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Abstract: The objective of this paper is to investigate the impact of different types of artificial boundaries 
on the dynamic behaviour of a free oscillating structure founded at the surface of a soil deposit. The 
superstructure consists of a moment resisting frame and the soil is considered as a stress dependent 
medium. 24 DSSI 2D finite elements models are constructed on OpenSees platform. Beam-column 
elements with fibre sections, including confined and unconfined concrete and steel reinforcement, are 
employed to represent the frame members. Soil behaviour is modelled using an inelastic multi-yield 
surface material to a depth of 30 meter in total stress condition. Three different types of lateral boundaries 
are applied to the soil domain in order to assess their impact on the period elongation and overall 
damping of the structure under free vibration. Different soil width-to-depth ratios (߸=w/H) are considered 
to evaluate the influence of the distance between the lateral boundaries and the structure. The study 
showed that the best approach to model the artificial lateral frontier for the problem of the free vibration of 
a structure located at the surface of an inelastic soil domain (depth 30 meter modelled as a stress 
dependant medium) is the viscous lateral boundary, using large lateral distance between the structure’s 
footing and the lateral boundary (߸	 ൒ 8ሻ. 

1 INTRODUCTION 

The current engineering practice rarely considers dynamic soil structure interaction (DSSI) in the design 
process of new buildings. Even though DSSI is generally perceived to have a beneficial impact on 
seismic response of the superstructure, a controversy still exists on the subject (Mylonakis and Gazetas 
2000). In recent studies, it was proposed to use DSSI in the process of seismic evaluation of existing 
structures as it might prevent unnecessary retrofits by reducing the seismic force applied to a structure 
(Gajan and Kutter 2008, Apari et al. 2017). 

There are two main approaches to evaluate the impact of DSSI, the direct methods and the substructure 
approach (Stewart et al. 2012). Both approaches require dynamic modelling of the soil medium to obtain 
the foundation input motion (Mengi and Tanrikulu 1993). The proper assessment of the extent of the far 
field is the key aspect in the modelling of the soil. While theoretically the soil medium extend to infinity, in 
the context of finite element analysis it is necessary to truncated it thereby creating artificial boundaries 
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that do not exist in reality. The infinite soil medium is then modelled as a reduced region called the finite 
domain (Wolf 1985). 

The artificial boundaries must prevent, or at least minimize, wave reflection back into the finite domain for 
the model to be of any value. This problem has been examined by Lysmer and Kuhlmeyer (1969) who 
proposed to add dashpot at the numerical lateral boundary to absorb incoming wave and prevent 
reflection back in the model. This approach can also be used to model the flexibility of the underlying soil 
deposit at the bottom boundary (Lysmer 1978). Another method  to model the artificial boundary is the 
use of the periodic lateral boundary, better known as the Tied Degree Of Freedom approach (TDOF) 
(Zienkiewicz et al. 1989). Other methods have been proposed over the years to assess this problem. 
Comparisons for the efficiency of these methods applied to linear elastic or pseudo elastic soil have been 
published (Mengi and Tanrikulu 1993, Kontoe et al. 2007). 

In the context of DSSI, where large loads are transferred from the structure to the soil, it appears crucial 
that the soil model be stress dependent and that correct assessment of initial state of stress be 
reproduced. Several reconnaissance reports show that non-linear behaviour of soil occurred during 
earthquake events and had a major impact on the dynamic behaviour of the supported structure in the 
case (Avilès and Pérez-Rocha 1998, Gajan and Kutter 2008, Giorgini et al. 2012, Raychowdhury and 
Singh 2012). Non-linear DSSI behaviour have been observed even under moderate shaking events 
(Pecker 2011). Thus, the modelling the soil as a linear elastic homogenous medium does not seem 
adequate. To the best of the author’s knowledge, studies examining the efficiency of artificial boundaries 
for the problem of inelastic DSSI with a soil model that is stress dependent have not been reported in the 
literature. 

