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Abstract: Calculation of deflection for reinforced concrete flexural members is partly empirical in nature 
and often uses an effective moment of inertia to account for nonlinear behaviour once the member has 
cracked. In North America, there is presently one approach being used and another being considered for 
calculation of deflection for steel reinforced concrete, another two for fibre reinforced polymer (FRP) 
reinforced concrete, and yet another being used in Europe (Eurocode 2). This paper summarizes the 
different approaches being used to compute deformation, highlights the advantages and disadvantages of 
each approach, and identifies instances where computed values of deflection may be incorrect. 
Recommendations are made for a single unified approach able to provide reasonable predictions of 
deflection regardless of the member (beam, slab or wall) and type (steel and FRP) or strength of 
reinforcement. 

1 INTRODUCTION 

Deflection is a serviceability limit state that needs to be satisfied for reinforced concrete structures. 
Deflection consists of immediate (short-term) deflection that occurs on application of the load and additional 
long-term deflection from shrinkage and creep of the concrete under sustained loads. Immediate deflection 
is computed using classical elastic deflection equations, and in most cases long-term deflection is obtained         
by multiplying the computed short-term deflection value from the sustained loads with a long-term deflection 
multiplier that depends on the duration of loading and type of reinforcement. Nonlinearity after cracking is 
accounted for with an effective moment of inertia ܫ௘ that varies between the gross (uncracked) moment of 
inertia ܫ௚ and fully cracked moment of inertia ܫ௖௥ depending on the level of loading relative to the cracking 
load.  

This paper is concerned with immediate deflection only. The different approaches presently being used to 
compute deflection are summarized and compared. Recommendations are made for a single unified 
approach able to provide reasonable predictions of deflection for different types of members such as 
beams, slabs, and slender load bearing walls with different types of reinforcement such as steel and FRP.  

2 RATIONAL MODEL FOR EFFECTIVE MOMENT OF INERTIA 

Bischoff’s (2005, 2007) expression for ܫ௘ is based on the premise that tension stiffening is measured relative 
to the ܫ௖௥ response as shown in Fig. 1, where ߚ௧௦ሺ1 െ  ௖௥ represents the tension stiffeningܯ௚ሻܫ/௖௥ܫ
component. The tension stiffening factor ߚ௧௦ ൌ  ௔ after cracking and varies between 1 for full tensionܯ/௖௥ܯ
stiffening to 0 for no tension stiffening.  

The expression for ܯ௔ at an assumed value of curvature ߶௔ is given by  
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ሾ1ሿ		ܯ௔ ൌ ௖௥߶௔ܫ௖ܧ ൅ ௧௦ሺ1ߚ െ  ௖௥ܯ௚ሻܫ/௖௥ܫ

where ܧ௖ equals the elastic modulus of concrete. Rearranging Eq. [1] gives 

ሾ2ሿ		߶௔ ൌ
௔ܯ െ ௧௦ሺ1ߚ െ ௖௥ܯ௚ሻܫ/௖௥ܫ

௖௥ܫ௖ܧ
ൌ 	
௔ܯ ቂ1 െ ௧௦ሺ1ߚ െ ௚ሻܫ/௖௥ܫ ቀ

௖௥ܯ
௔ܯ

ቁቃ

௖௥ܫ௖ܧ
 

and setting ߶௔ ൌ   ௘ܫ ௘ leads to Bischoff’s (2005) original expression forܫ௖ܧ/௔ܯ	

ሾ3ሿ			ܫ௘ ൌ
௖௥ܫ

1 െ ௧௦ߚ
௖௥ܯ
௔ܯ

൬1 െ
௖௥ܫ
௚ܫ
൰
	ൌ 	

௖௥ܫ

1 െ ቀ
௖௥ܯ
௔ܯ

ቁ
ଶ

൬1 െ
௖௥ܫ
௚ܫ
൰
 

that forms the basis for ܫ௘ in ACI 440.1R-15 (ACI 2015) for fibre reinforced polymer (FRP) reinforced 
concrete and for the ܫ௘ expression being proposed for ACI 318-19 for steel reinforced concrete. 

