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Abstract: In recent years, it has been recognized that society has become more vulnerable to extreme 
storm events. Many studies have been carried out to investigate the variability of these extreme storms. Of 
particular interest for urban water infrastructure design is the investigation of the probability of occurrence 
of the extreme rainfalls using frequency analysis method. Many probability distributions have been 
proposed to model the extreme rainfall processes. However, there is no general agreement as to which 
distribution should be used. Consequently, in practice, a number of popular distributions are often selected 
and their descriptive and predictive abilities are then investigated and compared. This task requires a 
significant investment of time to analyze a large amount of available rainfall data of different time scales 
and record lengths for a number of different sites. This paper presents therefore the development of a 
decision-support tool for statistical modeling of extreme rainfall processes (SMExRain). The proposed tool 
can assist stakeholders and decision-makers in the selection of the most suitable distribution(s) for  
accurate estimation of the extreme rainfalls. More specifically, the SMExRain can be used to evaluate the 
descriptive and predictive abilities of ten commonly-used probability models, Beta-K, Beta-P, Generalized 
Extreme Value, Generalized Logistic, Generalized Normal, Generalized Pareto, Gumbel, Log-Pearson 
Type III, Pearson Type III, and Wakeby, for their accuracy and robustness in the estimation of annual 
maximum rainfalls (AMRs). Results of a numerical application using daily and sub-daily AMR data available 
from a network of 84 stations in Ontario have indicated the feasibility and accuracy of the proposed decision 
support tool SMExRain. 

1 INTRODUCTION 

The design and management of various water infrastructure systems require an adequate knowledge of 
extreme rainfall events of high return periods and for different durations (from several minutes to hours or 
days). In most cases, these extreme rainfalls corresponding to the desired return periods could not be 
extracted directly from the observed data since the available historical rainfall record is usually too short. In 
current engineering practice, the estimated design rainfall values are accomplished based on statistical 
frequency analyses of annual maximum rainfall data where available rainfall records of adequate lengths 
could be used to estimate the parameters of a selected probability distribution (Chow 1964, Kite 1977). The 
selected distribution model is then used to estimate rainfall intensities corresponding to return periods 
greater than or less than those of the recorded storm events. Accurate estimation of extreme rainfall could 
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help alleviate the damage caused by these extreme storms and it can help achieve more efficient design 
and management of water infrastructure systems. 

In general, selection of an appropriate distribution to representing annual extreme rainfalls is the most 
difficult and time-consuming task since there are many probability models available in the literature as well 
as in the design guidelines from different countries (Chow 1964, Kite 1977, Stedinger et al. 1993, Hosking 
and Wallis 1997, Rao and Hamed 2000, WMO 2009). Hence, the choice of a suitable model still remains 
as one of the major problems in engineering practice since there is no general agreement as to which 
distribution, or distributions, that should be used for the frequency analysis of extreme rainfalls. The 
selection of an appropriate model, thus, depends mainly on the characteristics of the available rainfall data 
at a particular site. Therefore, it is necessary to evaluate many available distributions in order to find a 
suitable model that could provide accurate extreme rainfall estimates for a given location. 

In view of the above issues, the main objective of the present study is to propose a decision-support tool 
(hereafter referred to as SMExRain – Statistical Modelling of Extreme Rainfall processes) that can be used 
to identify the most appropriate distribution(s) for estimating accurately the extreme rainfalls for design 
purposes. The proposed tool can provide a systematic and objective assessment of both the descriptive 
and predictive abilities of various distributions in the estimation of the extreme rainfalls using different 
graphical and statistical assessment criteria. In addition, this tool is highly efficient and convenient for the 
analysis of a large database of extreme rainfall data for different durations at a given location as well as for 
a large number of sites. The structure of the SMExRain and the procedure for identifying the best distribution 
is described in Section 2. An illustrative application of this decision-support tool using daily and sub-daily 
annual maximum rainfall data for Ontario region is presented in Section 3. Results of this numerical 
application have indicated the feasibility and accuracy of the proposed SMExRain. Finally, it can be noted 
that the results of the extreme rainfall frequency analyses using the SMExRain can be displayed in the 
popular form of Intensity-Duration-Frequency (IDF) relations for a given location of interest.  

