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Abstract: Urban floods are one of the most devastating natural disasters globally and improved flood 

prediction is essential for better flood management. Today, high-resolution real-time datasets for flood-

related variables are widely available. This data can be used to create data-driven models for improved 

real-time flood prediction. However, data collected for extreme observations have large uncertainty, which 

must be accounted for in these models. In addition to this, typically the selection of input features and the 

architecture for data-driven models has been subjective. Addressing these concerns will improve flood 

prediction and will provide more accurate flood risk assessments. In this research, a new type of fuzzy 

neural network is proposed to predict peak flow in an urban river. The network uses fuzzy number to 

account for the uncertainty in the data and model parameters. An algorithm that uses possibility theory is 

used to train the network. An adaptation of the Automated Neural Pathway Strength Feature Selection 

(ANPSFS) method is used to select the input features. A search and optimisation algorithm is used to 

select the network architecture. A number of different inputs are considered including lagged precipitation 

and mean daily flow rate. The impact of this approach is that network training does not follow the typical 

ad hoc approach, but is based on objective criteria. Data for the Bow River in Calgary are used to train 

and test the network. Model performance using different features is used to compare the effectiveness of 

using the ANPSFS approach.  

1 Introduction 

In 2013, Calgary and southern Alberta experienced one of the worst natural disasters in Canada: floods 
caused approximately $6 billion in damage (Environment Canada, 2013), and were responsible for four 
deaths, and displaced more than 100,000 residents (Alberta Government, 2014; Khan & Valeo, 2016). The 
floods contributed to the transport of large amounts of sediment and the destruction of river banks, channels 
and aquatic ecosystems (Environment Canada, 2013). Better flood protection, and timely flood mitigation 
strategies may have prevented some of the destruction and casualties. Flood prediction models play an 
integral role in flood protection, and improved models are critically needed to help protect against more 
frequent and intense floods expected in the future. 

The mechanisms behind extreme events in southern Alberta are generally understood and documented 
(Valeo et al., 2007) however, predicting floods remains a challenge because of the uncertainty in the 
numerical models. Flood prediction using physically-based and deterministic hydrologic models (such as a 
rainfall-runoff routing models) rely on simplified, conceptual representation of highly complex, correlated 
and spatially distributed processes that occur in a watershed (Wijiesekera et al., 2012; Vrugt et al., 2005). 
Uncertainty in the data used to calibrate model parameters and errors in model structure, compounds the 
complexity of flood models (Vrugt et al., 2005). 
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An alternative to physically-based models are data-driven models, which use generalized relationships 
between input and output datasets (Solomantine & Ostfeld, 2008). The models can characterize a system 
with limited assumptions and have similar (if not better) performance than physically-based models. A 
simpler model structure often means that the propagation of uncertainty from different sources is easier to 
quantify. These types of models (e.g. artificial neural networks, ANNs) have been widely used in hydrology, 
including for predicting flow rate (Adamowski & Sun, 2010; Duncan et al., 2011; Li et al., 2015). An 
advantage of using a data-driven approach is that data collected from real-time flow rate monitoring stations 
can be used to calibrate the model. This type of data is routinely collected by Environment Canada, which 
means that site specific surveys that are required for many physically-based methods are not necessary. 

Data-driven models have intrinsic uncertainties associated with it that are not random or probabilistic in 
nature, thus, making it well suited for the use of fuzzy number theory (Ozbek & Pinder, 2006). Fuzzy 
numbers use fuzzy sets and possibility theory to describe uncertain or imprecise quantities, measurements 
or observations (Khan and Valeo, 2015). They are more suitable when data is missing, incomplete or vague, 
combined from multiple sites, and to represent uncertainty that is not random (Khan and Valeo, 2016). 
Using fuzzy numbers instead of probability-based methods means that some of the strict assumptions in 
many probability models can be relaxed (Kahraman et al., 2006). The literature demonstrates the utility and 
advantage of using fuzzy numbers in conjunction with data-drive methods. For example, Alvisi & Franchini 
(2011) proposed a method to create a fuzzy neural network (FNN), where the model coefficients and output 
of the ANN are fuzzy numbers rather than deterministic. These fuzzy numbers quantify the total uncertainty 
of the calibrated coefficients. This application is unique compared to the more typical use of fuzzy set based 
applications that involve ANN. Typical methods use fuzzy logic based methods where automated IF-THEN 
rules are used to create deterministic outputs (Abrahart et al., 2012; Alvisi & Franchini, 2011). These types 
of methods do not quantify the uncertainty of the predictions.  

