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Abstract: Water distribution networks (WDNs) are one of the most important elements in the urban 
infrastructure system and require large investment for construction. Design of such networks is classified 
as a large combinatorial discrete non-linear optimization problem. The main concerns associated 
with optimization of water distribution networks are related to the nonlinearity of the discharge-head loss 
relationships for pipes and the discrete nature of pipe sizes. This paper compares different techniques, all 
based on evolutionary algorithms (EAs), which yield optimal solutions for design of water distribution 
networks. The fundamental concept of EAs is that they search for the global optimum with populations of 
solutions, rather than by improving a single solution, as in Newton-based and other search 
methods. EAs start with an initial population and use different operators on these populations to change 
their composition and improve their performance over repeated iterations, or generations. In this paper, six 
EAs are applied for design of two benchmark pipe networks, the Two-Loop and Hanoi networks, and one 
real water distribution system for the City of Farhadgerd, Iran. Results show that as the size of the network 
increases, the soccer league competition algorithm increasingly becomes the most efficient among these 
algorithms, and consistently converges to the global optimum.  

1 INTRODUCTION 

EAs are becoming increasingly popular for their use in solving engineering decision problems and in 
practical applications such as calibration, because they: (i) are based on rather simple concepts and are 
easy to implement; (ii) do not require gradient information; (iii) can consider and bypass local optima; and 
(iv) can be utilized in a wide range of problems covering different disciplines. Generally, the main structure 
and searching process of different EAs are similar, however, their operators may vary. Over the last three 
decades, many heuristic optimization techniques have been successfully used to identify water network 
designs, see, e.g., applications of genetic algorithms (Murphy and Simpson 1992); simulated annealing 
(Cunha and Sousa 2001); harmony search (Geem 2006); shuffled frog leaping (Eusuff and Lansey 2003); 
ant colony optimization (Maier et al. 2003); particle swarm optimization (Suribabu and Neelakantan 2006); 
cross entropy (Perelman and Ostfeld 2007); scatter search (Lin et al. 2007); differential evolution (Vasan 
and Simonovic 2010); self-adaptive differential evolution (Zheng et al. 2013); soccer league competition 
(Moosavian and Roodsari 2014); and improved genetic algorithms (Bi et al. 2015).  

Because these heuristic algorithms were originally developed to address specific engineering problems, 
there is no guarantee that the global optimum may be found or that the method will be efficient in the solution 
of specific problems, such as the design of water distribution systems. Wolpert and Macready (1997) cite 
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the No-Free-Lunch (NFL) theorem, assert that no one optimization algorithm may be suited for solving all 
kinds of optimization problems, and underscore the need for new algorithms that may address a wide range 
of problems or improve on efforts to reach global optima.  In the area of water distribution systems, some 
comparisons of EA algorithms have been undertaken (Zheng et al. 2013; Moosavian and Roodsari 2014; 
Bi et al. 2015), though these studies focus on a select few methods. This paper presents a rigorous 
comparison of six EAs in application to the optimum design of WDNs, and evaluates the algorithms in terms 
of the best solution obtained, the speed of convergence, and the numbers of function evaluations. 

In the optimization of water distribution systems, the primary objective is to minimize the total cost of the 
network. This cost is a function of pipe size diameters and these pipe diameters in turn affect the network 
pressures. The main constraint of the problem is to satisfy minimum required pressure at all network nodes. 
In applications of EAs, at each evaluation of the objective function, hydraulic analysis of the network must 
be conducted, which exacts a high computational burden, and is in fact the most computationally intensive 
portion of the optimization process. Therefore, the optimal solution, for a fixed number of function 
evaluations, is a suitable comparator for EAs. In this paper, six meta-heuristic algorithms are compared in 
terms of the WDN design selected for three example networks, under different stopping criteria based on 
the allowable number of function evaluations. To guard against selection of local optima, for each criterion 
and each pipe network, these algorithms are implemented 20 times. The algorithms include the: genetic 
algorithm (GA); harmony search (HS); differential evolution (DE); particle swarm optimization (PSO); 
artificial bee colony (ABC); and soccer league competition (SLC) meta-heuristics. In the following sections, 
the general WDN optimization model is introduced, the algorithms are briefly described, their application to 
three example networks are assessed, and conclusions are drawn from this comparison. 