2 THE DECISION-SUPPORT TOOL: SMEXRAIN 

2.1 General Description 

The decision-support tool SMExRain has been coded in Matlab environment and equipped with a user-
friendly ribbon interface. This software runs independently without the need of installation of a Matlab 
version. However, as a standalone application compiled from the Matlab environment, SMExRain requires 
the installation of the Matlab Compiler Runtime (MCR) v9.0 corresponding to the Matlab R2015b version 
(Mathworks 2016). The MCR v9.0 is free of charge and can be easily downloaded from the Matlab’s 
website. The structure of SMExRain is depicted in Figure 1a.  

Regarding the data screening and preliminary analysis, SMExRain provides users with many commonly 
used statistical criteria, including maximum, minimum, mean, standard deviation, skewness, and kurtosis 
of the input extreme data series. In addition to these numerical values, it also provides users with many 
useful graphs for statistical analyses, including the histogram plot for empirical probability density function 
analysis, the time series plot for trend analysis, and the boxplot for outlier detection.  

For selecting a best-fit probability distribution, various numerical and graphical criteria could be employed 
to evaluate the best fit of the model to the selected data. This descriptive ability assessment includes the 
use of the popular L-moment ratio diagram (Hosking and Wallis 1997), the application of different statistical 
goodness-of-fit tests, and the use of various graphical displays such as probability plots and quantile-
quantile plots to determine whether the fitted distributions are consistent with the given set of observations 
(Stedinger et al. 1993). In addition, the SMExRain provides necessary tools for evaluating the predictive 
ability of a model. This assessment is important to assess the capability of the selected model for describing 
accurately future extreme rainfall events. Often in selecting a particular distribution, one may be tempted to 
select a distribution with a high number of parameters. Generally, these distributions could provide a better 
fit to the existing data than those models with a fewer number of parameters, but they could be quite rigid 
and consequently are not able to provide an accurate estimation of future extreme rainfall events that are 
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beyond the range of the available data. Nonparametric data resampling schemes such as bootstrap (Efron 
and Tibshirani 1994) is hence included in the SMExRain to permit an evaluation of the predictive ability of 
each distribution model. Detailed description of probability distributions, parameter estimation methods, as 
well as the graphical and numerical criteria to assess the descriptive and predictive abilities of a distribution 
are presented in the following sections. Notice also that, for convenience, the SMExRain has been designed 
to allow users to perform the assessment and comparison of up to 12 probability distributions 
simultaneously rather than to evaluate a single distribution at a time. Depending upon the number of 
distributions selected for assessment as well as the number of generated bootstrap samples considered, 
the total simulation process can be completed within a short period (from seconds to minutes on a laptop 
computer). 

2.2 Probability Distributions and Parameter Estimation Methods 

SMExRain includes common two-to-five parameter probability distributions that have been selected based 
on their popularity in hydrologic frequency analyses: Beta-K (BEK), Beta-P (BEP), Generalized Extreme 
Value (GEV), Generalized Normal (GNO), Generalized Logistic (GLO), Generalized Pareto (GPA), Gumbel 
(GUM), Log-Pearson Type III (LP3), Pearson Type III (PE3), and Wakeby (WAK) distributions. Other special 
cases of these distributions, such as exponential (EXP) and normal (NOM) were also included in the 
software (Chow 1964, Kite 1977, Stedinger et al. 1993, Hosking and Wallis 1997, Rao and Hamed 2000, 
WMO 2009). 

