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Abstract: Infrastructure systems represent a very important aspect of life on Earth. Existing Infrastructure 
is subjected to degradation while the demands are growing for a better infrastructure system in response 
to the high standards of safety, health, population growth, and environmental protection. Bridges play a 
crucial role in the urban development by providing access for people to services such as health care units, 
schools, markets, etc. Bridges are vulnerable to high levels of deterioration because of some factors such 
as deferred maintenance actions, extreme weather conditions, variable traffic loading, etc. A reliable 
deterioration model is required for the successful development of Bridge Management Systems (BMSs) 
which helps in performing accurate maintenance, repair, and rehabilitation activities. This paper presents a 
hybrid Bayesian model that is capable of predicting the condition ratings of the concrete bridge decks along 
its service life. Bayesian belief networks (BNs) are utilized to model the factors that affect the condition 
rating of the bridge decks. BNs are used to calculate the transition probabilities based on the severity of 
five bridge defects which are: corrosion, delamination, cracking, spalling and pop-out. Finally, a Markovian 
model is used to predict the future performance of the concrete bridge decks. A case study of the concrete 
bridges in Quebec is presented to demonstrate the capabilities of the proposed model. 

1 Introduction 

Bridges are vital links in transportation networks that should be safe, functional and serviceable during their 
service life to facilitate the mobility of people and transportation of goods which results in sustainable 
economic development. Concrete bridges are prone to high level of deterioration because of the variable 
traffic loading, extreme weather conditions, cycles of freeze and thaw, etc. The bridges in Canada are 
subjected to harsh conditions whereas 22% of the bridges are in a “Fair” condition, 3% of the bridges are 
in a “Poor” condition, and 1% of the bridges are in a “Very Poor” condition based on Canada’s infrastructure 
report card (Felio, 2016). One-third of Canada’s bridges have structural or functional deficiencies with short 
remaining service life where 20 million light vehicles, 750,000 trucks, and 15,000 public transits use the 
Canadian bridges annually (National Research Council Canada, 2013). The average age of the bridges is 
24.5 years in 2007 compared to a mean service life of 43.3 years. This means that the bridges in Canada 
have passed 57% of their useful lifetime (Statistics Canada, 2009a). Bridges in Quebec province have the 
highest average age of 31 years followed by Nova Scotia with an average age of 28.6 years, which means 
that they require extensive maintenance and repair (Statistics Canada, 2009b).  
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The degradation in the condition rating of Canada’s infrastructure systems occurs because of two main 
reasons: 1) the decline in the public investment, and 2) the increase in the average age of the infrastructure 
systems. The public investment peak was 3% of the gross domestic product (GDP) in the late 1950s and it 
declined steadily until the mid of 2000s. The decline in the investment is over 40 years from the late of the 
1950s to the mid of 2000s. Most of the decline was in the first 20 years where the investment dropped from 
1.6% of GDP in 1959 to 0.4% of GDP in 1979) (Mackenzie, 2013). American Association of State Highway 
and Transportation Officials (AASHTO) and Intermodal Surface Transportation Efficiency Act (ISTEA) 
defined five main components for BMS which are (Czepiel, 1995): 1) database for data storage, 2) condition 
rating model, 3) deterioration model, 4) cost model, and 5) optimization model for running system. The 
structure of BMS is shown in Figure 1 (Elbehairy 2007). Deterioration model is one of the main pillars of the 
BMS because it enables the asset managers to forecast the future condition of bridge elements. The 
objective of the present study is to develop a stochastic time-based model that overcomes the limitations 
of the previously developed models and can provide reliable prediction results. The proposed model is 
compared with the weibull distribution to illustrate the capabilities of the proposed model.  

. 

Figure 1: Typical structure of a Bridge Management System 

2 Deterioration Models  

The deterioration models can be divided into: deterministic and stochastic models. Deterministic models 
establish a relationship between the factors affecting the deterioration process and the bridge condition 
rating based on mathematical and statistical techniques such as straight-line extrapolation, multiple 
regression, curve fitting, artificial neural networks, support vector machines, etc. Deterministic models 
assume that the relationship between the future condition ratings of the bridge is certain over time (Ranjith 
et al. 2013). Stochastic models are capable of capturing the randomness and uncertainties associated with 
the deterioration process of bridges where the predicted condition rating of bridges is subjected to inherent 
uncertainties such as traffic loads, weather conditions, properties of materials, exposure to damaging 
agents, etc. 