2 PROBLEM FORMULATION 

A water distribution system is a collection of many components such as pipes, reservoirs, pumps and valves 
which are connected in order to provide water to consumers. The optimal design of such a system can be 
defined as the best combination of component sizes and component settings (e.g., pipe size diameters, 
pump types, pump locations and maximum power, and reservoir storage volumes) that gives the minimum 
cost for the given layout of network, such that hydraulic laws governing continuity of flow and energy are 
maintained and constraints on quantities and pressures at the consumer nodes are fulfilled. In this paper, 
water distribution system design is formulated as a least-cost optimization problem with the selection of 
pipe sizes as the decision variables, while pipe layout and its connectivity, nodal demand, and minimum 
pressure head requirements, are imposed. The optimization problem is stated mathematically as: 

[1] 
 





np

1k

kkk LDcCMin  

where   kkk LDc  = the cost of pipe k with length Lk and diameter Dk, and np = the number of pipes in the 

network. This objective function is minimized under the following constraints: 

Flow continuity at nodes 

For each node, flow continuity must be satisfied, 

[2] ∑ 𝑄𝑖𝑛 − ∑ 𝑄𝑜𝑢𝑡 = 𝑞𝑗 , ∀𝑘𝜖𝑛𝑛 

where 𝑞𝑗 = demand at node j (meters3/second); nn = number of nodes; and Qin and Qout = flow into and out 

of node j (meters3/second), respectively. 

Energy conservation in loops  

The total head loss around a closed pipe loop should be equal to zero, or the head loss along a loop 
between two fixed head reservoirs should be equal to the difference in water level of the reservoirs: 
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[3] ∑ ℎ𝑓𝑘

𝑘 𝜖 𝑙𝑜𝑜𝑝 𝑙

= ∆𝐻,          ∀𝑙𝜖𝑛𝑙 

where ∆𝐻 = difference between nodal pressures at both ends of a path (meters), and ∆𝐻 = 0, if the path is 
closed; 𝑛𝑙 = number of loops; and ℎ𝑓𝑘 = head loss due to friction in the pipe k (meters) which is obtained 
from following equation:  

[4] ℎ𝑓𝑘 = 𝐻𝑖 − 𝐻𝑗 = 𝑅𝑘𝑄𝑘
𝑛 

where Hi and Hj = the nodal heads at the start node and the end node of the pipe (meters); Rk = the 
resistance coefficient of the kth pipe with flow rate Qk (second/ meters2); and n = a constant depending on 
the head loss equation, and is 1.852 for the most common expression for head loss, the Hazen-Williams 
head loss formulation. 

Minimum pressure at nodes 

For each junction node in the network, the pressure head should be greater than the prescribed minimum 
pressure head: 

[5] nnj,HH min
jj   

where Hj = the pressure head at node j (meters); nn = the number of nodes; and
min
jH = the minimum 

required pressure head (meters). 

In this work, the Global Gradient Algorithm, GGA (Todini and Pilati 1988), in a MATLAB environment, was 
applied to conduct the hydraulic analysis of network. GGA satisfies the continuity and energy conservation 
equations (Eq 2-4), while calculating the pressure head Hj at each junction node and the discharge Qk in 
each pipe. 

Pipe size availability  

The diameter of the pipes should be available from a commercial size set: 

[6] npkD(K)},D(2),...,{D(1),Dk   

where K = the number of candidate diameters. 

3 EVOLUTIONARY ALGORITHMS (EAs) 

Generally, EAs are implemented in five main steps, including: (i) creation of a random initial population; (ii) 
evaluation of the cost function or fitness; (iii) selection of two or more solution vectors for the evolution 
process; (iv) implementation of an evolution strategy with different operators; and (v) selection of good 
solutions, and replacement into the population. Differences in EAs most often include variations in how 
they evolve new solution vectors, how they select these solutions from the population, and how they 
replace solutions into the updated population. In this section, a summary of the different EAs compared in 
this paperis presented. 

3.1 Genetic Algorithm (GA) 

Implementation of the GA (Holland 1972) begins with identification of a random set, or population, of 
solutions (chromosomes).  The cost, or fitness, of each solution is determined by evaluation of the objective 
function and compared to determine those solutions, or population members, that are allowed to evolve. 
Typically the comparison process employs tournament selection, which involves a series of competitions, 
or  "tournaments," among pairs of solutions selected at random from the population. The winner of each 
tournament is the solution with the best fitness. These winners are selected to undergo evolution with 
crossover and mutation operations, probabilistic-based mechanisms, through which new solutions are 
constructed. The new solutions are then evaluated and may be used to further evolve the population, if 

https://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
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they provide better fitness (i.e., improved objective function value), than other population members. The 
process is continued for a large number of generations or until no further improvement in the bestobjective 
function is obtained. 