A major issue in implementing ANNs is that the choice of network architecture. This includes the selection 
of and the number inputs used, the number of hidden-layers, the number of neurons in each hidden-layer; 
the selection of the transfer functions, the amount of data in each subset, the training algorithm used; and 
the performance metric selected for optimisation. All of these important components of the network affect 
the values of the model coefficients, and the overall model performance. This means that each ANN model 
has uncertainty pertaining to the trained parameters. Recent reviews of ANN applications in hydrology have 
indicated that the lack of uncertainty quantification is a major reason for the limited appeal of ANN by water 
resource managers (Abrahart et al., 2012). Most ANN applications have a deterministic structure that 
generate point predictions without a quantification of the intervals corresponding to these predictions 
(Kasiviswanathan & Sudheer, 2013.). This means that end-users of these models may have excessive 
confidence in the forecasted values, and overestimate the applicability of the results (Alvisi & Franchini, 
2011). However, the characterisation of uncertainty in a model is essential for both research and operational 
purposes. Without this, model results have limited value (Kasiviswanathan & Sudheer, 2013).  

Thus, in this research a new method to account for the various uncertainties in ANN models is presented. 
First, an updated Automated Neural Pathway Strength Feature Selection (ANPSFS) method is used to 
select the optimum input data from a larger dataset. Second, a search algorithm is used to find the optimum 
network architecture (i.e. number of neurons in the hidden layer and fraction of data used for training). 
Lastly, a possibility-theory based FNN algorithm is used (based on Khan and Valeo, 2016b) to quantify the 
uncertainty of the model coefficients and outputs. Data from the Bow River in Calgary is used to train and 
validate the model, and results from the 2013 flood demonstrate the model.  

2 Methods 

2.1 Site description and data collection 

The Bow River basin is located in southern Alberta and has an area of approximately 25,123 km2. The 
basin provides significant economic activity for a major urban centre (the City of Calgary), as well as 
irrigation water for several irrigation districts in southern Alberta. The River originates in Bow Lake in the 
Rocky Mountains and flows south-easterly through Calgary (drainage area of 7870 km2) and into Hudson 
Bay (Robinson et al., 2009). The River averages a 0.4% slope over its 645 km length. The Bow River is 
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supplied by precipitation accumulated in the snowpack in the Rocky Mountains, precipitation and discharge 
from shallow groundwater. Runoff peaks in the spring (June) while low flows are seen in the winter 
(January). Just upstream of Calgary, the River is regulated by Bearspaw Dam. The Bow River flows through 
many residential communities and the commercial centre of Calgary. Thus, it is extremely important for 
accurate and timely peak flow prediction of this river for the safety of the residents, and for protection of 
assets in downtown Calgary. Therefore, for this research the “Bow River at Calgary” (Environment Canada 
WSC Station ID: 05BH004) flow measuring station was selected for peak flow rate prediction. This station 
is located centrally within Calgary. 

Eleven years of hourly flow rate data for was obtained from Environment Canada for the period January 1, 
2000 to December 31, 2010. The annual median flow rate and the annual peak flow rate varied between 
47 – 85 m3/s and 172 – 787 m3/s respectively. The highest peak flow rate occurred in 2005 (787 m3/s). The 
peak flow rates in 2005 are associated with a flood event in Calgary and southern Alberta, which estimated 
to have cost approximately $400 million in damage (Valeo et al., 2007). This flood event was the last major 
flood in southern Alberta prior to the floods in June 2013. The peak flow rate for the 2013 event was 
approximately 1600 m3/s, significantly higher than annual peaks in the previous decade (Khan & Valeo, 
2016). Data from 2013 was also collected and used for model testing. In addition to the hourly flow rate, 
the daily minimum and maximum temperature and daily precipitation for the same period was obtained from 
Environment Canada.  

The hourly flow rate collected for the station was filtered by removing dates where shift corrections (usually 
due to ice conditions) were applied by Environment Canada. Any data points within the selected range that 
had corrections applied were removed from further analysis. In addition to this, a second filter was applied 
to remove the low flow (below media ice-free median) rate periods, since the primary objective of this 
research was to predict peak flow rates. This reduced the data from an original, unfiltered set of 4018 days 
of hourly flow rate data to 1860 for Calgary, i.e. representing about 40% of available data. 

2.2 Fuzzy Neural Network 

Alvisi & Franchini (2011) proposed a method to create a FNN where the coefficients and the output of the 

network are fuzzy rather than deterministic numbers. In this method, a feedforward Multi-Layer 

Perceptron neural network (see Section 2.2.1 for more details) is modified to predict an interval rather 

than a single value for the coefficients and outputs. Each interval corresponds to an α-cut interval (an 

interval corresponding to the lower and upper limits of a fuzzy set at a defined membership level α). This 

is repeated for several α-cut levels to build a discretized fuzzy number at a number of membership levels. 