3 Literature Review  

This section provides an overview for the previously developed deterioration models. Agrawal (2010) 
compared between Markov chain approach and weibull-based approach to predict the deterioration of 
group of bridge elements based on historical data from the New York State Department of Transportation 
(NYSDOT). The transition probabilities were calculated based on non-linear optimization by minimizing the 
sum of the absolute difference between the condition rating obtained from the regression model and the 
condition rating obtained from the Markov chain. They concluded that weibull-based approach performed 
better than the Markov chain-based approach. Huang (2010) developed an artificial neural network (ANN) 
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to predict the deterioration of bridge decks. The ANN was based on back-propagation approach multilayer 
perceptron (BP-MLP) classifier. He identified 11 significant factors that affect the deterioration of the bridge 
decks such as age, deck area, length of deck, number of spans, average annual daily traffic (AADT), design 
load, etc. These factors were used as an input for the ANN model and they are selected based on the P-
value. 

Callow et al. (2013) applied time-delay neural network (TDNN) to model the deterioration of bridge 
elements. Genetic algorithm optimization was employed to optimize the backward prediction model (BPM) 
output while case-based reasoning (CBR) was implemented to retrieve similar cases. Bu et al. (2015) 
developed a model that incorporated both time-based model and state-based model with backward 
prediction models (BPM) for long-term deterioration prediction of bridge components. The state-based 
model utilized Markov chain and Elman neural networks (ENN) to calculate the transition probabilities while 
the time-based model was based on Kaplan and Meier (K-M) estimate to calculate the non-parametric 
probability distribution function of transition times.  Zambon et al. (2017) compared between a group of 
stochastic models which are:  Markov chain with exponentially-distributed and weibull-distributed sojourn 
times, and gamma process. They concluded that the gamma process has better prediction capabilities 
when compared to the Markov chain models. 

Wu et al. (2016) presented a life-cycle optimization model based on the semi-Markov decision process. 
The developed model was based on the 2012 NBI for the state of Texas. They highlighted that the predicted 
deterioration curve matched the deterioration curve of the 2012 NBI with 10.8% mean absolute error. 
Mašović and Hajdin (2013) modeled the deterioration of the bridge elements in Serbia based on the Markov 
chain. They employed expectation maximization algorithm (EM) to estimate the transition probabilities. 
They highlighted that the EM algorithm provided reasonable deterioration curve even if the inspection 
records were limited. 

4 Research Methodology  

The element-level inspection obtained from the Ministry of Transportation in Quebec (MTQ) defines the 
status (extent of damage) of the bridge elements based on four condition states which are: 1) condition 
state 1 (good), condition state 2 (fair), 3) condition state 3 (poor), and 4) condition state 4 (very poor). The 
definition of the condition states is the first step of the proposed methodology. The deterioration model is 
constructed based on a historical data of element-level bridge inspections of concrete bridge decks. 

The second step is to calculate the condition index for each inspection record (event). The proposed model 
utilizes a defect-based methodology that integrates both Technique for Order Preference by Similarity to 
Ideal Solution (TOPSIS), and Grey Relational Analysis (GRA). The integrated bridge deck condition index 
(IBDCI) can be calculated as follows. 

ሾ1ሿ	ܫܥܦܤܫ ൌ
	ሺܶܥ ൅ ሻܩܥ

2
						 

Where; 

  .are the condition ratings obtained from TOPSIS and GRA, respectively ܩܥ ,ܶܥ

The third step is to define the transition events and censored events based on the inspection data. 
Transition events (un-censored events) are defined based on sequential change in condition rating of 
concrete bridge decks. Censored events mean that the observed event which is the sequential change in 
the condition state does not occur during the observation period (Morcous and Lounis 2010). The transition 
event may not be observed within the analysis period for two main reasons (Destefano and Grivas 1998): 
1) the element may be replaced while it is in its initial condition state, therefore it will not transit to the next 
condition state, and 2) the analysis period may be not long enough to allow transition to the lower condition 
state.  



 

   

GC99-4 

The developed deterioration model is only based on transition events (complete data) in order to provide 
more reliable results. Transition time is the time taken by the facility to deteriorate from a certain condition 
state to the next lower condition state. The transition time varies from one facility to another because of the 
stochastic nature of the deterioration process (Morcous and Lounis 2007). The transition event is assumed 
to occur at the middle of the inspection period (Destefano and Grivas 1998).The proposed model is 
concerned with five types of bridge defects which are: corrosion, delamination, cracking, spalling, and pop-
out. The marginal probabilities are calculated, for instance, the probability that the corrosion is in a poor 
category, or the probability that the spalling is in a good condition. There are three types of transition events 
which are: ܶܧሺ1, 2ሻ, ܶܧሺ2, 3ሻ, and ܶܧሺ3, 4ሻ. Therefore, there are three in-state probabilities which are :	 ଵܲଵ, 

ଶܲଶ, and ଷܲଷ. These in-state probabilities are obtained based Bayesian belief networks (BBNs). It is worth 
mentioning that a BBN is constructed for each in-state probability. For each node in the BBN, a set of 
mutually exclusive events is assigned. For instance, there are four condition states which are: “Good”, 
“Medium”, “Poor”, and “Very poor” assigned to each bridge defect. For the in-state probability, there are 
two states which are: “Yes”, and “No”. After the calculation of the transition probabilities, the transition 
probability matrix is constructed and consequently the future condition of the concrete bridge decks can be 
calculated. The proposed model is validated by comparing its performance with the performance of the 
weibull distribution using three performance indicators which are: root mean square error, mean absolute 
error, and chi-squared statistic.                   