3.2 Harmony search (HS) 

The HS algorithm (Geem, 2006) is conceptualized based on the musical process of searching for a ‘perfect 
state’ of harmony, such as in jazz improvisation. Jazz improvisation seeks a best state (fantastic harmony) 
determined by aesthetic estimation, and analogously HS seeks a best state (global optimum) determined 
by evaluating the objective function. Aesthetic estimation is evaluated by the set of pitches played by each 
instrument, and in HS the objective function evaluation is performed by the set of values assigned by each 
decision variable. The harmony quality is enhanced with practice, and in HS the solution quality is 
enhanced over iterations. Each new harmony or solution vector is generated based on three rules: memory 
consideration, pitch adjustment, and random selection. If this new harmony is better than the existing worst 
harmony in memory, the new harmony is included in memory and the worst harmony is excluded from 
memory. This procedure is repeated until what is defined as a fantastic harmony is found.  

3.3 Differential Evolution (DE) 

DE (Price et al. 2005) is an improved version of GA. Similar to the GA, there are three important operators 
involved in the DE algorithm including the mutation, crossover, and selection operators. The main difference 
between GA and DE is that GA relies on its crossover operator to exchange information among solutions, 
while DE primarily relies on its mutation operator to form new solution vectors. Mutation is based on the 
fitness difference of randomly sampled pairs of solutions in the population. DE automatically adapts the 
mutation increments (i.e., step size of allowable variable changes), based on the stage of the evolutionary 
process. At the beginning of the evolution process, the mutation operator favors exploration and as 
evolution progresses, it favors exploitation. The algorithm uses a uniform crossover operator that can take 
child vector parameters from one parent more often than from the other. By using components of existing 
population members to construct trial vectors, the crossover operator efficiently shuffles information about 
successful combinations, enabling the search for an optimum to focus on the most promising area of the 
solution space. 

3.4 Particle swarm optimization (PSO) 

PSO (Kennedy and Eberhart 1995) is an evolutionary optimization algorithm which originated as a 
simulation of a simplified social system such as birds flocking and fish schooling. Similar to GA, PSO is also 
population-based and searches for optimal solutions by updating generations. However, unlike GA, PSO 
possesses no evolution operators. Instead, PSO relies on the exchange of information between individuals, 
or particles, of the population, or swarm. In order to select fitter particles for further populations, each particle 
adjusts its trajectory towards its current position, towards its previous best position and towards the current 
best position attained by any other member in its neighborhood. Compared with GA, PSO presents the 
advantage of being conceptually very simple and fast. However, its main disadvantage is the risk of a 
premature search convergence.  

3.5 Artificial Bee Colony (ABC) 

In the ABC algorithm (Karaboga 2005), the position of a food source represents a possible solution to the 
optimization problem and the nectar amount of a food source corresponds to the quality (fitness) of the 
associated solution. Search processes start based on three kinds of bees: employed bees; onlooker bees; 
and scout bees. The number of the employed and onlooker bees is equal to the number of solutions 
considered in the population. The employed bee whose food source has been exhausted by the bee colony 
becomes a scout bee. Each cycle of the search procedure consists of the following actions: employed bees 
are sent onto their food sources and their nectar amounts are evaluated; employed bees share the nectar 
information of food sources with the observer bees, and based on this information, onlooker bees select 
among food source regions, and evaluate the nectar amount of the selected food sources. This process 
continues iteratively, and iff a solution represented by a food source is not improved by a pre-determined 
number of iterations, then the food source is abandoned and the employed bee for that source is converted 
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to a scout, and is sent randomly onto possible new food sources. In this case, a new solution vector is 
randomly created and replaces the abandoned solution.  

3.6 Soccer League Competition (SLC) algorithm 

The SLC algorithm (Moosavian and Roodsari 2014) is inspired from professional soccer leagues. It involves 
different teams, or collections of solutions, where each solution is a team member, and a number of 
operators that act on the team members to perform an effective search for finding the near optimal solution.  
SLC mimics matches between teams and determines the winners based on their relative power, where the 
winner of a match has a higher probability of increasing its power for future matches. After each match, all 
players (decision vectors) on the winning team undergo operations that change their decisions, and thus 
their power (i.e., strengthening or weakening each player), producing modified team members.  Finally, the 
original strength of each player on this winning team is compared with its modified strength and the player, 
i.e., decision vector, with the greater strength, is allowed to play on the team in the next match.  

