     [8] ൅ ଶ݁ఠ௟ವభܥ ൌ 	
ெబ.		௬೒
ா೎.ூ೒

ሺ1 െ ݈஽ଵ
௦ܮ
ൗ ሻ                  

In order to develop a step by step algorithm for the solution, the tension strain ߝ௦଴ at the critical cross section 
is chosen as the controlling variable; therefore at ݔ ൌ 0, the solution of the bond equation leads to:  

ݔ	ሺ	௦ߝ     [9] ൌ 0ሻ ൌ ଵܥ	 ൅ ଶܥ ൌ 	                                                                         ௦଴ߝ

 

 

Figure 4: (a) General stress strain diagram for steel and (b) bond-slip relationship; (c) Common shear 
failure crack pattern of beams without stirrups 

Equations 7, 8, and 9 have three unknowns, i.e., ܥଵ	, ,	ଶܥ ݈஽ଵ.  The system is solved step by step, for any 
value of the controlling variable, ߝ௦଴, in order to define the distribution of bar strains, slip values and the 
length of disturbed region, ݈஽ଵ.  The next crack is at ݔ௖௥,ଶ:  the crack may be either inside ݈஽ଵ (governed by 
bond equation) or it may happen in the undisturbed region and will be evaluated based on the flexural 
theory.  Specifically, if the next crack occurs: 

a) inside the disturbed region:  In this case, ݔ௖௥,ଶ can be found if the force transferred through bond to the 
concrete cover exceeds the tensile resistance of the effective area of concrete cover engaged in 
tension:  

଴ߝ௦ଵሺܣ௦ܧ		  [10] െ ሻሻݔሺߝ	 ൐ ௖݂௧ܣ௖,௘௙௙     where    ܣ௖,௘௙௙ ൌ ܾ	ሺ2ܥ௖௢௩൅	ܦ௕ሻ െ        ௦ଵܣ	

b) in the undisturbed region: Here, ݔ௖௥,ଶ is calculated from the following equation. 

௖௥,ଶ൯ݔ൫ߝ				 [11] ൌ 	
ெబ.		௬೒
ா೎.ூ೒

ቀ1 െ
௖௥,ଶݔ

௦ൗܮ ቁ ൌ 	        ௖,௖௥ߝ

After localization of the second crack, the new disturbed region, ݈஽ଶ, which extends from the second crack 
location, ݔ௖௥,ଶ , is calculated. The process is repeated until no additional primary cracks can form as the 
moment increases: this stage is known as crack stabilization. From this stage on, until failure, the anchorage 
solution is used over the entire length, ܮ௕, which is measured from the critical section to the end of the bar 
length (so the boundary condition in that stage is, ε(Lb) =0).  

Failure occurs when either (a) ߝ௦଴ exhausts the ultimate strain of the M-ε diagram, or (b) the total length ܮ஽ 
exceeds the available development length of the bar in the shear span, taken here as		ܮ௦ ൅ ݄௛௢௢௞. After 
creation of the last primary crack, it is necessary to check whether the bar force required for flexure at the 
last crack, (ܣ௦ܧ௦ߝ௦,௖௥) can be equilibrated by the bond force along the available development length of the 
bar, to be evaluated from the bond solution. If the remaining length is shorter than expected to carry the 
bar force through bond, failure will occur by splitting along the bar.  
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3 ACCOUNTING FOR BOUNDARY CONDITIONS 

Tests are conducted with different construction details which may create different boundary conditions to 
the problem stated above. In order to approximate the distribution of bar strains over the disturbed length 
along the shear span, the proper boundary conditions should be selected.  For example, if the tension 
reinforcement is anchored properly either by using stirrups beyond the supports or using forged headed 
bars, then the enhanced bond strength that may be mobilized in that segment could suffice to fully develop 
the bar.  In this case the bond equation is solved considering that the available anchorage length provides 
for zero slip in the end – usually these are cases where pure shear failure has been observed, provided 
there is no local failure under the hook or head to pre-empt the development. 

4 Examples from the Application of the Algorithm 

To illustrate the application of the proposed methodology, two examples have been considered, to illustrate 
the suggested procedure. The first beam is specimen ܵ଴ from the study of Islam et al.1998. The second 
specimen is ܲ300ܵܮ from the study of Quach 2016.  