4.1 Bayesian Belief Networks  

Bayesian belief networks (BBN) are probabilistic models that are based on directed acrylic graphs (DAG), 
which allows the modeling of probabilistic relationships between set of variables. BBN is usually formulated 
as follows	ܰܤܤ ൌ ሺܲ,  indicates ܩ ሻ, whereas ܲ indicates the parameters of the marginal probabilities whileܩ
the model structure. ܩ is formulated as follows ܩ ൌ ሺܸ,  ሻ, and it represents the DAGs, which is composedܣ
of a finite set of nodes as well as directed arcs between pairs of nodes (Liang and Ghazel, 2017). The 
relationships between the nodes in BBN are demonstrated in the form of family relationships, whereas X 
and Y are regarded as parents of Z, and Z is considered as the child of both X and Y if a link goes from X 
to Z, and Y to Z. The conditional probabilities are divided into two categories which are: known conditional 
probabilities and missing conditional probabilities. Known conditional probabilities are the ones that can be 
calculated from the available dataset. On the contrary, missing conditional probabilities cannot be 
calculated from the current data set. 

For the known conditional probabilities, the best-fit distribution of the transition time is defined using 
Anderson Darling test (A²). Anderson Darling test is based on comparing the fit of an observed cumulative 
distribution function to an expected cumulative distribution function. Anderson darling test assumes more 
weight to the distributions’ tail than the Kolmogorov-Smirnov test. Anderson Darling Statistic can be 
calculated as follows (Love at al., 2013). The parameters of the best-fit distribution are obtained based on 
the maximum likelihood estimation (MLE) approach.   

ሾ2ሿ	A² ൌ െn െ
ଵ		

୬
෌ ሺ2i െ 1ሻ ൈ ሺlnFሺx୧ሻ ൅ ln	ሺ1 െ FሺX୬ି୧ାଵሻ

୬

୧ୀଵ
ሻሻ																																																				      

For the missing conditional probabilities, maximum entropy approach is used to calculate the conditional 
probabilities using the genetic algorithm (Pendharkar, 2008). The structure of the BBN is shown in Figure 
2.  
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Figure 2: Developed Bayesian belief network    

BBN is based on Bayes’ theorem, which is an efficient method to represent the conditional probabilities 
between a set of random variables. In a BBN, for a set of mutually exclusive events	ሼܣଵ, ,ଶܣ ,ଷܣ …………  ,௠ሽܣ.
and a given observed event ܤ, the updated probability can be computed as follows (Kabir et al., 2015). 

ሾ3ሿ	ܲ൫ܣ௝หܤ൯ ൌ
ܲ൫ܤหܣ௝൯ ൈ ܲሺܣ௝ሻ

෌ ܲ൫ܤหܣ௝൯ ൈ ܲሺܣ௝ሻ
௠

௜ୀଵ

																																																																																																						 

Where; 

ܲ൫ܣ௝หܤ൯ represents the posterior occurrence probability of ܣ given that the condition ܤ has occurred. ܲሺܤሻ 
indicates the marginal probability. ܲሺܣሻ indicates the prior probability. ܲሺܣ|ܤሻ is the conditional probability 
of occurrence of ܤ given that the even ܣ has occurred. The implemented approaches to compute the future 
performance are discussed in the following sections.   

4.2 Markovian Model  

After the calculation of the transition probabilities, it is time to forecast the future performance of the concrete 
bride decks using Markov chain. Markov chain is considered as a special case of the Markov process and 
it can be defined as a series of transitions between condition states. A stochastic process is regarded as a 
first-order Markov chain if the probability in the future state depends on the present state not on the past 
state (Bu et al. 2015).     

The condition rating using Markov decision processes can be calculated using the following equation.  

ሾ4ሿ	Eሺtሻ ൌ Qሺ0ሻ ൈ P୲,୲ାଵ ൈ Rᇱ																																																																																																																								 

Where; 

Eሺtሻ represents the estimated condition rating using Markovian-chain method. Qሺ0ሻ represents the initial 
state vector where Qሺ0ሻ ൌ ሾ100% 0 0 0ሿ. R′ represents the transpose of a vector of condition ratings 
where R ൌ ሾ100% 71.71% 64.04% 43.49%ሿ. P୲,୲ାଵ denotes the transition probability matrix.   

