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Abstract: The construction industry relies heavily on the use of equipment with fleet management playing 
a critical role in optimal project delivery, particularly for general contractors. Reliable prediction of equipment 
usage can enhance acquisition or disposal decisions and, in turn, project performance. This study proposes 
a methodology for the long-term prediction of equipment usage, in consideration of potential variation in 
market conditions, using historical data from various sources. Regression models capable of predicting 
usage of individual equipment categories are developed. For longer-term predictions, a Markov chain, used 
to simulate market fluctuations, is combined with the regression models. The proposed method can inform 
equipment managers of future fleet requirements for improved project planning and delivery. 

1 INTRODUCTION 

Management of equipment, as a major resource, is vital to the success of every construction project. In 
Canada, equipment costs can account for up to 60% of the total cost of many construction projects 
(University of Toronto 2001). Accordingly, equipment management decisions, including the acquisition and 
disposal of equipment, have a considerable impact on daily construction operations. To properly manage 
equipment fleets, decision-makers must be able to reliably predict future equipment demands and 
equipment costs far enough in advance to allow for the implementation of decisions in practice. Currently 
available long-term, empirical prediction methods, however, are not analytical, often resulting in unreliable 
estimates and, in turn, in poor fleet management decisions. This study proposes an analytical prediction 
methodology to estimate long-term equipment usage, using historical data currently available in most 
construction companies, for improved fleet management. 

2 BACKGROUND 

2.1 Equipment Management in Construction 

In general, acquisition or disposal decisions are made based on economic principles and the consideration 
of a variety of factors, including equipment costs, maintenance costs, residual values, and market values. 
Cumulative cost models, which provide numerical and graphical analysis of maintenance costs, have been 
proposed and gradually improved upon with more sophisticated cost models, life-to-date repair costs, and 
period-cost-based models (Vorster 1980, Mitchell et al. 2010, Bayzid 2014). In conditions where sufficient 
historical data were available, various forms of regression models have also been developed to estimate 
maintenance cost time series and to forecast maintenance cost intervals instead of point values (Yip et al. 
2014, Duncan 2015, Bayzid et al. 2016). With equipment transactions becoming more common, 
understanding residual and market value of equipment is becoming increasingly important for acquisition 



 

   

GC61-2 

or disposal decisions. Auction records retrieved from online construction equipment databases have been 
introduced into studies and have become major sources for equipment residual value analysis (Lucko 
2003). Spatial cost analysis has been further developed using residual value regression models (Ponnaluru 
et al. 2012). Additionally, advanced data mining methods for predicting equipment costs have been 
proposed (Fan et al. 2008). Changing economic conditions have also been considered in quantitative 
research to tackle incongruous economic data (Lucko 2011). 

Understanding equipment costs, however, is not sufficient for optimal management of equipment. Decision-
makers must also investigate and consider future equipment demand. Indeed, poor equipment 
management may result, for example, in a once rapidly growing company that now, as a consequence of 
an economic down-turn, is required to sell equipment at lower-than-purchase prices. While short-term 
(monthly/quarterly) usage prediction is achievable (and more accurate), it may not provide practitioners with 
enough time to make adjustments to existing fleets due to the lengthy approval and implementation process 
of large companies. Long-term predictions will not only provide more lead time for decision making but can 
also provide a more reliable overview of fluctuations in equipment usage. While methods capable of reliably 
forecasting long-term equipment usage have the potential to improve project delivery, analytical prediction 
methods, particularly for long-term predictions, have yet to be reported. 

2.2 Prediction Modelling 

The time series prediction problem is the prediction of future values based on previous and current values 
of the time series (Hamilton 1994). One-step ahead predictions are referred to as short-term predictions, 
while multi-step ahead predictions are known as long-term prediction problems. Unlike a short-term time 
series prediction, a long-term prediction is faced with growing uncertainties arising from various sources. 
Two major prediction strategies have been described: (a) a recursive prediction strategy, which divides the 
prediction term into smaller sections, with the same short-term prediction models being calculated 
repeatedly to achieve a final number and (b) a direct prediction strategy, which only has one model targeting 
the end of the prediction term. While the latter strategy is more complex, direct prediction strategies can 
achieve more accurate results (Sorjamaa et al. 2007). To improve accuracy, this study employs a direct 
prediction strategy. 

