
 

   

ST14-1 

Building Tomorrow’s Society 

Bâtir la Société de Demain 

 

 
Fredericton, Canada 

June 13 – June 16, 2018/ Juin 13 – Juin 16, 2018

EFFECT OF MATERIAL DAMPING ON THE DYNAMIC AXIAL RESPONSE 
OF PILE FOUNDATIONS 

Bryden, Campbell1,4; Arjomandi, Kaveh2; and Valsangkar, Arun3 
1 Research Assistant, Department of Civil Engineering, University of New Brunswick, Canada 
2 Assistant Professor, Department of Civil Engineering, University of New Brunswick, Canada 
3 Professor Emeritus, Department of Civil Engineering, University of New Brunswick, Canada 
4 c.bryden@unb.ca 

Abstract: Novak’s elastic model is commonly used to predict the dynamic response of pile foundations. 
The primary source of energy dissipation within the idealized elastic model (i.e. damping) is of the geometric 
type as deformation waves propagate throughout the surrounding soil media. In addition to geometric 
damping, there is simultaneous internal material damping that occurs within the soil and pile materials, 
which may be incorporated as an out-of-phase compliment to the material stiffness values. Material 
damping is generally neglected from the analysis (or is assumed to be near-zero) when predicting the 
foundations dynamic response with Novak’s model. The present study demonstrates the potential 
consequences of neglecting material damping when performing dynamic analysis of pile foundations. This 
paper focuses on the axial vibration of an individual pile, and the influence of material damping on the 
dynamic response is investigated.  

1 INTRODUCTION 

Pile foundations often experience dynamic loads, such as those produced by vibrating machinery. The 
designing engineer must use an appropriate soil-pile formulation to adequately predict the dynamic 
response. Experimental data has shown that the theoretical formulations reported in the literature can 
produce satisfactory results, provided that the appropriate material properties are used for analysis (Novak 
and Griggs, 1976; Puri, 1988; Elkasabgy and El Naggar, 2013).  

It is common practice in Canada and the United States to use the elastic formulation developed by Novak 
(1974) for the dynamic design of pile foundations (Canadian Geotechnical Society, 2006; U.S. Naval 
Facilities Engineering Command, 1983). The focus of the present study is on the axial vibration case, for 
which Novak’s model was later improved to account for the pile tip condition (Novak, 1977), and simplified 
design charts were developed for use in practice (Novak and El Sharnouby, 1983). Bryden et al. (2017) 
reformulated Novak’s (1977) mathematical expressions and presented explicit solutions that are easily 
programmed in spreadsheet software. 

A key component of the theoretical analysis involves the damping characteristics of the soil-pile system. 
When a pile foundation is subjected to dynamic loading, two forms of energy dissipation occur 
simultaneously: 1) geometric damping, and 2) internal material damping. Geometric damping refers to the 
reduction in local energy caused by the increase in wave front surface area during propagation away from 
the source, and is included in Novak’s (1977) formulation. Material damping, on the other hand, refers to 
the energy loss induced by particle deformations, inter-particle friction, and heat generation, and is included 
with material damping parameters. In practice, material damping is generally neglected from analysis for 
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simplicity; geometric damping is the dominant form of energy dissipation, and material damping is assumed 
negligible (Novak, 1977).  

The focus of the present study is to assess the implications of neglecting material damping in the design of 
pile foundations subject to axial vibration. The commonly employed elastic model for the axial vibration of 
an individual pile is summarized, and material damping values reported in the literature are reviewed. 
Parametric studies are then performed using Maple software to investigate the effect of material damping 
on the dynamic response. It is shown that the exclusion of material damping can significantly over-estimate 
the resonant amplitude, particularly for piles embedded in soft and loose soil.  

2 NOVAK’S (1977) ELASTIC THEORY 

It is assumed that the pile is elastic, vertical, circular in cross section, and maintains perfect contact with 
the soil. The soil media is divided in two elastic regions: the adjacent soil, and base soil, as indicated in 
Figure 1.  

 
Figure 1: Conceptual Diagram of Novak’s (1977) Soil-Pile Model 

 

When a dynamic axial load P(t) is applied at the pile head, the pile shaft experiences vertical deformation 
w at depth z; the governing differential equation is expressed in Equation 1.  

[1] 
ௗమ௪ሺ௭ሻ

ௗ௭మ
൅ ቄ ଵ

ா஺
ሾ߱ߤଶ െ ௦ܵ௪ଵܩ െ ሻݖሺݓ௦ܵ௪ଶሿቅܩ݅ ൌ 0 

Where A, E, and μ represent the pile cross sectional area, modulus of elasticity, and mass per unit length, 
respectively. Gs is the shear modulus of the adjacent soil, i is the imaginary unit, ω is the frequency of 
applied loading, and Sw1 and Sw2 are the adjacent soil reaction parameters derived by Baranov (1967). The 
adjacent soil reaction parameters are expressed in Equation 2. 