Specimen dimensions and loading setup for the two examples considered are shown in Fig. 6. The moment-
tension steel strain relationship calculated from flexural analysis using Response2000 (Bentz and Collins 
1998) of the critical section is depicted in Fig. 7.  The peak bond strength was taken as 1.25ඥ ௖݂

ᇱ on account 
of the absence of confinement of the shear span.  

 

 

 

 

  

 

 

 

 

 

 

 

Discussion of Analysis Results:  A moment-curvature analysis was conducted for the critical cross section 
(section under the point load) of the two specimens, and the resulting strains in the tension reinforcement 
were calculated (see plots of moment strain relationships in Fig. 7(a) and (7b) for the two specimens, 
respectively).  Furthermore, the anticipated shear strengths were calculated using the models listed in Table 
1.  The results are given in the following:  

Table 2:  Calculated shear strength values for specimens considered in the study (values in kN) 

fc’=26.6 
MPa 

fy=350 
MPa 

Db=20mm c=33mm 

fb=6 MPa s1=0.1mm; 

s2=0.25mm

fc’=40 
MPa 

fy=573 
MPa 

Db=10mm c=31mm 

fb=8 MPa s1=0.6mm;  

s2=2.4mm 

  Experiment ACI Collins Cladera Frosch Li Park Reineck 

S0 47.5 25.9 28.6 35.31 30 28.14 59.77 31.75 

PLS300 47.7 48.5 51.23 33.6 27.15 30 43.6 32.05 

25

800 800600600 600

15

30
0 

175

825 82575 7

Figure 6b:  Details of (a) Specimen S0 (Islam et al. 1998) and (b) Specimen PLS300 (Quach 

(a

(b
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Figure 7:  Calculated Moment – Tension Steel Strain relationship at the critical crack 

Specimen S0:    In applying the algorithm described in the preceding it was found that the first crack in the 
beam occurs at maximum moment of 2.36 KN.m (ߝ௖௥ = 0.00007, assuming the modulus of elasticity 
Ec=4500√26.6MPa =23.2 GPa) under the point load (this is the starting point in the ݔ axis). Adjacent to the 
crack, the flexural theory is not valid and the disturbed length (݈஽ଵ) is estimated using the bond equation 
(Eq. 7, 8, and 9). With increasing strain at the critical section (under the point load) in every step, the 
disturbed length is calculated and the possibility of the creation of a new crack is checked (Eq. 10 and 11). 
In this example, the second crack happens at  0.0002 = ߝ outside the disturbed length of ݈஽ଵ ൌ 115.83	݉݉ 
at 	ݔ௖௥ଶ ൌ 554.01݉݉	 when the maximum moment is 7.67MPa. By further increasing the strain in tension 
reinforcement, at 0.0003 = ߝ, two different disturbed regions are created; 0	݋ݐ	ݔ௖௥ଶ ൌ 554.01݉݉ and 
஽ଶ݈	݋ݐ	௖௥ଶݔ ൌ 974.75݉݉. In this example, after calculation of ݈஽ଶ, it is evident that disturbed region extends 
beyond the support and therefore the entire length from ݔ௖௥ଶ to the end of the bar length is behaving as an 
anchorage and the anchorage solution is implemented (Tastani and Pantazopoulou 2013a, 2013b). With 
further investigation of possibility of crack inside second disturbed region and increasing the strain up to ߝ 
= 0.0007 no new crack can be found. This is the stage of stabilization of cracks. At this stage the bar slip 
reaches the elastic bond limit (ݏሺݔሻ ൌ 	 ଵܵ ൌ 0.1݉݉) at the location of the first crack (ݔ ൌ 0).  For the sake of 
simplicity of the mathematical problem, at this stage, the entire anchorage length from the critical section 
to the end of the bar will be treated as an anchorage. At the strain 0.000775 = ߝ, solving the anchorage 
solution for entire length (ܮ௕ ൌ 1400), the bar exceeds the elastic bond limit (ݏሺݔሻ ൐ ଵܵ ൌ 0.1݉݉). In this 
stage bond plasticisation begins. By further increasing of the strain, length of ݈ ௣ , where the slip at the critical 
section (at the start of the anchorage solution) of the bar, exceeds ܵଶ, is found to mark the onset of 
debonding. From the calculations, this occurs at a bar strain of ߝ௦ ൌ 0.0016 in the critical section 
corresponding to a bar stress of 320MPa; from Fig. 7a, the moment at the center of the span is equal to 37 
kN.m (at a shear force = ௖ܸ ൌ  Beyond attainment of the limiting slip, debonding begins from the  .(ܰܭ	46.25
loading point towards the support (manifested by splitting along the cover), which limits the load carrying 
capacity of the beam, leading to failure. The shear force sustained according to the experimental report 
was 47.5 KN, which is very close to the calculated value.  Note that this value does not correlate with the 
estimates obtained from the six candidate models of C445 (Table 1) as listed in Table 2.  Distributions of 
strains as debonding propagates from the critical section towards the end of the available bonded length 
are given in Figure 8. 