In this paper, the impact of different types of artificial boundaries on the dynamic behaviour of a free 
oscillating structure founded on the surface of a 30 metres soil deposit is investigated. The soil is 
considered as a stress dependent medium.24 DSSI 2D finite elements models are constructed on 
OpenSees platform. Three different types of lateral boundaries are applied to the soil domain. Their 
impact on the response of the soil-structure system is traced through the period elongation and overall 
damping. Different width-to-depth ratios of soil medium (߸=w/H) are considered to evaluate the influence 
of the distance between the lateral boundaries and the structure. 

2 METHODOLOGY 

2.1 Description of the Analysis 

To reach the objective, a series of 24 DSSI models are constructed using 2D finite elements. The models 
are developed in the free software Opensees (OS) (McKenna 1997, Mazzonial et al. 2006). Three 
different types of artificial lateral boundaries are applied to the soil domain in order to assess their impact 
on the period elongation and overall damping of the structure under free vibration. In each model, the 
structure considered is a 3-storey 3-bays reinforced concrete (RC) moment resisting frame 12.2m high, 
with exterior bay width equal to 8.5m and interior bay width equal to 3m for a total width of the structure of 
20m. The frame has 4 distinct footings located at the surface of the soil deposit with dimension L=2m. 
This type of structure represents a common structural system build between 1960 and 1970 for 
institutional buildings in the province of Quebec (Lefebvre 2012). The soil considered is a sand deposit in 
total stress condition with a shear wave velocity (Vs) of 270 m/sec and depth (z) of 30m. 

Four different ratios of soil widths to depth (߸=w/H) are considered to evaluate the influence of the 
distance between the lateral boundaries; 0.667, 2, 5.667, 8 (Figure 1 a). The width w is the distance 
between the structure’s footing and the lateral boundary. For each value of ߸, three different types of 
artificial boundaries are considered for the soil domain. The selected artificial boundaries were chosen on 
the basis of simplicity of implementation in a numerical finite element model in the prospect of being used 
in the practice. The first artificial lateral boundary used is the viscous artificial boundary (Lysmerm and 
Kuhlmeyer 1969) which consists of discrete elements (dashpots) added at the limits of the finite domain 
to absorb incoming waves and prevent them from bouncing back into the model. The second artificial 
boundary used is known as the Tied Degree Of Freedom (TDOF) (Zienkiewicz et al. 1989). In this 
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approach, equal displacements are imposed on nodes on lateral boundaries at equivalent height from the 
bottom boundary in their respective DOF. In the last artificial boundary used, referred to in the text as the 
fixed lateral boundary (FLB), all lateral nodes are simply fixed against lateral displacements. A view of the 
geometric aspect of the model including the soil and the structure is given in Figure 1 (a). 

 

(a) 
 

(b) 

Figure 1 : (a) View of the geometric aspect of the model; (b) Schematic view of the numerical model for 
the case of viscous artificial lateral boundary and rigid bottom condition 

For each ratio ߸ and each type of artificial lateral boundary, the bedrock rigidity is either considered 
infinite, as depicted in Figure 1 b), or considered finite, and represented using a series of dashpot 
included to the bottom’s frontier nodes to account for the finite rigidity of the underlying bedrock (Lysmer 
1978). Properties of bedrock used for the half-space are density (ρ) taken as 2 400 kg/m³ and shear wave 
velocity (Vୱሻ taken as 760 m/sec. Table 1 resume the different models tested. 

Table 1 : List of tested models and characteristic parameters 

Bedrock ϖ ൌ w
Hൗ  FLB Viscous TDOF 

Infinite rigidity 

0.667 1.A.1 2.A.1 3.A.1
2 1.A.2 2.A.2 3.A.2

5.667 1.A.3 2.A.3 3.A.3
8 1.A.4 2.A.4 3.A.4

Finite rigidity 

0.667 1.B.1 2.B.1 3.B.1
2 1.B.2 2.B.2 3.B.2

5.667 1.B.3 2.B.3 3.B.3
8 1.B.4 2.B.4 3.B.4

2.2 Numerical Modelling – Soil 

The soil domain is constructed using 0.5x0.5m quadratic elements with a single stabilized gauss point 
(McGann et al. 2012). The soil mesh is 30 meters deep and has variable ratio ߸ of width to depth, as 
shown in Figure 1 a) and Table 1. Effect of passive lateral earth force on the soil domain is modelled 
using loads at each node of the lateral boundaries. The values of the loads to apply are obtained by 
recording stress in high stiffness spring attached to the artificial boundaries in the first static consolidation 
analysis steps. The springs are then removed and the forces recorded in each spring are applied to the 
associated node. 