A stepwise, constrained optimisation algorithm is used to define these intervals. The constraints are such 

that to find the upper and lower limits of each coefficient to minimize the width of the predicted interval. 

However, Alvisi & Franchini (2011) defined the amount of data to be included in each interval arbitrarily, 

setting a predetermined amount of data to be captured within each interval. Khan & Valeo (2016b) refined 

this method by using the relationship between possibility theory and probability theory (known as 

probability-possibility transformations) to define more objective constraints. Using the transformation 

principles proposed by Dubois et al (2004), this method selects (1 – α) fraction of data to be captured 

within each interval, where α corresponds to the α-cut interval of a fuzzy number. Theoretical and 

mathematical details of this method are available in Khan & Valeo (2016b).  

This FNN method was implemented in MATLAB (version 2016a). The built-in MATLAB Neural Network 

Toolbox was used with a two-step optimisation approach: first, the Shuffled Complex Evolution algorithm 

(commonly known as SCE-UA, Duan et al., 1992) was used to find an initial solution to the minimisation 

problem. Then, further refinement of the solution was conducted using the built-in MATLAB minimisation 

function fmincon.  

2.2.1 Network architecture 

For this research a three layer, feedforward Multi-Layer Perceptron architecture was selected to model 

peak flow rate (QP) using several candidate inputs (see Section 2.2.2). This structure is one of the most 

common structures for ANNs and thus, was selected to be able to compare directly with previous studies 
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(He et al., 2011). For this architecture, two transfer functions are required, one between the input and 

hidden-layer which was selected as the hyperbolic tangent sigmoid function, and one between the 

hidden-layer and output-layer which was a pure linear function (following Alvisi & Franchini, 2011). 

Network training was completed using a backpropagation algorithm, the Levenberg-Marquardt method, 

minimising Mean Squared Error (MSE). The input and output data were pre-processed before training, 

validation and testing. The data was normalised so that input and output data fell within the interval [-1 1].  

There is no consistent method for selecting two important components of ANN architecture: the number 

of neurons in the hidden-layer (nH), and the amount of data used for training, validation and testing 

(known as data-division) (Abrahart et al., 2012). Typically, an ad hoc or trial-and-error method is used to 

select the number of neurons (Maier et al., 2010; Alvisi & Franchini, 2011; He et al., 2011). The nH 

selected must balance the complexity and generalisation of the final model; too many neurons increase 

the complexity and hence the processing speed, while reducing the transparency of the model. Not 

enough neurons risk reducing model performance and forgoing the ability of modelling non-linear 

systems. Similarly, the issue of data-division, which can have significant impacts on final model structure, 

is also determined in an ad hoc or trial-and-error basis (Maier et al., 2010). 

For this research, a coupled method to select the optimum nH and data-division for the ANN model 

described is proposed. This method uses the independent test dataset for all inferences regarding the 

error statistic (MSE) to be minimized. The smallest number of neurons and the least amount of data for 

training is targeted. The first is to reduce computational effort. The second is to prevent the risk of over-

fitting to the training data, and to a larger dataset for testing for robust statistical inference of that dataset.  

First, the dataset is randomly split into a 50%-25%-25% ratio for training, validation and testing, 

respectively. For each subset, data is randomly sampled to group into each subset. Then, the network is 

trained using 1 to 20 neurons. This process is repeated 100 times to account for the different selection of 

randomly sampled data in each subset. This is because the random initialisation of the ANN can cause 

variability in overall model performance (Napolitano et al., 2011). The MSE for each test dataset is then 

calculated and compared, and the number of epochs for each model is measured. Epochs are the 

number of times each model coefficient is modified in the optimisation algorithm. The configuration that 

leads to the lowest MSE for the testing dataset and the lowest number of epochs was collected. This 

process is then repeated by sequentially increasing the amount of data used for training (and thus, 

reducing the amount of data equally partitioned for validation and testing) by increments of 0.5% from 

50% to 75%, conducting each iteration of this change 100 times. Using this process, a number of different 

circumstances where the highest performance was calculated can be listed, and the best combination 

can be objectively selected. In doing so, both the processing time and the complexity of the system is 

accounted for in the final model architecture. 

