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Abstract: Laboratory constant normal load/stress (CNL/CNL*) boundary conditions in rock direct shear 
tests are achieved by maintaining the normal actuator at a constant load/stress, which allows the joint to 
dilate. Constant normal stiffness (CNS) boundary conditions differ as the machine is programed to maintain 
the normal stiffness, so as the joint dilates, the normal stress increases. While CNL* conditions are well 
documented and straightforward, a detailed literature review of CNS tests has revealed few details 
regarding appropriate laboratory testing protocols and data analysis. This paper presents practical 
guidelines needed to design an effective CNS test suite on pre-existing fracture samples that can be applied 
to a variety of rock types, based on intact rock elastic properties and recommended deformation properties 
from analysis of laboratory data. Deformation and yield properties of direct shear samples including normal 
stiffness, shear stiffness, shear strength, and post-yield dilation behaviour are analyzed in this study. In 
particular, new practical methods to determine dilation and total dilation potential are discussed. These 
properties are all needed to provide parameter inputs that accurately define the mechanical behaviour of 
rock joints in explicit and discrete geomechanical numerical models. Finally, discrete element method 
numerical models are used in this study to illustrate differences between numerical models of laboratory 
scale direct shear tests using input properties from the CNL* and CNS laboratory test conditions, with a 
focus on the effects of dilation angle and dilation potential.  

1 INTRODUCTION 
Laboratory direct shear testing is an essential tool that is used to characterize the stiffness, strength, and 
post-yield dilation behaviour of rock joints and other fractures in geotechnical engineering. Constant normal 
stress (CNL*) and constant normal load (CNL) boundary conditions represent fracture behaviour in slopes 
and other near surface gravity-driven environments. Constant normal stiffness (CNS) boundary conditions 
are better suited to simulate rock fractures near underground excavations, such as tunnels, mines, and 
nuclear waste repositories, where in situ and induced stresses dominate rockmass behaviour (Goodman 
1976; Indraratna et al. 1999). While CNL and CNL* conditions allow the fracture to dilate freely during shear, 
so there is no feedback between dilation and normal stress, dilation is constrained by this feedback in CNS 
conditions. Determining appropriate geomechanical properties of fractures in granitic rock under CNL* and 
CNS boundary conditions is the focus of this investigation.  

2 CONSTANT NORMAL STIFFNESS (CNS) 
The CNS boundary condition constrains dilation during shearing. This causes the normal stress to increase, 
which in turn increases shear resistance (Indraratna et al. 1999). CNS conditions are intended to simulate 
conditions observed in underground environments, rock socketed piles, and bolted joints where dilation is 
constrained (Figure 1). In direct shear laboratory testing, a machine input for normal stiffness (KNM), rather 
than a constant stress used in CNL and CNL* tests, is applied to the specimen during the shear stage in 
order to replicate the confining environment associated with these real world situations. The CNS boundary 
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condition can be applied in the laboratory with servo-control or with springs (Figure 2). The increase in 
normal stress on the test specimen during shear is equal to KNM × dn, where dn is the normal displacement 
(dilation) of the discontinuity in millimeters.  
 

 
Figure 1: Examples of joint boundary conditions in situ and their lab equivalent. Modified after Goodman 

(1976) and Haverfield and Szymakowski (2003) 

3 CREATING A DIRECT SHEAR TESTING PROGRAM 
Prior to the development of servo-controlled direct shear machines, CNS boundary conditions were applied 
by springs with a known stiffness (Johnston et al. 1987) (Figure 2E).  Springs limit the available machine 
normal stiffness (KNM) magnitudes under CNS to springs that can be produced and procured. Servo-
controlled equipment allows for greater freedom in choosing KNM magnitudes that may be more 
representative of the underground environment of interest.  
 

 
Figure 2: Testing Specimens and Equipment; (A) Granite specimen pre-shear, (B) Granite specimen post-

shear, (C) Queen’s University Advanced Geomechanics Testing Laboratory (AGTL) GCTS RDS 200 
servo-controlled direct shear machine (CNL* and CNS), (D) Constant normal load direct shear machine, 
weights are applied to the arm to sustain a constant load and the hydraulic jack is used to apply a shear 
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force (Hoek 2007), (E) Constant normal stiffness direct shear machine, springs have been applied to a 
constant normal load machine to create the constant normal stiffness condition (Indraratna et al. 1999) 

The applied machine stiffness can be estimated by the global normal stiffness of the system. The first 
developments of equations to estimate the global normal stiffness of a rockmass are based on the dilation 
and shear behaviour exhibited by a concrete pile near ground surface (Johnston et al. 1987). These 
equations do not fully capture the behaviour of planar rockmass fractures in underground environments. 
Work by Skinas et al. (1990) and Thirukumaran and Indraratna (2016) was helpful in the work to develop 
the following equation for machine normal stiffness (Packulak et al. 2018): 
 
[1]  KNM	=	E

2L ×(1-ν2) ൘  ×	A 

 
where A is sample area, L is rockmass joint spacing, E is Young’s Modulus, and ν is Poisson’s Ratio. 
Equation 1 is based on the consideration of a rockmass system of intact rock (defined by E and ν), cut by 
infinitely repeating parallel joints with a spacing of L that simultaneously dilate under identical boundary 
conditions. The relationship in Equation 1 estimates KNM, which is the simulated stiffness of the machine 
for CNS tests performed with springs; this would be the spring constant.  
 