The analysis is conducted in total stress condition, i.e. pore water pressures are not considered. Soil 
behaviour is modelled using an inelastic multi-yield surface material of the OS library called 
pressureDependentMultiyield (PDMY) (Yang et al. 2003). Instead of having a single yield limit, the PDMY 
material defines a nested series of surface which allows representing the small strain behaviour displayed 
by natural soils. Figure 2 shows the series of yield limits in the principal effective stress space and in the 
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deviatoric plane. As can be seen, the shape of individual yield limit is similar to the Drucker-Prager yield 
limits (Drucker and Prager 1952). 

 

Figure 2 : Conical yield surfaces in principal stress space and deviatoric plane - (Yang et al. 2003) 

Values of the soil parameters used in the PDMY model are shown in Table 2, where ρ is soil mass 
density, φ is the angle of friction of the soil, ߛmax is the maximum shear strain, Pr is the reference pressure 
for G୫ୟ୶ and K୫ୟ୶, and  is Poisson’s ratio. 

Table 2 : Value of the main parameters used in definition of the PDYM material 

ρ  
(kg/m³)

φ 
(°) 

 maxߛ
(%)

Pr  
(kPa) 

 

1635 37 1 101.3 0.27

The value of the small strain shear modulus G୫ୟ୶ is calculated from Eq. 1 (Seed and Idriss 1970): 

௠௔௫ܩ [1] ൌ ଶି௠௔௫ܭ21,7 ௔ܲ௧௠ට
௠ᇱߪ

௔ܲ௧௠
ൗ  

where ௔ܲ௧௠ is the atmospheric pressure (ൎ 101.3kPa), ߪ௠ᇱ  is the mean effective confining pressure,  
Poisson’s ratio and ܭଶି௠௔௫ is a parameter establishing the link between the shear modulus value and the 
confinement pressure, obtained from linear interpolation between value given in the work of Seed and 
Idriss (1970) or in tabulated format (Kramer 1996). The value of the small strain bulk modulus K୫ୟ୶ is 
directly obtained by Eq. 2: 

௠௔௫ܭ [2] ൌ
ଶீሺଵା௩ሻ

ଷሺଵିଶ௩ሻ
 

To ensure a proper choice of ܩ௠௔௫ considering the weight of the structure, an iterative procedure is used. 
Initial values for G୫ୟ୶ are chosen as to obtain a Vs of 270 m/sec on the whole soil domain. Static analyses 
are then conducted and stress state at each element is recorded. Updated value for G୫ୟ୶ &	K୫ୟ୶ are then 
computed from equations 1 and 2 and the static analysis is resumed until a stable solution is reached. 
During the dynamic phase of the analysis, the dependency of the soil to shear strain is directly taken into 
account in the PDMY material at each time steps based on a hyperbolic relation (Seed and Idriss 1970). 
Most models used in previous studies do not consider the initialisation of the state of stress and/or the 
dependency of the shear modulus to the shear strain as the soil is usually modeled as an elastic medium. 

2.3 Numerical Modelling – Structure 

Fibre sections, including confined and unconfined concrete and reinforcement steel are used to model the 
structural elements. The inelastic stress-strain relationships considered for structural elements are 
Concrete02 (Hisham and Yassin 1994) and Steel02 (Filippou et al. 1983) of the OS library. Although the 
structure remains elastic under free vibration, the non-linearity of the elements was modelled for future 
analyses. Concrete02 requires input of fୡᇱ, the concrete’s compressive strength at 28 days, εୡ଴, the 
concrete strain at maximum strength, fୡ୳ᇱ , the concrete crushing strength, εୡ୳, the concrete strain at 
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crushing strength, λ, the ratio between the unloading and initial slope at εୡ୳, f୲, the tensile strength and 
E୲ୱ, the tension softening stiffness. Steel02 requires input of f୷, the yield strength, E0, the initial elastic 
tangent, b, the strain-hardening ratio and parameter to control the transition to plastic branches (R0, CR1, 
CR2) as well as an optional isotropic hardening parameter. Details about the values used for these 
parameters and other structural considerations can be found in Apari-Lauzier (2016). 