4.3 Performance Indicators  

The proposed model incorporates three performance indicators to compare between the two deterioration 
models. The three performance indicators are: root-mean square error (ܴܧܵܯ), mean absolute error (ܧܣܯ), 
chi-squared statistic (ݔଶ). ܴܧܣܯ ,ܧܵܯ, and ݔଶ can be calculated as follows (Nazari et al., 2015; Ranjith et 
al., 2013). 
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ሾ5ሿ	RMSE ൌ ඩ
1
K
෍ሺO୧ െ P୧ሻଶ								

ే

୧ୀଵ

																																																																																																													 

ሾ6ሿ	MAE ൌ
1
K
෍|ሺO୧ െ P୧ሻ|								

ే

୧ୀଵ

																																																																																																																	  

ሾ7ሿ	xଶ ൌ෍
ሺO୧ െ P୧ሻଶ

P୧

୏

୧ୀଵ

																																																																																																																																			 

Where; 

O୧ indicates the observed condition of the bridge deck. P୧ indicates the predicted condition of the bridge 
deck. K represents the number of observations (bridge decks).  

5 Model Implementation 

The proposed methodology utilizes 181 inspection records from the Ministry of Transportation in Quebec 
(MTQ), Canada. One hundred fifty six are used for training the model, while the remaining twenty five 
records are used for testing the model. Out of the 156 inspection records, there are 104 transition events 
and 52 censored events. The transition probability matrix is shown in the following equation, whereas	 ଵܲଵ, 

ଶܲଶ, and ଷܲଷ equal to 97.1062%, 97.303%, and 98.8712%, respectively. The parameters of the weibull 
distribution are computed using maximum likelihood estimation algorithm. The scale and shape parameters 
of the weibull distribution are 84.2378, 5.0643, respectively. The deterioration curve of the hybrid Bayesian 
model is shown in Figure 3. A comparison between the hybrid Bayesian model and the weibull distribution 
is illustrated in Table 1.   

ሾ8ሿ	ܲ௧,௧ାଵ ൌ ൦

97.1062% 2.8938% 0 0
0 97.303% 2.697% 0
0 0 98.8712% 1.1288%
0 0 0 100%

൪																																																																												 

Table 1: Comparison between deterioration models  

Deterioration model ۳ۯۻ ۳܁ۻ܀ ࢞૛  
Hybrid Bayesian 

model 
0.8572 0.542 62.5 

Weibull distribution 1.4527 0.9834 356

As shown in Table 1, ܴܧܣܯ ,ܧܵܯ, and ݔଶ of the Bayesian model are 0.8572, 0.542, and 62.5, respectively. 
 ଶ of the weibull distribution are 1.4527, 0.9834, and 356, respectively. The chi-squaredݔ and ,ܧܣܯ ,ܧܵܯܴ
critical values at 180 degrees of freedom and a significance level of 5% equals to 212.304 Thus, the weibull 
distribution fails to pass the chi-squared test. Based on the previous statistics, the hybrid Bayesian model 
significantly outperformed the weibull distribution model. 

The proposed model is a defect-based model. Thus, it was capable to simulate the deterioration process 
of the bridge deck. One of the main reasons of the inaccurate performance of the weibull distribution is its 
incapability to model the deterioration process. Moreover, based on the weibull distribution the bridge deck 
remains in condition state 1 for a long time while it takes a very short time to deteriorate from condition state 
2 to condition state 3 as well as from condition state 3 to condition state 4. On the other hand, the hybrid 
Bayesian model predicts that the bridge decks remains in each condition state for a reasonable time.    
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Figure 3: Deterioration model of the hybrid Bayesian model 

6 Conclusions 

This paper presents a stochastic time-based model that is capable of predicting the future condition of the 
concrete bridge decks. The proposed model utilizes a combination of the Bayesian belief networks and 
Markov decision process to forecast the future the performance. The Bayesian belief network is used to 
calculate the in-state probabilities ଵܲଵ, ଶܲଶ, and ଷܲଷ according to the severity of the bridge defects. Five 
bridge defects are considered which are: corrosion, delamination, cracking, spalling, and pop-out. After the 
construction of the transition probability matrix, the Markovian decision process is used to calculate the 
future condition ratings. Finally, the proposed model is compared with the weibull distribution to illustrate 
its prediction capabilities based on three performance metrics. The proposed model outperformed the 
weibull distribution because it is a defect-based model. Thus, it is capable to model the deterioration of the 
bridge decks.           
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