  

  

Figure 1: Effect of cracking and tension stiffening on flexural response 

 

3 EFFECTIVE MOMENT OF INERTIA FOR STEEL REINFORCED CONCRETE 

For steel reinforced (non-prestressed) concrete, CSA A23.3 (CSA 2014a) uses an effective moment of 
inertia developed by Branson (1965) 

ሾ4ሿ		ܫ௘ ൌ ௖௥ܫ ൅ ሺܫ௚ െ ௖௥ሻܫ ൬
௖௥ܯ

௔ܯ
൰
ଷ

൑  ௚ܫ

where the cracking moment ܯ௖௥ ൌ ௥݂ܫ௚/ݕ௧, ݕ௧ is the distance from the centroidal axis of the gross section 
(neglecting the reinforcement) to the extreme tension fibre, and ܯ௔ equals the maximum moment in the 
member for the service load being considered. The rupture modulus ௥݂ is taken as one-half the value 

defined by 0.6ඥ ௖݂
ᇱ to account for tensile stresses that develop from shrinkage restraint and because of the 

unconservative nature of using Branson’s equation for lightly reinforced slabs (Bartlett 2016). Using one-
half the rupture modulus value is equivalent to using 0.5ܯ௖௥ in Eq. [4] and ௖݂

ᇱ equals the specified concrete 
compressive strength. Previous editions of A23.3 have used the full cracking moment for beams and one-
way slabs, while one-half the rupture modulus value has been used for two-way slabs since 1994 (CSA 
1994). 

௚ܫ௖ܧ

௖௥ܫ௖ܧ
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௖௥ܯ
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ACI 318 (ACI 2014) uses a rearranged form of Eq. [4] 

ሾ5ሿ			ܫ௘ ൌ ൬
௖௥ܯ

௔ܯ
൰
ଷ

௚ܫ ൅ ቈ1 െ ൬
௖௥ܯ

௔ܯ
൰
ଷ

቉ ௖௥ܫ ൑  ௚ܫ

but uses the full value of the rupture modulus ௥݂ ൌ 0.62ඥ ௖݂
ᇱ for immediate deflection calculation. In other 

words, the full cracking moment ܯ௖௥ is used. 

The ܫ௘ expression being proposed for ACI 318-19 given by 

ሾ6ܽሿ			ܫ௘ ൌ
௖௥ܫ

1 െ ቌ

2
௖௥ܯ3

௔ܯ
ቍ

ଶ

൬1 െ
௖௥ܫ
௚ܫ
൰

 

is based on work by Bischoff (2005, 2007) and is applicable for ܯ௔ ൐ ሺ2/3ሻܯ௖௥. ܫ௘ equals ܫ௚ for ܯ௔ ൑
ሺ2/3ሻܯ௖௥. The lower cracking moment value of ሺ2/3ሻܯ௖௥ accounts for tensile stresses that develop in the 
concrete from restraint to shrinkage (Scanlon and Bischoff 2008). Bischoff’s expression for ܫ௘ is also the 
basis for deflection calculation in the Australian Bridge Design Standard AS 5100.5:2017 and Australian 
Concrete Structures Standard AS 3600:2018. 

Equation [6a] is easily rearranged to give 

ሾ6ܾሿ			
1
௘ܫ
ൌ ቌ

2
௖௥ܯ3

௔ܯ
ቍ

ଶ

1
௚ܫ
൅ ൦1 െ ቌ

2
௖௥ܯ3

௔ܯ
ቍ

ଶ

൪
1
௖௥ܫ

 

Eurocode 2 (CEN 2004) takes a weighted average of the uncracked and cracked curvature or deflection 
values that leads to the following expression for ܫ௘. 

ሾ7ሿ		
1
௘ܫ
ൌ ሺ1 െ ሻߞ

1
௚ܫ
൅ ߞ

1
௖௥ܫ

 

where ߞ ൌ 1 െ  equals 1.0 for single short-term loading and 0.5 for sustained or ߚ ሻଶ. The factorܯ/௖௥ܯሺߚ
repeated loading. It is worth mentioning that Eq. [7] with ߚ ൌ 0.5 is a rearranged form of Eqs. [6] with a 
reduced cracking moment equal to 0.707ܯ௖௥. 

Branson’s approach (Eqs. [4] and [5]) essentially represents a weighted average of stiffness for two springs 
in parallel characterized by an uncracked spring with stiffness ܧ௖ܫ௚ and a cracked spring with stiffness ܧ௖ܫ௖௥, 
while Bischoff’s approach (Eqs. [3] and [6]) and the approach used by Eurocode 2 (Eq. [7]) represents a 
weighted average of flexibility corresponding to an uncracked and cracked spring in series. Hence, 
Branson’s computed value of ܫ௘ has a bias towards the stiffer uncracked stiffness ܧ௖ܫ௚ as the ܫ௚/ܫ௖௥ ratio 
increases while Bischoff’s ܫ௘ has a bias towards the more flexible cracked stiffness ܧ௖ܫ௖௥. 