Regarding the estimation of the distribution parameters, the SMexRain software include some common 
estimation procedures such as the method of moments, the maximum likelihood method, the method of L-
moments (Stedinger et al. 1993, Rao and Hamed 2000), and the method of non-central moments (NCMs) 
(Nguyen et al. 2002). These methods differ in the weights they give to different elements in the selected 
data set. The maximum likelihood method yields asymptotically optimal estimators of the parameters for 
some distributions; however, it often involves tedious computation, and it is very sensitive to the 
computational techniques considered.  The L-moments estimators are unbiased and discriminate the 
behavior of skewed data, which is ideal for parameter estimation of hydrologic data. They are more robust 
than conventional moments to outliers in the data and sometimes yield more efficient parameter estimates 
than the maximum likelihood estimates (Stedinger et al. 1993, Hosking and Wallis 1997). The method of 
NCMs has been shown to be able to consider some scale-invariance property of the NCMs of extreme 
rainfall data for different durations (Nguyen et al. 2002, Nguyen and Nguyen 2008, Nguyen et al. 2007). 
More specifically, in the SMExRain, the method of L-moments is used for all distributions (Hosking and 
Wallis 1997) except for the BEK and BEP models that are estimated by the method of maximum likelihood 
(Mielke and Johnson 1974). It is noted that the method of L-moments could be used for BEK (Murshed et 
al. 2011), but it is not preferable since the estimation procedure is more complicated and more tedious than 
the method of maximum likelihood and the results are almost the same. GEV parameters are estimated by 
both the L-moments (denotes as GEV) and non-central moments (denotes as GEV*) methods. 

2.3 Goodness-of-Fit Tests for Assessing the Descriptive Ability of a Distribution 

To visually assess the adequacy of a fitted distribution, SMExRain provides probability plots or quantile-
quantile (Q-Q) plots as a means of comparing observed to the fitted (or estimated) data (see Figure 1b). 
To support the decision-making, SMExRain is equiped with many commonly-used empirical plotting 
position (EPP) formulas described in literature, for example, Bloom’s, Cunnane’s, Weibull’s formulas and 
so on (Nguyen et al. 1989, Helsel and Hirsch 2002). In addition, it also provides a general EPP formula 
which can be customized by users.  

In addition to the visual assessment, SMExRain also provides different numerical assessment criteria to 
indicate the accuracy of the best fit. Four popular criteria are included in the SMExRain, including the root 
mean square error (RMSE), the relative root mean square error (RRMSE), the maximum absolute error 
(MAE), and the correlation coefficient (CC) as described in the following equations: 

[1] RMSE= {∑
(xi−yi)

2

(n−m)
}

1/2
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[2] RRMSE =  [
1

(n−m)
∑ {

(xi−yi)

xi
}

2

]
1/2

 

[3] MAE = max (|xi − yi|) 

[4] CC =  
∑{(xi− x̅)(yi− y̅)}

{∑(xi− x̅)2∑(yi− y̅)2}1/2 

where 𝑥𝑖 , 𝑖 = 1,2, … , 𝑛 are the observed values and 𝑦𝑖 , 𝑖 = 1, 2, … , 𝑛, are the values estimated from an 
assumed probability distribution for the same probability level; 𝑚 is the number of distribution parameters; 

𝑥̅ and 𝑦̅ denote the average value of the observations and estimated quantiles, respectively. 

For ease of computation and assessment the descriptive ability of a probability distribution, a ranking 
scheme has also been developed to judge the overall goodness-of-fit of each distribution by comparing the 
four categories of test criteria mentioned above. Rankings are assigned to each distribution for every test 
category according to the relative magnitude of the statistical test results. A distribution with the lowest 
RMSE, RRMSE, MAE or highest CC would be given the rank of 1. In case of a tie, average ranks are 
assigned to those distributions. It should be pointed out that equal ranks could also be used in case of ties 
with almost identical results. SMExRain has not been equipped with the case of equal ranks; however, 
since Microsoft Excel has supported this function, users could estimate the equal ranks using the Excel 
built-in function after exporting the results from SMExRain without any difficulty. 