Once KNM has been determined based on the sample geometry and material properties, and using 
Equation 1, an appropriate range of confining stresses for the test program is required. A laboratory test 
program should contain at least three different applied normal stress conditions. According to the 
International Society for Rock Mechanics suggested methods (Muralha et al. 2013), between three and five 
specimens should be tested at each boundary condition on fractures from the same joint or test horizon. 
This is ideally suited for oriented drill core; for unoriented core where it is difficult to identify joint sets, test 
specimens should have similar surface characteristics such as roughness, alteration and mineral coating. 
Further guidelines for sample selection are presented by Day et al. (2017).  

4 PRE-YIELD DEFORMATION BEHAVIOUR: STIFFNESS 
The normal stiffness of a joint (Kn) is measured during the normal loading phase of a direct shear test, when 
there is zero shear loading. Several closure laws exist to determine Kn with respect to increasing normal 
stress. The empirical hyperbolic fracture closure law proposed by Goodman (1974) is asymptotic toward 
maximum joint closure. Hungr and Coates (1978) determined that joints that have been exposed to higher 
stresses in situ than those applied in the lab exhibit a linear relationship between stress and displacement.  
Zangerl et al. (2008) implemented a semi-logarithmic closure law proposed by Bandis et al. (1983), together 
with the stiffness characteristic by Evans et al. (1992), to describe the non-linear behaviour of closure data. 
An extensive suite of normal stiffness results comparing the linear and semi-logarithmic closure laws is 
presented by Day et al. (2017). In order to estimate Kn, all test results from the normal loading stage (zero 
shear load) collected by the authors have thus far been analyzed using both linear (Hungr and Coates 
1978) and semi-logarithmic (Zangerl et al. 2008) closure relationships. 
 
To determine joint shear stiffness (Ks), the slope of the shear stress (tau) versus shear displacement (δs) 
curve is measured between the start of shearing and the peak shear strength. The determinations of secant 
(KSS, zero to peak), tangent (KST, at 50% of peak shear strength), and chord (KSC, linear-elastic portion of 
the tau versus δs) are based on guidelines by Day et al. (2017). Testing completed by the authors shows 
that joint shear stiffness (Ks) is dependent on the magnitude of applied normal stress, but Ks is not affected 
by different boundary conditions (CNL* versus CNS). 

5 YIELD AND POST-YIELD BEHAVIOUR: SHEAR STRENGTH 
Fractures tested under CNL* conditions show two distinct failure envelopes: “yield strength” (also the 
maximum strength) and “residual strength” (after some slip). Under CNS conditions, an initial “yield 
strength” is recorded (first slip), followed by a hardening behaviour (due to dilational feedback) up to a 
“maximum strength”, and followed by a decrease to “residual strength” after additional shear displacement. 
 
Prior to yield, there is no significant dilation and therefore the normal stress remains relatively constant. 
Post-yield, three behaviours with varying impacts on dilation are possible: sliding along asperities, shearing 
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through asperities or major crushing of asperities (Johnston and Lam 1989). All three behaviours result in 
an initial opening of the discontinuity and potential closing as shearing progresses, resulting in variations 
of normal stress under CNS conditions. As shearing continues, the joint will dilate due to sliding over the 
surfaces of asperities, causing an increase in normal stress, and in turn increasing the shear resistance. 
Once the shear stress of sliding along the asperity exceeds its shear strength, a new shear plane develops 
through the asperity. It is at this point the fracture shear strength drops to a residual state from maximum 
strength.  
 
The shear strength results from laboratory tests completed in this research (Figure 3) are sorted by 
boundary condition (CNL*, and CNS – 6 kN/mm) and plotted with linear best-fit Mohr-Coulomb strength 
envelopes (Mohr-Coulomb properties are listed in Table 1). Residual shear strength data for tests with post-
yield grout interference are not included in these best-fit calculations (Packulak et al. 2018A). As the 
samples used in this test program are medium and coarse grained, unfoliated to slightly foliated granites 
and gneisses, the scatter is associated with the variability in crystal strength, asperity height, and any 
potentially pre-existing structures.  The point of maximum shear strength in CNS testing represents the 
point where asperity sliding is overcome by asperity shearing and the development of new shear planes as 
described in Johnston et al. (1987).  
 