4 EFFECTIVE MOMENT OF INERTIA FOR FRP REINFORCED CONCRETE 

Serviceability related to deflection and crack control typically governs design of fibre reinforced polymer 
(FRP) reinforced concrete, and the ultimate flexural design strength is most often more than adequate once 
serviceability requirements have been satisfied (Veysey and Bischoff 2013, ACI 2015). Hence, deflections 
must be computed, and a reliable estimate of deflection is needed. 

Branson’s expression for ܫ௘ underestimates deflection of FRP reinforced concrete significantly and 
numerous attempts have been made since the early 1990’s to modify Eq. [5] with correction factors but with 
limited success (Bischoff et al. 2009). The ACI Guide 440.1R-15 (ACI 2015) for design and construction of 
FRP reinforced concrete uses the following equation for ܫ௘ 
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ሾ8ሿ			ܫ௘ ൌ
௖௥ܫ

1 െ ߛ ቀ
௖௥ܯ
௔ܯ

ቁ
ଶ

൬1 െ
௖௥ܫ
௚ܫ
൰
 

This expression is based on Eq. [3] using the full cracking moment ܯ௖௥, and includes an integration factor 
 is ߛ to account for changes in stiffness along the member span (Bischoff and Gross 2011a). The factor ߛ
obtained by integrating curvature along the length of member using Bischoff’s expression for ܫ௘ (Eq. [3]) as 
the basis for the cracked section curvature, and depends on the support conditions and type of loading. 
ߛ ൌ 1.72 െ 0.72ሺܯ௖௥/ܯ௔ሻ for a member with a uniformly distributed load. Setting ߛ ൌ 1 can be 
conservatively used for design. 

The Canadian Design Standard S806 for FRP reinforced concrete (CSA 2012) requires deflection to be 
computed by integrating curvature (ܫܧ/ܯ) at sections along the member span assuming there is no tension 
stiffening in the cracked regions. In other words, the curvature equals ܧ/ܯ௖ܫ௚ in the uncracked regions 
where ܯ ൑ ܯ ௖௥ in the cracked regions whereܫ௖ܧ/ܯ ௖௥, andܯ ൐  ௖௥. Equations for deflection are providedܯ
for simple loading cases in lieu of integrating curvature. For example, the midspan deflection ∆ of a simply 
supported member with a span ܮ and central point load ܲ is given by  

ሾ9ሿ			∆ൌ
ଷܮܲ

௖௥ܫ௖ܧ48
ቈ1 െ 8ቆ1 െ

௖௥ܫ
௚ܫ
ቇ ൬
௚ܮ
ܮ
൰
ଷ

቉ 

where ܮ௚ is the length of the uncracked member in the left and right half of the span. Using Eq. [8] with ߛ ൌ
 ,௔ gives the same value of midspan deflection for a beam with a central point load. For comparisonܯ/௖௥ܯ
ߛ ൌ 3 െ 2ሺܯ௖௥/ܯ௔ሻ when tension stiffening is included in the cracked regions for the same beam (Bischoff 
and Gross 2011a). The CSA S806 approach overestimates deflection compared to the ACI 440 approach 
because tension stiffening is ignored. No guidance is given in the Canadian Highway Bridge Design Code 
S6-14 (CSA 2014b) for computing deflection of FRP reinforced concrete. 

5 EVALUATION OF ࢋࡵ EXPRESSIONS 

Branson’s [1965] expression for ܫ௘ was calibrated for steel reinforced concrete beams with a reinforcing 
ratio greater than 1% corresponding to an ܫ௚/ܫ௖௥ ratio less than 3. This expression is not well suited for 
members with an ܫ௚/ܫ௖௥ ratio greater than 3 and deflection is underestimated when the ܫ௚/ܫ௖௥ ratio exceeds 
this limit. The greater the ܫ௚/ܫ௖௥ ratio the greater the error. Bischoff and Scanlon (2007) provide a 
comparison with test results confirming this conclusion. 

Figure 2 plots the  ܫ௚/ܫ௖௥ ratio for beams and slabs reinforced with either steel or FRP reinforcement, and 
for slender tilt-up wall panels with a central layer of steel reinforcement. Lightly reinforced members (with 
ߩ ൏ 1%), FRP reinforced concrete slabs and beams, and slender walls all have an ܫ௚/ܫ௖௥ ratio greater than 
3. Hence, deflection for these members is underestimated with Branson’s original expression for ܫ௘.  