With the development of computer power and data mining technologies, many prediction algorithms have 
been proposed in the past decades as forecasting approaches. Linear regression methods are the most 
basic methods. Although they are easy to interpret, many researchers have claimed that they are not 
capable of producing accurate results when used for explaining and capturing non-linear relations of many 
real-world problems (Pai and Lin 2005, Thissen et al. 2003). “Black-box” methods are being increasingly 
proposed in the data mining field and have attracted attention owing to their powerful capacities and 
comprehensive adaptabilities. Artificial neural networks (ANN)—the most famous “black-box” method 
relying on large training datasets—have become a popular method for solving problems (Santos and 
Celestino 2008). Support vector machines are also being used in construction for their ability to outperform 
ANNs and to achieve good generalization by adopting a structural risk minimization (SRM) rather than an 
empirical risk minimization (ERM) (Behzad et al. 2010). A modified version of SVM, called least-squares 
SVM (LSSVM), has been proposed and applied for solving construction problems (Suykens and 
Vandewalle 1999, Sorjamaa et al. 2007, Zhang et al. 2016).  

To select the right prediction algorithm, however, one must fully understand the defined problem, as the best 
algorithm will vary case by case, particularly concerning the size of the available dataset. Linear regression is 
a simple approach for supervised learning that has been shown to be useful both conceptually and practically. 
Compared to heuristic methods, which require a large amount of historical data and are not always applicable, 
a multiple regression model can be used even if the observation number is limited.  

2.3 Markov Chain 

Applications of Markov models have become widely accepted in the field of economics for market 
forecasting. Markov switching models have been successfully used to model volatility reduction by treating 
moderation as a discrete event (Kim and Nelson 1999, Stock and Watson 2002). Given its successful 
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application within the financial sector, the current study proposes the use of a Markov chain process to 
model construction market fluctuations. 

Markov chains, named after Andrey Markov, are used to model a random process that undergoes transition 
from one state to another on a state space (Gilks 2005). The Markov process is characterized by a single-
step memory. It is a stochastic process that involves both a random variable and a “time” parameter that 
monotonically increases during the process (Figure 1). Only the most recent step is considered when 
determining a subsequent step. Although restrictive, the most recent step is usually the most important for 
determining the next step.  

 

Figure 1: Markov chain process example 

3 METHODOLOGY 

The objective of this study is to predict long-term equipment usage, in this case over 3-years, from historical 
revenue data. The proposed methodology is illustrated in Figure 2.  

  

Figure 2: Long-term prediction methodology flowchart 
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For many general contractors, key performance indexes of each department, including project duration and 
cost, are recorded in an internal system. Each department has diverse equipment needs and, therefore, 
these data have an underlying relationship with total equipment hours, companywide. In the proposed 
model, a Markov chain is used to predict revenue data from this historical data. A direct prediction model is 
then established to match results with market conditions of the prediction year. From the revenue data, the 
prediction model for the total equipment usage can be applied to predict monthly equipment hours. Due to 
the dynamic nature of Markov chains, the model can be simulated for multiple runs to achieve various 
prediction values (as indicated by the dashed lines in Figure 2). For each run, one random seed is assigned, 
and the prediction value of equipment usage is calculated. After collecting and combining values from 
multiple runs, a distribution of the predicted equipment usage is generated.  

3.1 Regression Model and Parameter Selection 

To obtain a more explanatory model with enhanced predictive accuracy, the multiple non-linear regression 
model, shown in Equation [1], was considered most suitable for this type of study.  