 
Figure 3: Mohr-Coulomb strength envelopes for CNL* (16 completed tests) and CNS-6 (12 completed 

tests), properties are in Table 1. 

Table 1: Summary of Mohr-Coulomb shear strength parameters for all boundary conditions 

Boundary 
Condition 

Yield Shear Strength Maximum Shear Strength Residual Shear Strength
φy  
[°] 

c  
[MPa] 

R2 φm  
[°]

c  
[MPa]

R2 φr  
[°] 

c 
[MPa]

R2 

CNL* 57.3 ± 7.7 1.6 ± 0.6 0.90 N/A N/A N/A 39.4 ± 1.8 0 0.98
CNS-6 51.6 ± 7.6 1.0 ± 0.6 0.91 49.1 ± 21.6 1.8 ± 2.2 0.51 32.4 ± 2.1 0 0.98

6 POST-YIELD BEHAVIOUR: DILATION 
Dilation is an important characteristic that describes post-yield behaviour of rock fractures (Bandis et al. 
1983). A new approach to determine a secant dilation angle (ψs) is proposed in this research to address 
input requirements for joint elements in discrete numerical models. An example measurement of ψs from 
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shear stress (tau) and normal displacement (δn) versus shear displacement (δs) data is shown in Figure 4. 
First, the shear strength yield point (A) and a zone of shear displacement (B to C) that is representative of 
residual shear strength are selected. ψs is the angle from horizontal that is formed from drawing a line from 
the yield point on the normal displacement curve (A) to the start of residual shear strength zone on the 
normal displacement curve (B) (Figure 4). The total dilation potential (δnm), for numerical modelling 
purposes, is the amount of dilation from yield (Figure 4, point A) to the end of what is determined to be the 
end of representative residual behaviour (Figure 4, point C).  
 

 
Figure 4: Example shear stress (tau) and normal displacement (δn) results (CNL*) (laboratory testing 

conducted by the authors) with new secant dilation angle (ψs) and total dilation potential (δnm) 
measurements 

7 NUMERICAL MODELLING SOFTWARE MECHANICS  
To analyze laboratory-scale shear behaviour, the Distinct Element Method (DEM) Universal Distinct 
Element Code (UDEC) by Itasca Consulting Group Inc. (2014) was used. In DEM codes, material domains 
are divided into discrete blocks with contacts between blocks that must be continuously identified and 
updated during every time step (Jing 2003). Updates to block contact forces and displacements are 
calculated at each time-step during the deformation process and are based on equations of motion, a 
defined geomechanical constitutive model and boundary conditions (Itasca 2014). In UDEC, there are 
multiple built-in geomechanical constitutive models for joint stiffness and strength, which were developed 
at different times during the evolution of rock mechanics.  This study focused on the use of the Mohr-
Coulomb (M-C) (Coulomb 1776) constitutive model and its associated consideration of joint dilation 
parameters.  

8 MODEL SETUP 
Three separate numerical models were created using UDEC (Itasca 2014) software. Details about the 
model setup and boundary condition are illustrated in Figure 5. Three separate laboratory scale test cases 
are presented: (A) CNL flat joint, (B) CNL triangular joint, and (C) CNS flat joint. The rock material selected 
for this study is granite. Results from unconfined compressive strength tests as presented in Packulak et 
al. (2018B)  are summarized as follows: a unit weight of 0.026 MN/m3, an intact Young’s Modulus of 75,536 
MPa and a Poisson’s ratio of 0.29 (with a corresponding bulk modulus of 58,555 MPa and shear modulus 
of 29,391 MPa). The CNS direct shear boundary condition model shown in Figure 5C is used to simulate 
the boundary condition. The spring block is assigned material properties such that external constant normal 
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machine stiffness (6 kN/mm and 12 kN/mm) is modelled explicitly. In order to prevent unconfined dilation 
from occurring in the system, the top of the spring block is pinned in place after the initial stress has been 
applied, after the model has reached equilibrium, and prior to shearing. The CNL direct shear test is 
modelled in a similar way as the CNS condition, except that the spring block has been removed and the 
top boundary of the top specimen block is left free. In order to determine the physical properties of the 
“spring” block in UDEC, a Young’s Modulus was determined using Eq. 1, and then used to calculate Bulk 
and Shear Moduli (Table 2). 
 