2.2.2 Automated Neural Pathway Strength Feature Selection 

The ANPSFS method (Duncan, 2014) is a method designed to reduce the complexity of models by 

reducing the number of inputs (i.e., the features) from the total available amount to only those that are 

relevant to the model at hand. While most data-driven models are typically considered black-box models, 

input feature selection methods can provide additional insights into the system by identifying the features 

that are the most relevant. In the ANPSFS method, the strength of a particular pathway from a given input 

to the output (i.e. QP) is calculated using: 

[1] W IO= WIH x WHO 

where WIH are the weights (the coefficients) between the input and hidden layer, and WHO are the weights 

between the hidden layer and output later. The higher the value of the W IO, the more significant the 

associated input. In the present research, W IO is calculated using all the input data for each year 

individually. This array of WIO (one for each year) is then used to create the ensemble interquartile range 

(EQR) for each of the inputs as follows: 
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[2] EQR = min(|Q1|,|Q3|)/max(|Q1|,|Q3|) x sign(Q1).sign(Q3) 

where Q1and Q3 are the first and third quartile of the WIO. The EQR are ranked in descending order, and 

the top three ranked inputs are selected as the most significant features. Thus, the ANPSFS method uses 

WIO and EQR to select the most important features for QP (output) prediction given a set of input data. 

2.3 Model performance evaluation 

The Nash-Sutcliffe efficiency (R2) (Nash and Sutcliffe, 1970) and the root mean square error (RMSE) 

were used to asses the model performance for each year: 

[3] R2 = 1 - ∑(ym – yo)2/∑(yo - y)2 

[4] RMSE = sqrt[ ∑(yo – ym)2]  

where ym is the model output, yo is the observed value, and y is the mean of the observed data. 

3 Results 

3.1 Network architecture selection 

Sample results of the proposed method to select the number of neurons in the hidden layer and the 

amount of data used for each component are shown in Figure 1. Figure 1a shows the mean MSE (solid 

black line) of the test dataset for the initial 50%-25%-25% data-division scenario, with nH varying between 

1 to 20 neurons. This simulation was repeated 100 times and the upper and lower limits of MSE for each 

of these simulations are shown in grey. This figure demonstrates that the number of neurons did not have 

a noticeable impact on the MSE for this configuration. The most significant outcome of this process is that 

the variability (the difference between the upper and lower limits) of the performance seems to decrease 

after nH = 6 and increases again after nH = 12, with the lowest MSE at nH = 10. This result has two 

important implications: first, increasing the model complexity results in limited improvement of model 

performance, suggesting that a simpler model structure may be more suitable to describe the system. 

Second, the variability in performance indicates that the initial selection of data in each subset can highly 

influence the performance, especially at the lower (i.e., nH < 6) and higher (i.e., nH > 12) ends of the 

spectrum of nH. This suggests that an optimum selection of hidden neurons lies within this range. 

Figure 1b shows the change in the mean (solid black line) and the variability (in grey) of the number of 

epochs needed to train the network for the initial data-division scenario, as nH increases from 1 to 20. The 

variability of the number of epochs drastically decreases as nH increases from 1 to 5. This means that a 

simpler model structure may require more time to train, and the performance of these simpler 

architectures (nH = 1 to 5) is more variable. This is likely because the initial dataset selection has a higher 

impact on the final model performance for less complex models. The lowest number of mean epochs for 

this analysis occurred at nH = 19, with 26 epochs.  

The impact of changing the amount of data used for training, validation and testing on the model 

performance (MSE) was generally inconclusive (see Figure 1c) as the amount of data used for training 

was increased from 50% to 75% at 0.5% intervals. For the sample shown, (nH = 10) increasing the 

amount of data used for training has minimal impact on model performance, indicating that using the least 

amount of data for training (and thus having a higher fraction available for validating and testing) would be 

ideal. The number of epochs needed for training the network at different data-division scenarios was 

inconclusive (see Figure 1d for the nH =10 sample case). The significance of this analysis is that the 

amount of computational effort (or time) does not necessarily decrease as a larger fraction of data is used 

for training.  

Based on these results, nH = 10 with a 50%-25%-25% data-division was selected as the optimum 

architecture for this research. The fact that the mean and the variability of MSE was the lowest at nH = 10 

makes it a preferred option over the nH = 19 case, which as a lower number of mean epochs but had 

higher variability in MSE. Secondly no significant trend was seen as the amount of data used for training, 
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validation and testing was altered, however lower MSE values were seen at nH = 10 compared to other at 

nH values. Thus, the option that guarantees the largest amount of data for validation and training is 

preferred. 

 

Figure 1: Sample results of the coupled method to determine the optimum number of neurons in the 
hidden-layer and percentage of data for training:  

The overall outcome of this component of this research was that that instead of using the typical trial-and-

error based approach to selecting neural network architecture parameters; the proposed method can 

provide objective results. Systematically exploring different numbers of nH and division of data can help 

select a model with the best performance. Once these FNN parameters were identified, subsequent 

training of the FNN was completed and the results of this are presented in the next section.  