2.4 Free Vibration Analysis 

Free vibration of the structure is initiated by a small displacement applied on the left of the frame in 
accordance with the first modal shape with maximal amplitude of 10-6 m. The motion of the top left node 
of the structure is then recorded and the displacement relative to the base of the footing displacement is 
calculated. No slipping or uplifting is considered on the interfaces between the soil and the four footings. 
Numerical period is taken as the mean value obtained between several peaks of the recorded relative 
displacement. It is then compared with the theoretical value obtained for the classical case of a single 
degree of freedom (SDOF) elastic oscillator with horizontal, vertical and rotation spring. Theoretical 
elongation of the SDOF elastic oscillator is given by Eq. 3 (Stewart et al. 2012, Veletsos and Meek 1974): 

[3] 
୘෡

୘
ൌ ට1 ൅

୩

୩౮
൅

୩୦²

୩౯౯
 

where T෡ is the natural period of the structure on a flexible base, T is the natural period of the structure on 
a fixed base, k the rigidity of the structure, k୶ the dynamic stiffness of the horizontal spring, k୷୷ the 
rotational stiffness and h the height of the SDOF model (≈2/3 Height of the structure). The logarithm 
decrement method, Eq. 4 (Paultre 2005), is used to estimate the damping of the structure (ߚ) during the 
free vibration: 

[4] ξ ൎ
ஔౣ
ଶ஠
ൌ

ଵ

ଶ஠୫
ln ቂ

୳౤
୳౤శౣ

ቃ 

where u୬ is the displacement at cycle n and u୬ା୫ is the displacement after m additional cycles. Values of 
damping obtained are compared with theoretical values expected for the case of a flexible base structure 
with consideration of foundation damping (ߚ௙) (Stewart et al. 2012): 

ߚ [5] ൌ ௙ߚ ൅
ଵ

ሺ ෨் ்ൗ ሻ೙
 ௜ߚ

where ߚ௜ is the structural damping for the structure considering fixed base condition and exponent ݊ is 
taken as 3 for linearly viscous structural damping and 2 otherwise (Stewart et al. 2012). The development 
of Eq. 3 and Eq. 5 are based on the hypothesis of a SDOF elastic system built over an elastic infinite 
domain. Since the shape of the imposed displacement respect the first modal shape of the structure and 
that displacement in both the structure and the soil remains very small,  the test conditions for the 
numerical DSSI finite element model are close to those used in the derivation of the theoretical relation. 
Hence Eq. 3 and Eq. 5 will serve as benchmark to evaluate the efficiency of the evaluated models 
presented in Table 1. 

3 NUMERICAL RESULTS 

In each analysis given in Table 1, the free oscillation is recorded during a 2.5 s interval. Time steps are 
approximately 0.0005 s with 5000 steps considered in each model. Figure 3 shows an example of the 
relative lateral displacement of the left top corner of the frame. Damping and difference between 
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numerical and theoretical ratios of period elongation for all models are presented in 

 

Figure 4. 

Numerical results of models with fixed lateral boundaries and rigid bedrock and increasing value of the 
ratio ߸ (1.A.1, 1.A.2, 1.A.3 and 1.A.4) are shown in Figure 3 a). They indicate that increasing the value of 
the ratio ߸, in other words, increasing the distance between the lateral boundaries, have a significant 
impact on the recorded displacements. In model 1.A.1 (߸ = 0.667), the displacement shows a transitory 
phase followed by a smooth permanent phase with damping ≈1.7%. In model 1.A.2 (߸ = 2), following the 
transitory phase, the model fails to develop a smooth permanent phase, as shown by the failed peak at 
0.5 s. Model 1.A.3 (߸ = 5.667), develops a similar trend. Model 1.A.4 (߸ = 8), develops a permanent 
phase but the permanent variation in amplitude shows that the motion is perturbed. Estimation of periods 
or damping from models 1.A.2 and 1.A.3 is irrelevant. Pattern displayed by these models indicates that an 
incoming wave disrupted the free vibration of the building. Since all movements originate from the 
structure, the disturbance is an effect of the boundary, lateral and/or bottom. 