[2a] ܵ௪ଵ ൌ ௦ܽߨ2
௃భሺ௔ೞሻ௃೚ሺ௔ೞሻା௒భሺ௔ೞሻ௒బሺ௔ೞሻ

௃బ
మሺ௔ೞሻା௒బ

మሺ௔ೞሻ
 

[2b] ܵ௪ଶ ൌ
ସ

௃బ
మሺ௔ೞሻା௒బ

మሺ௔ೞሻ
 

Where as, termed the dimensionless frequency, is dependent on the pile radius r0, adjacent soil shear wave 
velocity Vs, and vibration frequency ω, as defined in Equation 3. 
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[3] ܽ௦ ൌ
௥బఠ

௏ೞ
 

Two boundary conditions are then imposed: 1) the pile head is subjected to a unit axial deformation, and 
2) the soil reaction at the pile tip is defined as that of a rigid circular disk resting on an elastic half-space. 
The boundary condition defining the pile-tip reaction is expressed in Equation 4.  

ሻܮᇱሺݓ [4] ൌ െ
ீ್௥బ
ா஺

ሺܥ௪ଵ ൅  ሻܮሺݓ௪ଶሻܥ݅

Where the notation w’ implies differentiation with respect to depth z, and L and Gb represent the pile length 
and base soil shear modulus, respectively. Cw1 and Cw2 are base soil reaction parameters that depend on 
the base soil Poisson ratio, and are defined in Equation 5 for a Poisson ratio of 0.25 (refer to Novak 1977 
for additional explanations). 

[5a] ܥ௪ଵ ൌ 5.33 ൅ 0.364ܽ௕ െ 1.41ܽ௕
ଶ 

[5b] ܥ௪ଶ ൌ 5.06ܽ௕ 

Where ab is the dimensionless frequency expressed with base soil parameters (i.e. it is equivalent to that 
defined in Equation 3, except that Vs is replaced with Vb – the shear wave velocity of the base soil). The 
complex stiffness of the soil-pile system K* is then defined as: 

∗ܭ [6] ൌ െܣܧ
௪ᇲሺ଴ሻ

௪ሺ଴ሻ
ൌ ݇ ൅ ݄݅ 

Where k and h represent equivalent stiffness and damping coefficients of the soil-pile system, respectively, 
and are obtained by isolating the real and imaginary components of the complex stiffness.  

The pile-head response may then be defined by the governing equation of motion for a single degree of 
freedom system; the dimensionless amplitude of steady state vibration is equal to: 

௪ܣ [7] ൌ
ఠమ

ටቀ
ೖ
ಾ
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మ
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೓
ಾ
ቁ
మ
 

Where M is the inertial mass at the pile head (i.e. the superstructure). 

Equation 7 is used to generate the dynamic response at the pile head, where the stiffness and damping 
parameters k and h are obtained from Equation 6 (Novak’s elastic formulation). Geometric damping is 
included within the formulation through the soil reaction parameters Sw1, Sw2, Cw1, and Cw2. Material 
damping may be accounted for by replacing the material stiffness’s Gs, Gb, and E with their complex form, 
thereby incorporating the out-of-phase compliment to the material stiffness values. The complex form of 
the material stiffness’s are expressed as follows: 

[8a] ܩ௦ → ∗௦ܩ ൌ ௦ሺ1ܩ ൅ ݅ tan  ௦ሻߜ

[8b] ܩ௕ → ௕ܩ
∗ ൌ ௕ሺ1ܩ ൅ ݅ tan  ௕ሻߜ

[8c] ܧ → ∗ܧ ൌ ൫1ܧ ൅ ݅ tan  ௣൯ߜ

Where the parameters δs, δb, and δp represent the loss angles of the adjacent soil, base soil, and pile 
materials, respectively. The loss angle of material j is related to its material damping ratio ζj by Equation 9. 

[9] tan ௝ߜ ൌ  ௝ߞ2

Novak (1977) reports that soil material damping values are typically in the range of tanδs,b = 0.10, and 
concludes that the omission of material damping is conservative. The design charts commonly used by 
practicing engineers are developed based on soil and pile material damping values of tanδs,b and tanδp 
equal to 0.05 and 0.01, respectively (Novak and El Sharnouby, 1983). These assumed loss factors 
correspond to soil and pile material damping ratios of 2.5% and 0.5%, respectively.  