An iteration, or round, is defined as a set of matches that allows each team, or modified team, to play with 
each other team in the league. Thereafter, the next round is played with these new teams.  The user 
specifies the stopping criteria to be either based on a limit of the number of rounds undertaken, or the 
number of function evaluations made.  

4 APPLICATIONS TO WDN DESIGN 

The performance of the six above-mentioned EAs is tested for three water distribution networks, the Two-
Loop and Hanoi benchmark networks, and the WDN for the City of Farhadgerd, Iran. 

For consistency in comparison, three stopping critera are defined as: (i) the maximum number of function 
evaluations is set to 1000. Given this criteria, the initial speed of convergence and performance of the 
algorithms may be evaluated; (ii) the maximum number of function evaluations is set to 10000. Here, the 
performance of the algorithms is evaluated for a more mature evolution, compared with (i); and (iii) the 
maximum number of function evaluations is set to 40000, and the evolution of the algorithms is considered 
to be fully mature.  For each of these criteria, all algorithms are executed 20 times, i.e., 20 sets of initial 
populations of solutions are generated based on 20 different random number sequences. 

Statistical analyses of the results for all algorithms are performed and are presented as box plots for the 20 
different executions of the algorithm. All of the computations are implemented in the MATLAB programming 
language environment with an Intel(R) Core(TM) 2Duo CPU P8700 @ 2.53GHz and 4.00 GB RAM. 

4.1 Two-loop benchmark network 

This network, shown in Figure 1, is a hypothetical benchmark which has seven nodes and eight pipes with 
two loops, and is fed by a reservoir with a 210-m fixed head (Alperovits and Shamir 1977). The pipes are 
all 1,000 m long with a Hazen-Williams coefficient of 130. The minimum pressure limitation is 30 m above 
ground level for all nodes. There are 14 available commercial pipe diameters.  The degree of candidate 
diameter is an indicator of the size and complexity of the network problem, and is defined as the number of 
candidate diameters divided by the number of pipes. For this case, the number of candidate diameters is 
equivalent to 14 / 8 =1.75. Geem (2006) determines the minimum cost of this network to be $419,000 US. 

The performance of the algorithms, in terms of the minimum total cost obtained, under the three stopping 
criteria, is shown in the box plots in Figures 2, 3, and 4, for the 1000-, 100000, and 40000-function 
evaluation stopping criteria, respectively. The results show that, for the first stopping criterion, the PSO 
alsgorithm exhibits the best convergence speed, and over the 20 executions of the algorithms, its minimum 
and mean cost is $423,000 and $435,000 US, respectively.  Of the remaining algorithms, the GA and HS 
algorithmsresult in the lowest and second lowest mean and minimum costs, respectively, and the DE 
algorithm exhibits the worst performance among all algorithms.   

As the stopping criterion is relaxed to 10000 function evaluations, the performance of the ABC, SLC, HS, 
and DE algorithms improves significantly, and each of these algorithms achieve the global optimal minimum 
cost. Here, the ABC, DE, and SLC algorithms have the least standard deviation, in this order. These small 
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standard deviation values show that the algorithms perform the search process consistently, for the breadth 
of different initial random populations.  In contrast, the PSO algorithm also achieves the global optimum, 
but its average performance over 20 executions is relatively poor.  

Finally, for the stopping criterion of 40000 function evaluations, the box plot shown in Figure 4 indicates 
that the high-performance algorithms are ABC, DE, SLC, and HS, in decreasing order of performance. 

4.2 Hanoi benchmark network 

The Hanoi network, shown in Figure 5, consists of 32 nodes, 34 pipes with 3 loops, and is fed by gravity 
from a reservoir with a 100-m fixed head. All pipes have a Hazen-Williams coefficient of 130 and the 
minimum head limitation at all nodes is 30 m above ground level (Alperovits and Shamir 1977). There are 
six possible pipe diameters and 34 pipes in the system, thus the degree of candidate diameter is equivalent 
to 6 / 34 =0.1765. The global optimum solution has the total cost of $6.1 million US (Alperovits and Shamir 
1977). 

