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1 INTRODUCTION 

Swimming in contaminated waters may result in gastrointestinal and respiratory diseases. To protect 
bathers from swimming in such circumstances, microbial water quality is typically monitored for fecal 
indicator bacteria (FIB). Furthermore, in addition to the health effects, beach closure may have deep 
financial impacts as well. Annually this ranges from $11.3M to $117M in lost value for the Great Lake 
recreational swimmers for those days when swimming is banned (Shaikh 2006; Rabinovici et al. 2004). 
Although E. coli is considered the most suitable indicator for recreational water monitoring according to 
Guidelines for Canadian Recreational Water Quality, its measurement takes 18 to 24 h before results are 
available.  However, water quality in near shore regions can change over a matter of hours (Myers et al., 
1998; Boehm et al. 2002) so concentrations may change between the time of sampling and the reporting 
of results. Unsafe conditions are frequently announced late due to latencies in the E. coli measurement 
process. This process results in issuing closures based on previous day data rather than current water 
conditions. Developing rapid analytical methods which average two hours of laboratory analytical time is a 
possible solution to address this problem. Although these methods may be operationally available, but they 
need higher analytical cost than slower culture-based methods (Setty, 2012). Statistical models can be 
another solution which has been shown to also be an accurate approach (Nevers and Whitman 2005; Feng 
et al. 2015; Dada and Hamilton, 2016). In the late 1990s the first empirical models developed through 
statistical techniques such as Multiple Linear Regression (MLR), were used to reduce the risk of infection 
to users of recreational waters (USEPA, 1999). In Ohio, one-year data at three Lake Erie beaches was 
used to explore the effectiveness of predictive models (Francy and Darner, 1998). The simplest type of 
model, namely Rainfall-based alerts, have been used by several communities for a number of years (Francy 
D., 2009). Later, application of predictive models considering other water quality and hydro-metrological 
parameters on other beaches became more prevalent and many studies were conducted to develop such 
models for inland recreational lakes (Dada and Hamilton 2016; Olyphant and Whitman 2004; Nevers and 
Whitman 2005, 2011; Francy et al. 2013), coastal beaches (Thoe et al., 2012; Boehm et al., 2007) and 
reservoirs (Francy et al. 2013). Although some deterministic models were developed to predict the water 
quality and FIB concentration, these models are inferior to statistical models in most situations as they 
require the determination of FIB sources (Francy D., 2009). In the present study, collected water quality 
and weather data and their various transformations are examined to develop a multiple linear regression 
model using the United States Environmental Protection Agency (USEPA) Virtual Beach (VB) toolbox.  
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2 MATERIAL AND METHOD 

Samples were collected on 30 consecutive days between the hours 8:00 and 12:00 (10 August 2010 to 8 
September 2010) at Sandpoint beach (Lake St. Clair) and Holiday beach (Lake Erie) in the Windsor-Essex 
Region. Detailed descriptions of the analysis, field measured parameters and E. coli enumeration 
techniques were reported in previous work (McPhedran, 2013). Weather data was obtained from the 
nearest Environment Canada station for each beach. Data included air temperature (Ԩ), daily rainfall (mm) 
and daily 10:00 am averages of hourly measurements of wind speed (m/s) and wind direction (degree). 
Minitab and XLSTAT were used to analyse the results. Briefly, to improve linear relations between E. coli 
concentrations and explanatory variables and also to take care of wide range of expected values, 
concentrations of E. coli were log10-transformed before any statistical testing and modeling (Francy et al., 
2013). The candidate explanatory variables included: 24h and 48h antecedent cumulative rainfall, wind 
direction, wind speed, turbidity, conductivity, air and water temperature, dissolved oxygen, pH and 
conductivity. Model performance was examined by determination of metrics such as Root Mean Square 
Error (RMSE), Accuracy, Sensitivity and Specificity which are defined as:  
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Where ܰ is number of observations, logଵ଴ ௜ܲ is the log10-transformed predicted model value, logଵ଴ ௜ܱ is the 
log10-transformed observation, and  TP, TN, FP, and FN are numbers of true positives, true negatives, 
false positives (Type I error), and false negatives (Type II error) respectively.  