2.4 Bootstrap Method for Assessing the Predictive Ability of a Distribution 

In general, it is expected that models with more parameters could fit better to the observed data; however, 
their parameter estimates could be more complex; and more importantly, their prediction abilities may not 
be better than those models with fewer parameters. Additionally, the performance of a distributions in 
extrapolating beyond the data is often of primary interest in real applications. To better evaluate the 
performance of various distributions at predicting extreme right-tail data, a bootstrap method was used in 
the SMExRain. This is a nonparametric approach to quantify the estimation uncertainty with statistical 
sampling procedure that yields multiple synthetic samples of the same sizes as the original observations 
(Efron and Tibshirani 1994).  It is found that the distribution of sample statistics computed from the bootstrap 
samples is a good representation of the respective distribution of the observed statistics (Vogel 1995).  

In order to generate bootstrap samples, a portion size n of the original dataset size N, for instance, n= 50% 
or half, must be extracted first. SMExRain provides users with two options: common validation and cross 
validation. In the former option, users can select the first or second halves to bootstrap. In the latter option, 
a portion of the selected size n is extracted with the starting point selected randomly. After extracting the 
sample of size n, users can enter the number of bootstrap samples to be generated, for example, hundreds 
to thousands samples etc. The default value in SMExRain is 1000 samples for stable results and efficient 
computation costs. Each candidate distribution is then fitted to the generated bootstrap samples and is 
extrapolated to estimate the right-tail quantiles corresponding to the k largest (k=4 by default) observed 
rainfall amounts in the full data set (see Figure 1c). The variability in the estimation of these extrapolated 
quantiles is presented in SMExRain in the form of modified boxplots by default. However, users can also 
switch to the standard boxplots (Helsel and Hirsch, 2002). The standard boxplot generally portrays the 
median, interquartile range, and outliers of the investigated data set. In this paper, the modified boxplots 
are used to show the robustness of each distribution predictive ability. The middle line of a modified box is 
the sample mean, the box height is twice standard deviation, the upper and lower whisker extend to the 
maximum and minimum value of the sample respectively (see Figure 1c). Large box widths or long whiskers 
imply high uncertainty in the estimation of these extreme values. If the observed values fall outside the box, 
then the distribution fitted to the bootstrap samples has overestimated or underestimated the true values 
and is therefore not commendable. It is important to know that, rather than considering each distribution at 
a time, SMExRain allows user to compare the predictive performance of up to 12 probability distributions 
simultaneously using the same generated bootstrap samples to ensure a fair comparison. 
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2.5 Construction of IDF relations 

In standard engineering practice, the results of at-site rainfall frequency analyses are often summarized 
and presented in the form of depth-duration-frequency (DDF) relations or intensity-duration-frequency (IDF) 
relations for each rain-gauge site with adequate rainfall records. In SMExRain, these IDF or DDF curves 
are available in both tabular and graphical forms for estimated rainfall intensities (or depths) at investigated 
durations (generally from five minutes to one day) and for return periods of interests (generally from two to 
a hundred years). Depending upon the choice of an empirical regression equation representing IDF 
relations, the coefficients are also computed for the ease of use and of interpolation of rainfall intensities at 
unobserved durations. SMExRain supports many popular regression equations (WMO 2009, Green et al. 
2016) in both real-space (with two or three coefficients) and log-space (with polynomial up to order 6). The 
coefficients are estimated based on the least-square technique. 

 

 
(A) 

 
(B) 

 
(C) 

Figure 1: (a) SMExRain structure and functions, (b) SMExRain user interface for the descriptive ability 
test, and (c) for the predictive ability test 

3 ILLUSTRATIVE APPLICATION USING ONTARIO DATA 

3.1 Database 

For purposes of illustrative application, this paper presents the utilization of SMExRain to identify the “best” 
distribution(s) for representing the distribution of sub-daily and daily annual maximum rainfalls in Ontario. 
A total of 252 datasets for three different rainfall durations (5 minutes, 1 hour, and 24 hours) from a network 
of 84 stations were used. The selection of these stations relied on the quality of the data, the adequate 
length of available historical extreme rainfall records (containing at least 20 years), and the spatial 
distribution of the rain-gauges to represent the different climatic conditions in this study area. 
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3.2 Decision-Support Process 