Typical damping ratios have been reported as: less than 1% for steel (Dassault Systems, 2018), less than 
5% for reinforced concrete (Hesameddin et al., 2015), and from 2% to 10% for timber (Bremaud et al., 
2009). The pile material loss factor assumed within the design charts is therefore appropriate for most 
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modern steel piles, but potentially underestimates the material damping characteristics of concrete and 
timber piles. The material damping characteristics of soils are discussed in the proceeding section. 

3 SOIL MATERIAL DAMPING 

It has been shown that the material damping of soil is appropriately modeled as frequency independent 
hysteretic damping (Meek and Wolf, 1994). During dynamic loading, the stress-strain curve differs during 
the loading and unloading phase, which produces a hysteresis loop. The area of the loop represents the 
energy loss per cycle, and is related to the material damping parameter (Stewart and Campanella, 1993). 
A generic hysteresis loop is displayed schematically in Figure 4.  

 

Figure 2: Hysteresis Loop of a Dynamic Load Cycle 

 

Soil material damping can be incorporated in Equations 1 through 6 by simply redefining the soil reaction 
parameters (Sw1, Sw2, Cw1, and Cw2); all other expressions remain un-altered. Figures 2 and 3 are graphical 
representations of the soil reaction parameters for various material damping values. 
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Figure 3: Adjacent Soil Reaction Parameters for Various Material Damping Values 

 

Figure 4: Base Soil Reaction Parameters for Various Material Damping Values 

 

Material damping of soil is commonly obtained experimentally by laboratory test procedures, including: the 
resonant column test, torsional shear test, or cyclic triaxial test, which are performed with recovered 
undisturbed samples (Ashmawy et al., 1995).  Typical laboratory values for soil material damping at small 
strains (i.e. less than 10-5) have been shown to range from 0.5% to 2% for sands (Seed et al., 1986) and 
from 1% to 5% for clays (Stewart and Campanella, 1993). It is shown that the material-damping ratio is 
highly dependent on the state of strain; the material damping value of sand can increase to 9% at strains 
of 10-4, and can exceed 20% at strains of 10-3 (Seed et al., 1986).  

In-situ field techniques, including cross-hole seismic tests, seismic cone penetration tests, or surface wave 
tests, are also used to obtain dynamic soil properties (Lai et al., 2002; Stewart and Campanella, 1993). 
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Field techniques are often considered preferable in comparison to laboratory tests for obtaining dynamic 
properties; field procedures eliminate the potential for sample disturbance, while producing dynamic 
properties that are representative of a considerably larger sample size (Badsar et al., 2010). Field 
measurements of material damping ratios at small strains have generally produced values of less than 5%, 
however, values as high as 12% have been reported for alluvial deposits (Stewart and Campanella, 1993).   

In practice, material damping of soil and pile materials are commonly neglected from dynamic analysis (or 
are assumed to be near-zero). This assumption greatly simplifies the mathematical expressions for 
analysis, and is a conservative design assumption as material damping acts to reduce the amplitude of 
dynamic deformations. However, there has been little research assessing the impact that material damping 
can have on the dynamic response. To assess the effect of material damping, a series of hypothetical 
problems are investigated analytically using Novak’s (1977) elastic formulation.  

4 DESCRIPTION OF CASE STUDIES 

Four problems are analyzed to assess the influence of material damping on the dynamic response. Each 
problem involves a single pile subjected to axial dynamic loading. The problems are selected so to capture 
a wide range of responses, and include: 1) a stiff pile in stiff soil, 2) a soft pile in stiff soil, 3) a stiff pile in 
soft soil, and 4) a soft pile in soft soil. Stiff soils are those with a relative density of dense (SPT N-value > 
30) or undrained shear strength greater than 100 kPa, while soft soils are those with a relative density of 
loose (SPT N-value < 4) or undrained shear strength of less than 25 kPa (for cohesionless and cohesive 
soils, respectively). Concrete and timber piles are used to represent stiff and soft pile materials, 
respectively.  Table 1 specifies the material properties used for each problem, which are selected to 
represent realistic physical scenarios.  