Using Branson’s expression (Eq. [5]) with a lower cracking moment of 0.75ܯ௖௥ compared to Bischoff’s 
expression for ܫ௘ at full ܯ௖௥ gives a reasonable estimate of deflection for flexure members with an ܫ௚/ܫ௖௥ 
ratio up to 6 corresponding to a reinforcing ratio of 0.4%. But deflection will still be underestimated for slabs 
with a lower reinforcing ratio, and also for slender walls and FRP reinforced concrete. 

Figure 3 compares CSA A23.3 using Branson’s expression at 0.5ܯ௖௥	(Eq. [4]) with the ACI 318 proposed 
expression at ሺ2/3ሻܯ௖௥ (Eq. [6a]) for members with ܫ௚/ܫ௖௥ ratios of 3, 6, 12, and 30. The lower 0.5ܯ௖௥	 
cracking moment used with Branson’s equation equals 75% of the ሺ2/3ሻܯ௖௥ cracking moment used with 
Bischoff’s expression. Hence, A23.3 works reasonably well (compared with ACI 318) up to an ܫ௚/ܫ௖௥ ratio 
of about 6 (corresponding to	ߩ ≅ 0.4%), although deflection is now slightly overestimated for members with 
ߩ) ௖௥ less than 3ܫ/௚ܫ ൐ 1%). However, deflection is still underestimated at high ܫ௚/ܫ௖௥ ratios corresponding 
to slabs with very low reinforcing ratios, slender walls, and FRP reinforced concrete (Bischoff 2018). 
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Figure 2: Effect of reinforcement on ܫ௚/ܫ௖௥	ratio 

  

Figure 3: Deflection comparison for steel reinforced concrete 

 

The ACI 440 (Eq. [8]) and CSA S806 approaches for computing deflection of FRP reinforced concrete are 
compared in Fig. 4 for the response of a simply supported member with a uniformly distributed load. Neither 
expression is dependent on the ܫ௚/ܫ௖௥ ratio. The CSA S806 response converges rapidly to the ܫ௖௥ response 
and overestimates deflection considerably compared to ACI 440 since tension stiffening is ignored in the 
cracked regions of the member (Bischoff and Gross 2011a). Setting ߛ ൌ 1 with the ACI 440 expression 
increases deflection and is conservative.   
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Figure 4: Deflection comparison for FRP reinforced concrete 
(simply supported member with a uniformly distributed load) 

 

6 SHRINKAGE RESTRAINT AND AXIAL LOAD 

Restraint to shrinkage from either the internal reinforcement, supports or adjacent members induces tensile 
stresses in the concrete that reduce the cracking moment and increase deflection. This leads to an 
expression for the reduced cracking moment 

ሾ10ሿ				ܯ௖௥
ᇱ ൌ

ቀ ௥݂ െ ௥݂௘௦ ൅
ܲ
ቁܣ ௚ܫ

௧ݕ
ൌ ௖௥ܯ ൬1 െ

௥݂௘௦

௥݂
൅
ܣ/ܲ

௥݂
൰ 

that includes the tensile shrinkage restraint stress ௥݂௘௦ and effect of an axial compressive stress ܲ/ܣ likely 
to be encountered with load bearing wall panels. For steel reinforced members with no axial load (ܲ/ܣ ൌ
0), Scanlon and Bischoff (2008) assume the restraint stress ௥݂௘௦ ൎ ௥݂/3 for lightly reinforced slabs to give 
௖௥ܯ

ᇱ ൌ ሺ2/3ሻܯ௖௥. For FRP reinforced slabs and beams, Bischoff and Gross (2011b) recommend using 
௖௥ܯ

ᇱ ൌ ) ௖௥ since the shrinkage restraint stress is not as great with FRP reinforcementܯ0.8 ௥݂௘௦ ൎ ௥݂/5). The 
axial compressive stress for load bearing wall panels acts to offset the tensile restraint stress from shrinkage 
which can reduce out-of-plane deflection because of the higher cracking moment (Bischoff 2018). 