3.2.1 Descriptive Ability Assessment Results 

The Q-Q plots of all 252 AMS shows that all distributions can describe well the left-tail and central parts. 
The right-tail parts, however, are less well described and there are no obvious trends. These values can be 
accurately estimated, over-estimated, or under-estimated by any of the 11 candidate distributions. For 
purposes of illustration, only 1-hour AMS from one of the longest record and highest data quality stations – 
Toronto Int. Airport, is presented here as shown in Figure 2. From the visual standpoint, all distributions 
seem to perform well in this case, except the BEK and GPA distributions. However, the significance of the 
differences between the remaining models is difficult to judge merely based on the graphical display, as the 
differences are minor. A more objective evaluation using numerical comparison criteria is thus necessary. 

Rankings of the 11 candidates at each of the 84 stations based on the four statistical criteria were 
performed. Ranking from number 1 to 11 indicates the gradual decrease from the best to the worst 
distributions. On the basis of these goodness-of-fit numerical comparison results, it was found that no 
unique distribution ranked consistently best for all locations and for all three selected rainfall durations. The 
overall ranks of each distribution were obtained for every test category by summing the individual point rank 
at each location. The rank sum results of the 84 stations of three durations for different record lengths (i.e. 
stations contain at least 40 years, 30 years, and 20 years), presented in Figure 3, show that WAK model 
outperforms the others in describing the distribution of daily and sub-daily AMS. The GEV, GNO, and PE3 
models also performed well overall and their scores are close to each other. This can be expected since 
these models are advocated for use in frequency analyses of hydrologic extreme variables by many 
previous studies. It is also noticed that the PE3 model performed slightly better than GEV and GNO models 
for 5-min duration data. However, for data set of longer durations – 1-hour and 24-hour, GEV and GNO are 
slightly better (see Figure 3). The GLO, LP3, and GEV* distributions moderately performed and they stand 
among middle positions (see Figure 3). It is also interesting to notice that if only RRMSE criterion is 
considered, LP3 is the best candidate for data of all durations. 

After assessing how well each distribution fit to the overall data sets, the focus is on the right tail region of 
the distribution since this is the region of importance to engineering design and planning applications. The 
degree of fit on the right tail of the distributions was visually examined using the quantile-quantile plots to 
gain further appreciation of the overall fit of the distributions. From the visual standpoint, there was very 
little to choose from between the various distributions for representing the data used in this study since a 
very small variability was found in the comparison results for different locations as shown, for instance, in 
Figure 2 – Toronto Int. Airport 

3.2.2 Predictive Ability Assessment Results 

The sampling characteristics of extrapolated right-tail quantiles were investigated using the bootstrap 
procedure for all stations containing at least 30-year record length (i.e. 47 stations). In this study, one 
thousand bootstrap samples of size equal to half (i.e. 50%) of the actual sample size were drawn with 
replacement from the observations for 21 stations containing at least 40 years of record. For 26 stations 
contain between 30-40 years of record, approximate two third (i.e. 65%) of the actual sample size were 
used in order to make sure that the generated bootstrap samples contain at least 20 years of record.  Each 
candidate distribution was then fitted to the generated bootstrap samples and used to extrapolate the right-
tail quantiles corresponding to the four largest observed rainfall amounts in the full data set. The distribution 
of the extrapolated amounts obtained was presented in the form of the modified box plots. The performance 
of each distribution in estimating the four largest values was evaluated.  