Specimen PLS300: Applying the same algorithm to the second example, it was found that the first crack 
occurs at maximum moment of 4.98 KN.m (ߝ௖௥ = 0.000067, assuming the modulus of elasticity 
Ec=4500√40MPa =28.5 GPa) under the point load. Adjacent to the crack, the associated disturbed region 
݈஽ଵ is calculated (Eq. 7, 8, and 9) and the distribution of the strain in the tension bar will be estimated using 
Eq. 6. With increasing strain at the critical section (under the point load) in every step, at ߝ ൌ 0.001, a 
disturbed length of ݈஽ଵ ൌ 746.38݉݉ is found and using Eq. 10 and 11, the second crack will be found inside 
the disturbed region at ݔ௖௥ଶ ൌ 432.90݉݉. By further increasing of the strain in tension reinforcement, at 
௦ߝ ൌ 0.002, the second disturbed region,	݈஽ଶ ൌ 661.62݉݉ , will be created and it is evident that the disturbed 
region extends beyond the support and therefore the entire length from ݔ௖௥ଶ to the end of the bar length is 
behaving as an anchorage and the anchorage solution is implemented. With further investigation of 
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possibility of crack inside second disturbed region and increasing the strain up to 0.0025 = ߝ no new crack 
could be found. This is the stage of stabilization of cracks. At this stage the bar slip reaches the elastic bond 
limit (ݏሺݔሻ ൌ 	 ଵܵ ൌ 0.1݉݉) at the location of the first crack (ݔ ൌ 0).  For the sake of simplicity of the 
mathematical problem, at this stage, the entire anchorage length from the critical section to the end of the 
anchorage, ܮ௕ ൌ 1004݉݉	, will be treated as an anchorage. From the anchorage solution, at the strain ߝ = 
0.003175, solving for the entire anchorage length (ܮ௕ ൌ 1004݉݉), the bar exceeds the elastic bond limit 
ሻݔሺݏ) ൐ ଵܵ ൌ 0.1݉݉). In this stage bond plasticisation occurs and the length of ݈௣  over which slip at the 
critical section (at the start of the anchorage solution) of the bar exceeds ܵଶ, is found to mark the onset of 
debonding. Based on the calculations, this occurs at a bar strain in the critical section, of  ߝ௦ ൌ 0.011 
corresponding to the moment at the center of the span equal to 37 kN-m (at a shear force = ௖ܸ ൌ  .(ܰܭ	44.85
Beyond the attainment of the limiting slip, debonding begins from the loading point towards the support 
(manifested by splitting along the cover), which limits the load carrying capacity of the beam, leading to 
failure.  The shear force sustained according to the experimental report was 47.7 KN, which is very close 
to the calculated value. 

  

Figure 8:  Distributions of bar strain and bond stress for beam S0 as debonding propagates from the 
critical section towards the end of the available bonded length 

5 CONCLUSION 

In the present paper an alternative interpretation of shear failure in beams containing no transverse 
reinforcement was pursued.  It was shown that owing to the limited fracture energy of the bond-slip curve, 
debonding begins once the maximum sustainable slip is exceeded at the critical sections of flexural beams.  
Beyond that point, strain penetration follows, spreading from the section of maximum moment (under the 
point load) toward the end of the anchorage on a beam. The behavior of the tension steel reinforcement is 
therefore governed by the bond equations after stabilization of cracking, and not by flexural equations.  
Once this event occurs splitting governs the bar anchorage whereas beam failure occurs when the residual 
bonded length can no longer equilibrate the bar force required for flexure. In order to calculate the shear 
strength of a beam in a manner consistent with above definition, the solution of two different examples was 
provided. The results show good agreement with the experimental results and highlight the limitations of 
the proposals for shear strength ( ௖ܸሻ of beams with no shear reinforcement which are oblivious to bond and 
its implications. It is noteworthy to mention that there is a need for simplification as prerequisite to its 
application in practical design, and the necessary further corroboration with the Shear Database.  
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