3 RESULTS AND DISCUSSION 

Time series illustration of observed and modeled E. coli count for the two beaches are shown in Figure 1 
(a-b). Also, Figure 1 (c and d) show observed vs. model values of the advisory threshold for Sandpoint 
beach and Holiday beach respectively. During the study time, for Holiday beach, there were five EC 
exceedances (>100 CFU/100mL) while at Sandpoint beach, there were three EC exceedances. The non-
parametric Mann-Kendall trend test reveals that there is no trend in the time series data (P-value of 0.28 
and 0.97 for Sandpoint beach and Holiday beach respectively, ߙ ൌ 0.05). Also, using the Durbin–Watson 
statistic (ߙ ൌ 0.05), the selected variables were not autocorrelated (ܦ ൌ 2.7	and 2.3	for Sandpoint beach 
and Holiday beach respectively which are greater than ܦ௨ ൌ 1.93). This check is important to make sure 
serial-correlation conditions which lead to improper estimation of the model are satisfactory to conduct MLR 
analysis (Ge and Frick, 2007; WYMER, 2007). The obtained RMSEs of 0.27 and 0.26 logCFU/100mL in 
Sandpoint beach and Holiday beach respectively are lower than the common range for MLR models 
reported in previous studies which were in the range of 0.4-0.5 logCFU/100 mL (Thoe et al., 2014). Virtual 
beach provides the top 10 best fit correlations, which based on cross-validation, the optimal parameters 
are those that minimize the mean squared error of prediction (MSEP).  

Table 1: Summary of the model parameters 

Beach Name Sandpoint Beach Holiday Beach 

R2 0.78 0.89 
RMSE 0.27 0.26 
Accuracy (%) 96 96 
Sensitivity  0.75 1.0 
Specificity  1.0 0.96 
Cross Validation MSEP 0.26-0.33 0.24-0.35 
Correct Exceedance 3 5
Type I Error rate (%) 0 3.3 
Type II Error rate (%)  3.3 0
Total Error rate (%) 3.3% 3.3%  
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Results show that although turbidity was the most important variable in VB models for both beaches, 
different combinations of other variables were found to be significant for each of the two beaches.  While 
polynomial transformed turbidity, 24h rainfall and wind direction along shoreline were significant parameters 
in Sandpoint beach VB-Model, LOG(turbidity), wind direction, and INVERSE(wind_direction) were the most 
important variables for Holiday beach. Note that although EC levels at the study beaches can be impacted 
by a variety of other variables (humidity, cloud cover, animal and human sources etc.), these selected 
variables were reasonably satisfactory for building regression equations. Good correlation between the 
fitted VB models and observations were observed for both beaches (Figure 1).  For the Sandpoint beach 
VB Model, the R2 value was observed to be 0.78, sensitivity of 0.75, specificity of 1.0 and accuracy of 96%.  
Holiday beach VB model had higher R2 of 0.89. Sensitivity, specificity and accuracy of model for Holiday 
beach are observed to be 1.0, 0.96 and 96% respectively. A summary of model evaluations for Sandpoint 
beach and Holiday beach, is shown in Table 1. This model resulted in 8 (22%) Type I and 5 (14%) Type II 
errors out of 30 testable outcomes at Sandpoint beach, and 3 (6%) Type I and 3 (6%) Type II errors out of 
30 testable outcomes at Holiday Beach over the same time periods. 25% of the sample size (~ 8 days) and 
1000 trails was set for cross-validation purpose. The best fit equation with the lowest MSEP is selected 
between top 10 results that provided by VB. Results of MSEP range for selected model are shown in the 
Table 1 for both beaches.  

 
  Sandpoint beach Holiday beach 
(a) (b)

(c) (d)

  

Figure 1: Actual vs predicted Log10-E. coli concentrations for Sandpoint beach and Holiday beach.  

4 CONCLUSION 

As a brief model interpretation, the structure of this model implies that approximately 78% of the variation 
of the E. coli concentration is accounted for by the variations of 24h rainfall, turbidity and wind direction for 
Sandpoint Beach. In the case of Holiday Beach, 96% of the variation is covered by explanatory variables 
such as turbidity, wind direction and water temperature. Since the variables are transformed, their effects 

False Positive Correct exceedance 

Correct non-exceedance False Negative 

False Positive Correct exceedance 

Correct non-exceedance False Negative 
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are all nonlinear. Rainfall, which affects the transport of microbial pollution and spikes in turbid conditions, 
has an independent impact, while turbidity may be associated with the microbial build-up processes as a 
result of sediment resuspension that could influence E. coli concentrations into the water column. Storm 
events that usually coincide with high wind speed results in sediment resuspension as a result of wave/ 
current motions. In the case of Holiday Beach, rainfall is found to not be as effective as usually expected 
for these particular variables, which might be due to the beach geographical condition or sampling locations 
which need to be explored in more detail in future studies.  
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