The modified boxplots of 141 AMS show that, generally, the Beta-K, Beta-P gave consistently the worst 
performance with large sampling variation and bias for all three rainfall durations. For instance, Figure 4 
shows the modified boxplots of extrapolated right-tail bootstrap data for 5-min AMS at Toronto Int. Airport.  
Unlike the BEK and BEP models, the modified boxplots for the WAK model do not show large box widths; 
however, they reveal long upper whiskers (see Figure 4 as an example). In addition, results of modified 
boxplots reveal that, the LP3 model produced larger box widths than other remaining distributions, yet it 
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was not as poorly performed as BEK, BEP or WAK (see Figure 4). Although the Gumbel distribution 
exhibited the lowest sample variation in most cases, it tends to overestimate or underestimate the observed 
values most frequently. The GEV, GEV*, GLO, GNO, GPA, and PE3 distributions produced satisfactory 
results at most stations where the box enclosed the observed right-tail values with a reasonable whisker 
spread and correlation with the observed values. In particular, the GEV, GNO, and PE3 produced almost 
identical results. Occurrences of over-  or under-estimation of largest rainfall amounts did occur for all 
distributions at several locations. 

3.3 Decision-Making Process 

In general, it is observed that no one distribution performed the best at every station for each category. This 
could be due to the strong spatial variabilty of rainfall characteristics within this study region. While it is 
difficult to provide a clear physical interpretation of the regional variability of the probability distribution 
parameters, one is still able to rely on the proposed tool to identify the GEV, GNO, and PE3 as the best 
distributions for a large number of cases considered. Furthermore, it is easy to recognize distributions that 
perform less satisfactory, it is more difficult to identify the overall best distribution. These three models could 
be thus used alternately for the frequency analysis of annual extreme rainfalls for a given site as shown for 
instance in Figure 5 for Toronto Int. Airport station.  The difference in extreme design rainfall estimates 
produced by the three distributions is also further investigated for all stations containing at least 30-year 
records.  Results reveal that the estimated values for return periods within the twice sample lengths are 
almost identical for the three distributions. However, the GEV model tends to provide slightly higher values 
for high return periods, while the PE3 model tends to give slightly higher values for low return periods. The 
three models, therefore, could be used interchangeably in constructing IDF relations and estimating 
extreme design rainfalls for Ontario region. Nonetheless, if only one probability model is preferred for the 
entire region, other criteria should be thus considered in the choice of an appropriate distribution.  For 
instance, the GEV model is based on a more solid theoretical basis than the other two distributions because 
it was derived from the statistical theory of extreme random variables.  Therefore, the GEV could be 
considered as the most suitable distribution if only a unique probability model is required for describing the 
distribution of annual maximum rainfalls for this study area. 

4 CONCLUSIONS 

A decision-support tool (SMExRain) has been developed for evaluating systematically the performance of 
various commonly-used probability distributions in hydrologic frequency analyses in order to identify the 
most suitable model for representing the distribution of extreme rainfalls for a study region of interest. Based 
on a number of graphical and numerical criteria, and being equipped with a user-friendly ribbon interface, 
this tool can be used to assess in an efficient manner the descriptive and predictive abilities of each 
distribution for a large database of extreme rainfall data of different durations at a given location as well as 
for a large number of sites. More specifically, it is relied on the results of four goodness-of-fit tests, including 
root mean square error (RMSE), root mean square relative error (RRMSE), maximum absolute error (MAE), 
and correlation coefficient (CC), and is also supported by the visual comparison of the probability plots, 
quantile-quantile plots and the modified and standard box plots from the bootstrap samplings. Furthermore, 
SMExRain can provide IDF relations for the current climate (i.e. based on historical data) in both tabular 
and graphical forms for a given location of interest. These IDF relations can also be presented in 
mathematical formulas (in real or log-space) for the convenience of computation and application in practice. 