Optimization results for this network are provided in Figures 6, 7, and 8 for the 1000-, 10000-, and 40000-
function evaluation stopping criteria, respectively.  For the first criterion, the SLC algorithm exhibits the 
highest performance. with a the minimum and mean least cost equal to $7.0 and $8.3 million, respectively.  
It also has the smallest standard deviation.  The PSO and GA algorithm obtain minimum costs of $11 and 
$8.4 million US, respectively. For the 10000-function evaluation criterion, the SLC also exhibits the best 
performance, and has a minimum and mean least cost of $6.1 and $6.3 million US, respectively. The DE 
algorithm has the smallest standard deviation, but does not find the lowest cost overall. The GA and DE 
algorithms are the second and third best algorithms, respectively. A similar trend is exhibited for the 40000-
function evaluation criterion, where the SLC and DE algorithms exhibit the highest performance, in this 
order, and PSO exhibits the worst performance. This indicates that the convergence properties of the PSO 
algorithm do not improve when the number of iterations increases. A comparison of the Hanoi and Two-
Loop benchmark networks indicates that as the degree of candidate diameter decreases, the convergence 
potential of the SLC algorithm improves significantly. 

4.3 Farhadgerd network 

The Farhadgerd WDN serves a population of approximately 8200 in the town of Farhadgerd, Iran, a 
residential community near the regional capital, Mashhad. The network shown in Figure 9, comprises 64 
pipes and 53 nodes, has one reservoir with a head of 510 m, and a minimum pressure requirement of 20 
m at all nodes. There are nine possible pipe diameters and thus the degree of candidate diameter for this 
network is equivalent to 9 / 64 =0.14. The recorded optimal cost for Farhadgerd is $120 million US. 

Optimization results for this network are provided in Figures 10, 11, and 12 for the 1000-, 10000-, and 
40000-function evaluation stopping criteria, respectively.  For the first criterion, the SLC surpasses the other 
algorithms with a minimum and mean least cost of $210 and $240 million US, respectively. The ABC 
algorithm exhibits the worst performance by far with respect to the others under this criterion. Among the 
other algorithms, the mean result of the PSO algorithm indicates that it performs second-best,  with a 
minimum and mean least cost of $260 and $290 million US, respectively.  For the 10000-function evaluation 
criterion, the SLC algorithm again out-performs all other algorithms, with a minimum and mean least cost 
of $120 and $160 million US, respectively. The GA algorithm performs second-best, under this criterion. 
The DE algorithm results are comparable with other algorithms, and exhibit the smallest standard deviation, 
however, it is unable to find a global optimum solution.  These findings are similar for the cases with a 
stopping criterion of 40000 function evauations. The minimum and maximum least cost solutions obtained 
by the SLC algorithm are $120 and $140 million US, respectively, which are  less than all solutions obtained 
by other algorithms. This confirms that for the range of networks investigated in this paper, the performance 
of the SLC improves as the degree of candidate diameter decreases, though  the DE algorithm has the 
lowest standard deviation.   
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Figure 1: Two-Loop benchmark network 

 
Figure 2: Box-plot of least cost solutions for the Two-
Loop benchmark network: 1000 function evaluations 

 
Figure 3: Box-plot of least cost solutions for the Two-
Loop benchmark network: 10000 function evaluations 

 
Figure 4: Box-plot of least cost solutions for the Two-
Loop benchmark network: 40000 function evaluations  
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Figure 5: Hanoi benchmark network 

 
Figure 6: Box-plot of least cost solutions for the Hanoi 

benchmark network: 1000 function evaluations 

 
Figure 7: Box-plot of least cost solutions for the Hanoi 

benchmark network: 10000 function evaluations  

 
Figure 8: Box-plot of least cost solutions for the Hanoi 

benchmark network: 40000 function evaluations 

  

5 CONCLUSION 

In this paper, six EAs are evaluated for their performance in finding the optimal least-cost design of water 
distribution networks, under three pre-defined stopping criteria based on function evaluations. The 
performance is shown to be dependent on the stopping criteria, and on the degree of candidate diameter, 
which is an indication of the size and complexity of the network.  For larger benchmark networks, the SLC, 
ABC, and DE algorithms result in better performance. For the Farhadgerd WDN, with a large number of 
pipes, and small candidate diameter, the SLC algorithm exhibits the best performance in terms of mean 
and minimum total cost.     
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Figure 9: City of Farhadgerd network 

 

Figure 10: Box-plot of least cost solutions for the City of 
Farhadgerd network: 1000 function evaluations 

 

Figure 11: Box-plot of least cost solutions for the City of 
Farhadgerd network: 10000 function evaluations 

 

Figure 12: Box-plot of least cost solutions for the City of 
Farhadgerd network: 40000 function evaluations 
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