Results from models with FLB and finite rigidity of the bedrock and increasing value of the ratio ߸ (1.B.1, 
1.B.2, 1.B.3 and 1.B.4) are shown in Figure 3 b). After the initial transitory phase, the model develops in 
each case a smooth permanent shape. However, damping differs greatly. Model 1.B.1 (߸ = 0.667) 
displays a damping ≈2,25% whilst models 1.B.2 (߸ = 2), 1.B.3 (߸ = 5.667) and 1.B.4 (߸ = 8) display 
increasing level of damping with increasing value of ߸ , from 4.5% for model 1.B.2 to 7.4% for model 
1.B.4. This trend indicates that in model 1.B.1, the lateral boundary of the model is close enough to limit 
the impact of the finite rigidity of the bedrock. In model 1.B.2, lateral boundaries are farther from the 
structure, thus the impact of the finite rigidity of the bedrock increases leading to an increase in the 
damping value. 
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Figure 3 : Relative displacement of the top left node of structure for the case of FLB: a) rigid bedrock 
b) bedrock with finite rigidity (see Table 1) 

Results of models with viscous lateral boundaries and rigid bedrock and increasing value of the ratio ߸ 
(2.A.1, 2.A.2, 2.A.3 and 2.A.4) show, independently of the value of ߸, an initial transitory phase followed 
by a smooth permanent decay of the movement. Differences between the models are noted when 
examining their respective level of damping and period elongation. Model 2.A.1 (߸ = 0.667) has higher 
damping than 2.A.2 (߸ = 2) which in turn has higher damping than 2.A.3 (߸ = 5.667). However, damping 
of model 2.A.4 (߸ = 8) is higher than damping of model 2.A.3. It was expected that damping would 
decrease with increasing value of ߸ until a stable value was reached, as distance between the lateral 
dashpot and the structure is increased. When checking the ratio of period elongation, it is observed that 
the discrepancy between the theoretical value and the numerical value decreases with increasing	߸, from 
11.3% for model 2.A.1 to approximately 5% for model 2.A.4. 

Results of models with viscous lateral boundaries with finite rigidity of the bedrock and increasing value of 
the ratio ߸ (2.B.1, 2.B.2, 2.B.3 and 2.B.4) are similar to results obtained from models with rigid bedrock. 
Again, the trend does not seem to be much influenced by ߸. However, when comparing the elongation 
ratio, the discrepancy between theoretical and numerical is higher than in the viscous model with rigid 
bedrock. The difference in elongation ratio increases with increasing value of ߸ in all models except for 
2.B.4 (߸ = 8), remains relatively stable (+0.35%). When considering the damping, the impact of the finite 
rigidity of the bedrock appears. As value of ߸ increases damping increases and reaches the same value 
as in model 1.B.4 (߸ = 8), around 7.4%. 

Results of models with TDOF lateral boundaries and rigid bedrock and increasing value of the ratio ߸ 
(3.A.1, 3.A.2, 3.A.3 and 3.A.4) are similar, in shape, to those obtained for the case of FLB. For model 
3.A.1 (߸ = 0.667), the initial transitory phase is followed by a smooth decay in movement. Models 3.A.2 
(߸ = 2) and 3.A.3 (߸ = 5.667) however, fail to develop a smooth permanent phase, similar as what was 
observed with models 1.A.2 and 1.A.3. This suggests, again, that an incoming wave did impact the 
movement. Model 3.A.4 (߸ = 8) develops a seemingly permanent phase, although the pattern is less 
influenced by wave reflection than model 1.A.4. Period elongation ratio and damping for model 3.A.2 and 
3.A.3 were not computed as the displacement pattern was irrelevant. When comparing the elongation 
ratio for model 3.A.1 and 3.A.4, very little variation is observed (+0.55%). The same pattern is seen on the 
level of damping, which is stable around 2.8%. 