 

Table 1: Soil-Pile Configurations of Analysis 

Material Property Case 1 Case 2 Case 3 Case 4 

Pile Properties  
   Material Concrete Timber Concrete Timber
   Modulus of Elasticity, E (GPa) 22.0 10.0 22.0 10.0
   Unit Weight, γp (kN/m3) 23.5 9.5 23.5 9.5
   Material Damping, tanδp 0.05 0.15 0.05 0.15
Soil Properties  
   Shear Wave Velocity of Adjacent Soil, Vs (m/s) 200 200 60 60
   Unit Weight, γs (kN/m3) 20.0 20.0 18.0 18.0
   Material Damping, tanδs 0.05 0.05 0.24 0.24

 

Each pile defined in Table 1 has length and radius equal to 10.0 meters and 0.20 meters, respectively, and 
an inertial mass of 20,000 kg is assumed to rest on the pile head. Base soil properties are not defined in 
Table 1, as the two extreme cases of floating (Vb = Vs) and end bearing (Vb = 10,000 Vs) will be investigated 
for each case. For the purpose of this study, it is assumed that the Poisson ratio of the base soil is equal to 
0.25. The base soil loss factor (tanδb) is equivalent to that of the adjacent soil for the floating case, and is 
selected as 0.05 for the end bearing case. Recall that the shear modulus of material j is related to the shear 
wave velocity as defined in Equation 10. 

[10] ௝ܸ ൌ ට
ீೕ
ఘೕ

 

Where ߩj is the mass density of material j. 
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5 RESULTS AND DISCUSSION 

The dynamic axial response of each problem is computed with Equation 7, where the stiffness and damping 
parameters k and h are obtained from Novak’s (1977) elastic model (i.e. Equation 6). The dynamic response 
of cases 1, 2, 3, and 4 (as defined in Table 1) are plotted in Figures 5, 6, 7, and 8, respectively. Each figure 
displays the response, both with and without the inclusion of material damping, for floating and end bearing 
conditions.  

 

Figure 5: Dynamic Response of Stiff Pile in Stiff Soil (Case 1) 

 

 

Figure 6: Dynamic Response of Soft Pile in Stiff Soil (Case 2) 
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Figure 7: Dynamic Response of Stiff Pile in Soft Soil (Case 3) 

 

 

Figure 8: Dynamic Response of Soft Pile in Soft Soil (Case 4) 

 

As shown in Figures 5 through 8, material damping acts to reduce the resonant amplitude in all cases, while 
the resonant frequency is observed to remain nearly unaffected. The reduction in amplitude ranged from 
11% to 21% for the floating piles, and from 11% to 37% for the end-bearing piles. The reductions in resonant 
amplitude due to material damping for each case are summarized in Table 2. It is worth noting that the 
decrease in amplitude is more pronounced for the soft soil scenarios (cases 3 and 4) due to the higher soil 
loss factor. The pile tip condition is also observed to influence the degree to which material damping 
influences the response; the reduction in resonant amplitude is nearly doubled for the end bearing piles in 
soft soil compared to the floating piles. 
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Table 2: Reduction in Resonant Amplitude due to Material Damping 

Pile-Tip Condition Case 1 Case 2 Case 3 Case 4 

Floating 11% 21% 16% 20% 
End Bearing 11% 21% 29% 37% 

   

Although it is conservative to neglect material damping for dynamic design of pile foundations, such 
damping should ideally be included in the analysis.  This analytical study shows that the resonant amplitude 
can be over-estimated by neglecting material damping, particularly for piles founded in soft soils. Note that 
all piles assessed in the present study had a slenderness ratio (L/r0) equal to 50. Additional analytical work 
is required to investigate the interaction between material damping and slenderness ratio when predicting 
the dynamic response. 

The sample configurations investigated in the present study were selected to capture a broad range of 
responses, and were based on realistic mechanical properties reported in the literature. The results are for 
illustration purposes only, and are not intended for use in design. It is recommended that site investigations 
be completed to determine damping characteristics of a particular project site during the design phase. If 
the site-specific damping characteristics are unknown, it is recommended that material damping be 
neglected from the analysis. Damping characteristics of soils are highly variable, and thus its omission 
ensures a conservative design. 

6 CONCLUSIONS 

When computing the dynamic response of deep foundations, the material damping of pile and soil 
constituents are commonly neglected (or assumed near zero) during the analysis. The present study 
assesses the impact of material damping on the dynamic axial response of an individual pile foundation. 
Four hypothetical problems, which are selected to span a broad range of material properties, are 
investigated analytically using Novak’s (1977) elastic formulation. It is shown that the predicted resonant 
amplitude is reduced when material damping is included; the amplitude reduction ranged from 11% to 21% 
for the floating piles, and from 11% to 37% for the end-bearing piles. The resonant amplitude can therefore 
be over-estimated by neglecting material damping, particularly for piles founded in soft soils. It is 
recommended that site-specific investigations be completed such that material damping may be properly 
accounted-for during the analysis and design of deep foundations subject to dynamic loads. 
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