Table 2: Material properties for the spring block used in UDEC CNS flat joint model C 

Machine Normal Stiffness 
[kN/mm] 

Young’s Modulus Bulk Modulus Shear Modulus
[MPa] [MPa] [MPa] 

6 158 53 79 
12 317 106 158 

 

 
Figure 5: Diagrams of the direct shear test models in UDEC, including the model geometry, external 

boundary conditions, normal loading conditions, and applied velocity; (A) CNL setup with flat joint, (B) 
CNL setup with triangular joint, where asperity height and angle of asperity was varied, and (C) CNS 

setup with flat joint 

9 NUMERICAL MODELLING RESULTS & DISCUSSION 
Using the M-C constitutive model, dilation can be modelled through the “jdilation” parameter or through 
physical asperities.  The normal displacement versus shear displacement results for CNL models (Figure 
6A) and CNS models (Figure 7) show the dilatational behaviour for flat jointed models using the “jdilation” 
parameter. Dilation behaviour for flat jointed models is compared to physically modeled asperities in Figure 
6B. As shown in Figure 6A, the joint remains closed until the model begins to dilate, which is determined 
based on applied normal stress. Prior to shearing, the normal stress is applied and the model is allowed to 
go to equilibrium, as the models have the same strength and stiffness characteristics failure / dilation occurs 
later in the shearing phase. In Figure 6B, due to model parameters, the bottom block is deforming and 
being compressed as shearing progresses. This deformation has produced an overall negative total 
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displacement as shown in Figure 6B. This phenomenon can be improved with adjusting model parameters 
and placing history points above and below the fracture to determine the dilative component instead of total 
deformation of the model. Figure 6B does not fully represent dilation occurring in the model. Numerical 
results from CNS models show a dampening of the dilation angle under the 12 kN/mm stiffness from 20° 
to just over 10° (Figure 7).  For other boundary conditions there does not appear to be a dampening of the 
dilation angle.   

 
Figure 6: Normal displacement versus shear displacement graphs showing dilation characteristics for 

joints with dilation angles of 2°, 10°, and 20° with respect to stress. (A) CNL setup with flat joint (Figure 
5A); (B) CNL setup with triangular joint (Figure 5B) asperity height of 0.5 mm 

Smaller shear displacement values needed before the joint starts to dilate (Figures 6 and 7) directly 
influences when yield occurs in terms of shear stress versus shear displacement (Figure 8).  In Figure 8A, 
CNL models with flat joints are not directly impacted by dilation as controlled in the model by the “jdilation” 
parameter, which is not the case in reality. CNL tests with explicitly modelled asperities show a dependence 
on dilation angle and asperity height with respect to yield shear strength. Joints with lower dilation angles 
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show a smaller drop from yield shear strength to residual strength under CNL conditions.  Flat jointed CNS 
model results show yield occurring earlier during the shearing stage and at lower shear strengths when 
compared to flat jointed CNL models (Figure 8B). The CNS model has the linear elastic pre-yield section, 
which occurs before significant dilation takes place, at the point in the model where dilation starts to occur 
the model immediately drops to a residual state. In laboratory results, an increase in normal stress increases 
the shear resistance leading to a “maximum strength”, which does not appear in the numerical results. The 
CNS condition has an effect in the post-yield region where shear resistance increases as shearing 
continues.   
 

 

Figure 7: Normal displacement versus shear displacement graphs showing dilation characteristics for 
joints with dilation angles of 2°, 10°, and 20° with respects to stress. (A) CNS setup with flat joint (Figure 

5C) and a system stiffness (KNM) of 6 kN/mm (B) CNS setup with flat joint (Figure 5C) and a system 
stiffness (KNM) of 12 kN/mm 
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Figure 8: Graphs showing shear stress versus shear displacement profiles from models with applied 
normal stresses of 2 MPa and 8 MPa with dilation angles of 10° and 20°; (A) CNL boundary conditions for 
flat and triangular joints, (B) Flat joint CNS boundary condition with machine normal stiffness values of 6 

kN/mm and 12 kN/mm 

10 CONCLUSIONS  
The new equation for machine normal stiffness (KNM) provides a means to target appropriate CNS 
boundary conditions in direct shear testing for rockmass properties of interest, which better reflects 
rockmass behaviour around an underground excavation. The proposed secant dilation angle (ψs) provides 
an improved approach to measuring dilation for numerical modelling applications. Pre-yield parameters 
such as joint normal stiffness and shear stiffness have thus far been observed to be independent of the test 
boundary condition, as the CNS component does not take full effect until peak shear strength has been 
reached. For the numerical modelling of direct shear problems, using the M-C constitutive model is not 
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appropriate for flat jointed CNS conditions as the influence of the CNS condition occurs after the model has 
started using the residual parameters. To improve the shear behaviour of joints in numerical models, future 
work will investigate alternative constitutive models that capture the transition observed in laboratory test 
data from peak to residual shear behaviour.  
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