7 UNIFIED APPROACH 

Calculation of deflection is recommended using the following general expression for ܫ௘ 

ሾ11ሿ			ܫ௘ ൌ
௖௥ܫ

1 െ ߛ ቀ
௖௥ܯ

ᇱ

௔ܯ
ቁ
ଶ

൬1 െ
௖௥ܫ
௚ܫ
൰
 

where the integration factor ߛ stiffens the member response by accounting for the variation in stiffness along 
the member length (accounting for both the stiffer uncracked regions and changes in stiffness in the cracked 
regions). Table 1 summarizes values of the integration factor used for common types of loading (Bischoff 
and Gross 2011a). For continuous members, reasonable predictions of deflection are obtained using the 
effective moment of inertia at midspan computed with the appropriate integration factor from Table 1 for a 
simply supported member with the same loading conditions (Bischoff 2007, Christie 2014). In lieu of a more 
refined analysis, it is sufficient and conservative to set ߛ ൌ 1. 
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Table 1 Moment of inertia values for calculating deflection (adapted from Bischoff and Gross 2011a) 

 

 

Beam & Loading Type 

௘ܫ	 ൌ
௖௥ܫ

1 െ ߛ ቀ
௖௥ܯ

ᇱ

௔ܯ
ቁ
ଶ

൬1 െ
௖௥ܫ
௚ܫ
൰

for ௔ܯ ൐ ௖௥ܯ
ᇱ  

௖௥ܯ
ᇱ ൌ  ௖௥ for steel reinforced concreteܯ0.67

௖௥ܯ
ᇱ ൌ  ௖௥ for FRP reinforced concreteܯ0.80

 

Δ ൌ ௘ܫ௖ܧଷ/48ܮܲ and ௔ܯ ൌ     4/ܮܲ

ߛ ൌ 3 െ 2ሺܯ௖௥
ᇱ  ௔ሻܯ/

 

 

 

Δ ൌ ௘ܫ௖ܧଷ/1296ܮ23ܲ and ௔ܯ ൌ     6/ܮܲ

ߛ ൌ 1.7 െ 0.7ሺܯ௖௥
ᇱ  ௔ሻܯ/

 

 
Δ ൌ

ଷܮܲ

௘ܫ௖ܧ48
ሾ3ሺܽ/ܮሻ െ 4ሺܽ/ܮሻଷሿ and ௔ܯ ൌ ܲܽ/2 

ߛ ൌ
3ሺܽ/ܮሻ െ 4ሺܽ/ܮሻଷߦ
3ሺܽ/ܮሻ െ 4ሺܽ/ܮሻଷ

or ߛ ൌ ሺ1 ൅ ሻߙ െ ߙ ቆ
௖௥ܯ

ᇱ

௔ܯ
ቇ 

ߦ ൌ 4ሺܯ௖௥
ᇱ ௔ሻܯ/ െ 3 and ߙ ൌ ൤

4
0.75ሺܮ/ܽሻଶ െ 1

൨ 

 

 
Δ ൌ ௘ܫ௖ܧସ/384ܮݓ5 and ௔ܯ ൌ     ଶ/8ܮݓ

ߛ ൎ 1.72 െ 0.72ሺܯ௖௥
ᇱ  ௔ሻܯ/

Approximation based on 4-pt loading with a/L = 0.338 

 

 

 

Δ ൌ ௘ܫ௖ܧଷ/3ܮܲ and ௔ܯ ൌ     ܮܲ

ߛ ൌ 3 െ 2ሺܯ௖௥
ᇱ  ௔ሻܯ/

 

 
Δ ൌ ௘ܫ௖ܧସ/8ܮݓ and ௔ܯ ൌ     ଶ/2ܮݓ

ߛ ൌ 1 െ 2݈݊ሺܯ௖௥
ᇱ  ௔ሻܯ/
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௖௥ܯ
ᇱ  is defined by Eq. [10] and used to account for tensile stresses from restraint to shrinkage and for 

compressive stresses from axial loads. Guidance for computing the shrinkage restraint stress is found in 
Gilbert (1999) and Scanlon and Bischoff (2008). For members with no axial load, reasonable 
approximations of deflection are obtained using ܯ௖௥

ᇱ ൌ ሺ2/3ሻܯ௖௥ for steel reinforced concrete and ܯ௖௥
ᇱ ൌ

 .௖௥ for FRP reinforced concreteܯ0.8
 

8 CONCLUSIONS 

Despite interest over the past decade to modify and adopt expressions for ܫ௘ more capable of providing 
realistic estimates of deflection, there is still disparity between the different approaches being used in North 
America and elsewhere for steel and FRP reinforced concrete. A rational approach developed using basic 
concepts of tension stiffening is proposed for ܫ௘ and accounts for shrinkage restraint and axial loads by 
adjusting the cracking moment. The proposed approach provides reasonable estimates of deflection for 
both steel and FRP reinforced concrete over a wide range of reinforcing ratios. 

Further work is needed to extend this approach to include deflection of cracked prestressed concrete 
(Bischoff et al. 2018) and the effects of long-term deflection. For long-term deflection, the deflection 
multipliers used in conjunction with computed values of the immediate short-term deflection under sustained 
loading require further study and evaluation. 
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