[1] Y = β0 + β1Xi + β2Xi
2
 …+ βkXi

k
 + ɛ  

where i = 1,2,…,n and usually ɛ ~ N(0, σ2)   

Definition of factors, or so-called predictors, is crucial for regression model development, yet in many 
situations, many predictors are available. Inclusion of too many predictors, however, may result in overfitting 
and an increase in the workload required for collecting and processing data. To keep the current model 
simple and easy to interpret, the law of parsimony, economy, or succinctness is followed to ensure only the 
most important predictors are included in the final model. A best subset selection method is applied to 
reduce the number of predictors from a predefined list. Here, regression models including all possible 
parameter combinations are established, using Equation 1, and a single best model is selected based on 
certain criteria. Commonly used criteria include Cp, adjusted R2, and Bayesian Information Criteria (BIC). 
Cp, defined in Equation 2, is the statistic that penalizes larger models. 

[2] Cp = (n-p-1)·SSE(q)/SSE(p) - (n-2(q+1)) 

where q is the number of predictors in the model, n is the observation number, p is the number of predictors 
in the model, and SSE is the sum of squared residuals. 

Adjusted R2, defined by Equation 3, is calculated as follows: 

[3] Radj
2 = 1- (n-1)/(n-q-1)·SSE(q)/SSE(p) 

where q is the number of predictors in the model, n is the observation number, p is the number of predictors 
in the model, and SSE is the sum of squared residuals. 

The calculation for BIC is defined by Equation [4]. 

[4] BIC = -2l(y) + log(n)·(q+1) 

where q is the number of predictors in the model, n is the observation number, and l(y) is log-likelihood of y. 

In most cases, the three parameter selection criteria will lead to similar results. If not, parameters are 
subjectively selected based on the analytical selection criteria.  

3.2 Cluster Analysis 

To apply the Markov chain, a set of states must first be defined. In many cases, data have too many 
categories and must be simplified. In other cases, data may be numerical and must be converted into 
categorized data. In the proposed method, data are first divided into groups that are meaningful and useful 
through cluster analysis, which is sometimes referred to as unsupervised classification. In our study, K-
means cluster analysis, a prototype-based partitional clustering technique that attempts to find a user-
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specified number of clusters (K) represented by centroids, is applied. K-means clustering attempts to 
categorize data into groups where within-cluster variation is minimized, as shown in Equation [7].  

[7] minC1,.., Ck Σk {WCV(Ck)} 

where WCV(Ck) is within-cluster variation for cluster Ck.  

States of the Markov chain are selected when K-means iterations reach a state in which no points are 
shifting from one cluster to another. 

3.3 Markov Chain 

Due to fluctuations in construction market conditions and the seasonality of the construction industry, 
business revenue, and, in turn, equipment usage varies. A Markov chain process is used to model and 
predict future revenue data. Each Markov chain contains a set of states, S = {s1, s2, …, sr}. The process 
begins in one of these states and moves successively from one state to another. Each move is called a 
step, and each step is related only to the previous step. The transition matrix is also comprised of probability 
pij, defined as the probability at which state si moves to state sj,, which are referred to as transition 
probabilities. Notably, for regular Markov chains, long-range predictions are independent of the starting 
state. In general, if a Markov chain has r states, then probability pij can be calculated using Equation [5]. 

[5] pij
(2) = Σr pik·pkj

 

If P is the transition matrix of a Markov chain and u is the probability vector that represents the starting 
distribution, the probability that the chain is in state si after n steps is the ith entry in the vector as shown in 
Equation [6]. 

[6] u(n) = uPn 

Using the results of the cluster analysis, the Markov chain is established and run. Predicted revenue data 
is fed into the multiple non-linear regression model. Outputs of the models are then combined, run for 
multiple iterations, and fit into a distribution of predicted equipment usage hours. 

4 CASE STUDY 

To test its functionality, the proposed methodology was applied at a construction organization in Edmonton, 
Alberta. Historical data from the last four years were collected from the contractor’s internal equipment and 
project management systems. 