Results of models with TDOF and finite rigidity of the bedrock and increasing value of the ratio ߸ (3.B.1, 
3.B.2, 3.B.3 and 3.B.4) all show an initial transitory phase followed by a smooth permanent movement. 
From the result, it is seen that the ratio of period elongation is little influenced by increasing value ߸. This 
is not true, however, for the damping, which increases with increasing value of ߸. For model 3.B.4 (߸ = 

a) 

b) 
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8), the level of damping is roughly equal to that of model 2.B.4 (߸ = 8), indicating that the impact of the 
boundary on the response is predominantly coming from the bottom frontier. 

 

Figure 4 summarizes the values of damping for all models obtained from logarithm decrement of the 
relative displacement curves (Eq. 2). It can be seen that when the finite rigidity of the bedrock is modelled 
along with a very large soil domain on each side of the building, the damping values for all types of lateral 
boundaries tend to increase. When the bedrock is considered rigid, only the viscous artificial lateral 
boundaries does perform well, with larger value of soil domain leading close to the expected value of 
damping for this flexible base system. 

 

Figure 5 summarizes the values of the difference between theoretical and numerical ratios of period 
lengthening. As it can be seen, increasing the value of ߸ did impact the values. When the bedrock was 
considered rigid, the ratio did not change for the TDOF lateral boundaries. The ratio decreases in the 
case of the viscous lateral boundaries. When the finite rigidity of the bedrock was modelled, all types of 
models converged with increasing value of width up to a maximum of about 7.6%. 
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Figure 4 : Damping from logarithm decrement for 
the different models tested 

Figure 5 : Difference between theoretical and 
numerical ratios of period lengthening 

When the result of the damping and of the difference between theoretical and numerical ratios of period 
lengthening are considered together, the following observations can be drawn: 

 Fixed lateral boundaries performed poorly with increasing value of ߸, or the distance between the 
lateral boundaries, when the bedrock was assumed rigid; 

 When the finite rigidity of the bedrock was modelled, FLB period lengthening ratios were between 
those obtained by the viscous and TDOF methods for all values of ߸ assessed, whilst the damping 
value was similar for all three methods; 

 Viscous lateral boundaries with rigid bedrock over damped the model with low value of ߸. With larger 
value of ߸, the method gave the best damping level of all approaches tested as well as the lowest 
difference between expected and numerical ratios of period lengthening; 

 TDOF lateral boundary with rigid bedrock performed poorly with increasing value of ߸; 

 When the finite rigidity of the bedrock was modelled, the TDOF lateral boundary approach gave the 
same level of damping and of period lengthening as the FLB. 

The viscous lateral boundaries with the ratio ߸ ൌ 8 and rigid bedrock assumption did perform better than 
any other approach tested for the problem considered here. For the largest value	߸, the difference with 
the expected ratio of period lengthening is ൎ5% whilst the value of damping is within 1% of the expected 
value for this flexible base system. 

4 CONCLUSION 

2D finite element simulations were carried out to investigate the impact of different type of artificial 
boundaries on the dynamic behaviour of a free oscillating structure founded at the surface of a soil 
deposit modelled as a stress dependent medium. 24 DSSI models were evaluated for different type of 
artificial lateral boundary and different ratio of soil width to soil height. Original aspect of the work include 
assessment of the impact of the initial state of stress in the soil deposit on the value of the small strain 
shear modulus and the consideration of the shear strain on the evolution of the shear modulus during 
each analysis steps. 
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The results show the best approach to model the artificial lateral frontier for the problem of the free 
vibration of structure located at the surface of an inelastic soil domain of depth 30 meter modelled as a 
stress depend medium is the viscous lateral boundary, using large lateral distance between the 
structure’s footing and the lateral boundary. This method shows good agreement with expected value of 
damping with larger value of the ratio ߸ while at the same time having good agreement with theoretical 
ratio of period elongation. The two other approaches valuated showed increasing gap between theoretical 
and numerical period elongation ratio as the ratio ߸ increased.  
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