The proposed SMExRain tool has been tested using extreme rainfall data for other regions in Canada. In 
this paper, it has been successfully applied to identify the best probability distributions that could provide 
accurate annual maximum rainfall estimates for the selected Ontario region. In particular, it was found that, 
among the eleven selected candidates, the GEV, GNO and PE3 provided the most consistent and the best 
performance for extreme rainfall data for different durations and for a number of locations in this study area.  
The estimated rainfall values for return periods within the twice sample lengths are almost identical for these 
three distributions. However, the GEV model tends to provide slightly higher values for high return periods, 
while the PE3 model tends to give slightly higher values for low return periods. The three models, therefore, 
could be used interchangeably in constructing IDF relations and for estimating extreme design rainfalls. 
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Nonetheless, for practical application purposes and for safety in urban water infrastructure design and 
management, the GEV could be preferable to the GNO and PE3 because it has a more solid theoretical 
basis and it produces higher estimates (or quantiles) for high return periods as compared to the others. 

 

Figure 2: Q-Q plots for distributions fitted to 5-min AMS at Toronto Int. Airport station 

 

Figure 3: Overall rank for all stations containing at least (A) 40-year, (B) 30-year, and (C) 20-year records 
based on the four statistical tests for all three durations of 5-min, 1-hour, and 24-hour AMS (The lowest 

scores or the shortest bar indicates the best distribution) 

 (A) Rank

BEK 155 171 156 151 142 140 161 177 165 154 162 150 1

BEP 155 143 144 147 127 130 152 139 146 147 135 148 2

GEV 113 91 93 94.5 92 92 121 100 103 120 91 96 3

GEV* 115 132 141 134 133 157 102 121 137 108 130 137 4

GLO 150 135 136 156 134 125 129 126 132 149 132 133 5

GNO 102 96 92 92 100 103 107 93 108 105 99.5 96 6

GPA 148 155 138 177 173 163 144 140 124 151 158 141 7

GUM 166 167 184 165 160 175 138 176 181 174 169 184 8

LP3 130 112 115 74.5 87 93 161 132 124 129 126 121 9

PE3 97.5 98 114 106 122 130 100 100 96 102 104 116 10

WAK 56 86 73 90.5 118 79.5 71 84 71 48.5 81 68 11

(B)

BEK 376 388 378 334 307 331 391 400 397 366 359 347 Total 

BEP 332 310 328 328 298 281 355 303 332 318 298 333 score

GEV 240 220 217 224 227 199 248 241 242 241 219 216 5m

GEV* 255 304 327 318 322 362 243 279 305 246 302 327

GLO 331 307 314 352 314 263 313 307 318 333 295 290 1h

GNO 233 216 199 214 234 225 243 219 229 231 223 212

GPA 332 323 281 373 343 350 298 281 246 340 330 299 24h

GUM 333 358 387 328 364 385 297 374 380 357 379 395

LP3 292 273 255 170 191 217 323 308 278 290 295 275

PE3 210 229 235 231 260 285 226 216 213 227 239 253

WAK 171 176 181 231 244 207 167 176 163 155 165 158

(C)

BEK 645 714 716 563 551 627 671 732 743 633 639 661

BEP 575 570 613 560 547 565 595 571 616 542 543 611

GEV 409 391 401 394 411 377 428 442 443 417 400 397

GEV* 516 580 578 572 631 638 511 526 549 494 564 567

GLO 566 544 590 558 568 519 537 579 605 555 524 557

GNO 406 369 369 398 393 400 420 399 400 412 390 394

GPA 586 538 431 664 561 538 519 449 375 605 568 462

GUM 623 609 666 593 650 648 611 627 669 670 673 701

LP3 496 472 480 335 325 379 545 526 525 504 516 519

PE3 391 387 390 450 445 461 410 366 347 424 413 430

WAK 335 375 312 459 465 396 298 329 273 291 318 247
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Figure 4: Boxplots of extrapolated right-tail bootstrap data for 5-min AMS at Toronto Int. Airport 

 

Figure 5: Frequency curves (solid lines) and 90% confidence limits (90% CI, dashed lines) of (a) 5-
minute, (b) 1-hour, and (c) 24-hour annual maximum rainfalls (circle markers) at Toronto Int. Airport 

station using the top three distributions – GEV, GNO, and PE3 
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