4.1 Parameter Selection 

Parameter selection was used to condense the list of considered factors. Initially, 20 parameters including 
month, project number counts, revenue for each discipline, company-wide total revenue, and utilization 
rates of major equipment categories were identified for parameter selection. Using the various model 
selection methods previously described, five parameters, namely month, total revenue, revenue for building 
projects, revenue for industrial projects, and revenue for infrastructure projects, were ultimately selected.  

Various parameter numbers in the model were compared (Figure 3). Low Cp values, low BIC values, and 
high R2 values indicate improved prediction accuracy of a model. Lowest Cp values, using both backward 
and forward Cp methods, were obtained when five parameters were considered. Consistent with this, the 
lowest BIC values and highest R2 values were obtained with the five parameter model.  
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Figure 3: Parameter selection output 

4.2 Multiple Non-linear Regression Model 

Using the selected parameters and the historical data collected from the contractor’s internal equipment 
and project management systems, the prediction model was established as shown in Equation [8]. 

[8] Total Equipment Hour = -42990*Month3 - 44690*Month2 + 35420*Month + 0.001985*RBuilding + 0.002190* 
RInfrastructure + 0.002063* RIndustrial -0.001995*RTotal +92910 

Where Month is the calendar month ranging from 1 to 12, RBuilding is the revenue of the building department 
in the prediction month, RInfrastructure is the revenue of the infrastructure department in the prediction month, 
RIndustrial is the revenue of industrial department in the prediction month, and RTotal is the total revenue of 
different departments in the prediction month. 

4.3 Markov Chain and Simulation Model 

Revenue data of the case company clustered into two groups. Based on the similarity of the groups to real-
world construction market behavior, the two groups were named “Expansion” or “Recession.” A simulation 
model was developed and used to encode the proposed long-term prediction approach. The general 
purpose template of Simphony, a discrete-event modeling environment, was used to establish the 
simulation models as shown in Figure 4.  

  

Figure 4: Long-term prediction simulation model embedded with Markov chain 
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The Markov chain element in Simphony was used simulate the transition between states, and the “Execute” 
element was embedded with a customized code to export the output into a data file. In this case, the Markov 
chain model was coded into the “Revenue” and “Revenue_MC” elements. The calculation of revenue 
prediction was coded into the “Revenue_Change” element. The calculation of equipment hour prediction 
model and export of calculation results were coded into “Equipment_Hour_Prediction” element. 

4.4 Results 

The model was used to predict long-term equipment usage hours, as shown in Figure 5, with the blue line 
and grey range representing the distribution mean and 95% confidence interval, respectively. Cyclical 
fluctuations in predicted equipment usage were observed. The 10th to 90th percentile of the predicted 
equipment usage hours was 21,082,486 CAD to 171,438,079 CAD with a period of approximately 11.9 
months. As expected, uncertainty accumulated and enlarged as prediction time increased (i.e., the range 
of prediction values in month 36 is larger than the range for month 12). 

 

Figure 5: Long-term prediction output 

5 CONCLUSION 

This research proposes an analytical approach, which combines regression models and Markov chain 
processes, for the long-term prediction of equipment usage. Using historical equipment and revenue data, 
the model is capable of predicting future equipment usage, as a distribution, in consideration of predicted 
company revenue. The functionality of the proposed method was examined following its practical 
application. The model was found capable of providing managers with a controllable, analytical method for 
long-term predictions, thereby alleviating the need of managers to rely on subjective experience for critical 
decision making and on their potentially limited insight of future market conditions. Notably, the proposed 
model can be easily adapted to predict other usage data, such as labour man-hours, allowing the 
quantitative comparison of multiple, long-term usage predictions. Nevertheless, the prediction method 
should be improved and generalized to enhance its adaptability to other, long-term prediction needs. 
Notably, since the long-term prediction approach cannot be detached from the processed historical data, a 
need to update the model as more data become available will be required. 
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