3.2 Input feature selection using the ANPSFS method  

The input data used for QP prediction in the Bow River at Calgary included mean daily flow rate 

(calculated using the collected hourly data), maximum, mean and minimum air temperature, and total 

daily precipitation. Each of these datasets were lagged by 1, 2 or 3 days, in order to be able to predict QP 

with 1, 2 or 3 days advance notice. Thus, the total amount of candidate input parameters were 18 (lagged 

versions of the above parameters, and lagged QP for each lag).  

Results of the ANPSFS method are shown in Figures 2 – 4 below. Figure 2 shows the values of W IO of 

each year for all 18 inputs. The figure shows that the importance (i.e. strength) of each candidate input 

parameter changes on an annual basis. The trend shows that there is no clear input parameter that is 

consistently ranked high, indicating the changing importance of each parameter in prediction QP. Figure 3 

shows a box-plot of each candidate input parameter further highlighting this variability. When W IO is below 

zero, this means that input parameter is not significant in prediction QP, i.e. it acts as an inhibitor in 

predicting QP. Several candidate variables have mean values of W IO below 0 highlighting that their 

potential as an input is low.  
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Figure 2: Values of WIO for the entire study period for each of the 18 input variables 

Figure 4 shows the EQR values calculated using the W IO for each feature from highest to lower. It shows 

that only three inputs have a positive (and thus non-inhibiting) effect: 1-day lagged mean flow, 1-day 

lagged precipitation and 2-day lagged minimum air temperature. Thus, for this research these three 

inputs are selected as the final inputs to the model to predict QP in the Bow River at Calgary. It is worth 

nothing that as additional data is available and added to the system it can be used to update the ANPSFS 

to select other input parameters to improve QP prediction. The significance of these results is that the 

method can be used to reduce the complexity of the model by reducing the number of inputs from 18 to 3, 

removing only those parameters that may not relevant.  

 

 

 

 

Figure 3: Box whisker plots for WIO for each of the input parameters 
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Figure 4: EQR values for each of the 18 candidate features to predict peak flow rate 

3.3 Flood prediction 

A FNN model was constructed using the method outlined in Section 2.2 using the three input parameters: 

1-day lagged mean flow, 1-day lagged precipitation and 2-day lagged minimum air temperature. Figure 5 

shows the R2 and RMSE of predicting QP in the Bow River at Calgary for the eleven period. Network 

performance with these inputs was high: RMSE ranged between 7 and 47 m3/s (about 10% of mean 

flow). The R2 value was above 0.90 for all years except 2005 (which was also a flood year). This 

approach shows that using an objective rather than ad hoc method to design the architecture of a neural 

network (for input selection, nH and data-division) can provide reliable results, which by design are ones 

with the highest performance. The trained FNN was used to predict the peak flow in the Bow River for the 

2013 flood event, which is summarised in the next section.  

 

Figure 5: A summary of the RMSE and R2 values of the FNN mode 

3.3.1 l2013 Calgary floods 

Figure 6 shows a comparison of predicted and observed daily peak flow in Calgary for 2013. Note that the 

predicted values for QP are fuzzy numbers rather than discrete numbers. So the Figure shows results for 
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a membership level of 1 (the central value of the fuzzy number) and for membership level of 0 (the upper 

and lower bounds of the fuzzy number). The predicted intervals captured all daily peak flow rates, 

including the highest flows observed that year during the flood. This shows that using an FNN can predict 

QP in the Bow River up to a day in advance with high accuracy. Model outputs can be used for risk 

assessments to determine the probability of the predicted flow to exceed a given threshold. This data can 

be used by water resource managers to implement flood defence systems.  

 

Figure 6: A comparison of observed (black circles) and predicted (grey markers) peak flow rate for 

Calgary in 2013 

4 Conclusion 

In this research, three different methods were used to reduce the overall uncertainty in an ANN model used 
to predict peak flow rate in the Bow River in Calgary. First, an existing fuzzy neural network was adapted 
using the principles of possibility theory. This allowed uncertainty in the model coefficients and output to be 
quantified by representing them as fuzzy numbers rather than discrete numbers. Second, an objective 
method to select the architecture of the FNN was developed. Lastly, the inputs used in the model were 
selected using a modified Automated Neural Pathway Strength Feature Selection (ANPSFS method). The 
impact of each of these methods was demonstrated by training a large dataset (11 years of data) for 
Calgary, and then tested on one extreme event (the 2013 floods in Calgary). 
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