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ABSTRACT  

Data mining and boundary visualization techniques were employed to model the hydrodynamics of 
negatively buoyant fountains. Experimental and numerical results of two different fountain types of 
axisymmetric and plane fountains were selected from the literature for numerical simulation. Fountain 
characteristics such as penetration height ym, fountain width xw, and the thickness of the temperature 
layer ΔT were considered. Experimental studies in the literature indicated that the fountain characteristics 
can be correlated with non-dimensional parameters such as Froude, Reynolds, and Prandtl numbers. All 
proposed empirical models from the literature are nonlinear functions of Froude and Reynolds numbers. 
This nonlinearity causes a considerable prediction error. The M5P model tree was used for prediction of 
fountain characteristics such as penetration height and penetration width of negatively buoyant fountains. 
The selected model restructures non-linear correlations into a tree of linear models. It was found that all 
model trees accurately predict fountain parameters with maximum 3% error for ym and xw. Different 
fountain shapes were formed based on variations of Froude and Reynolds numbers. Regime 
classification was performed using boundary visualization. Different classifiers in Weka software were 
tested for boundary visualization to define regime boundaries. It was found that the Logistic classifier can 
properly define the boundary of different fountain flow regimes. 
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1. INTRODUCTION  

Fountain structure forms when a dense fluid is injected upward into another fluid of different density. In 
this condition the buoyancy force opposes the momentum of the flow. The injected fluid penetrates a 
distance into the ambient fluid before stagnating and falling back around itself. The characteristics of the 
fountain flow, such as the penetration height and mixing strength, depend on the Froude and Reynolds 
numbers (Williamson et al., 2008). Round fountain structure can be classified using Froude, Reynolds 
and Prandtl numbers as 
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where Ro is the radius of the nozzle, uo is the characteristic velocity, g' (i.e., g’=g(ρo−ρa)/ρa) is the reduced gravity 

between the fountain source with a density of ρo and the ambient fluid with a density of ρa, g is acceleration due to 

gravity, ν is the kinematic viscosity of the fluid at the fountain source and k is the thermal diffusivity.  

Fountain flow are categorized as weak and forced fountains. Weak fountains are generally steady and symmetric 

(Lin and Armfield, 2000a) and forced fountains are unsteady with stronger mixing capability with the ambient fluid 

(Turner 1966, Friedman et al., 2007). For a fountain with a weak discharge rate, the discharge momentum is less 

than the negative buoyancy and the flow is characterized when Fr ≤1.0. Forced fountains occur for Fr≥3 (Kaye & 

Hunt 2006, Lin and Armfield, 2010). Transition fountains are classified for 1<Fr<3. Weak fountains occur in the 

replenishment of cold water in solar ponds, in the melting of magma chamber roofs as well as many other 

environmental and industrial settings. Weak fountains are further classified to as axisymmetric and plane fountain 

(Lin and Armfield, 2000a). The main differences between axisymmetric and plane fountains are that the latter 

penetrate to a greater height, have a greater spread and take longer to achieve a steady state (Williamson et al., 2008, 

Lin and Armfield, 2000b).  

In this paper, experimental data for weak negatively buoyant fountains were modeled using data mining 

methodology. Experimental data of Williamson et al. (2008) and numerical simulation of Lin and Armfield (2000c) 

were used for data mining simulation. Williamson et al. (2008) performed experiments by injecting salt water into 

fresh water. The saline water is fed from a header tank to the base of the fresh-water tank as shown in Figure 1. The 

water is injected from a sudden start and maintained at a constant flow rate throughout the experiment. The fountain 

inlet flow rate, inlet pipe diameter and the salinity of the inlet fluid were varied to cover a wide range of Reynolds 

and Froude numbers. The volume flow rates varied from 0.06 to 20 cm3/s. Nozzle diameters ranging from 0.54 mm 

to 4.80 mm were used. The density ratio range was varied with 0.004<(ρo−ρa)/ρa<0.16. The kinematic viscosity of 

saline water was varied in the range of 1.01×10-6<ν<1.4×10-6 m2/s. The flow was recorded with two digital cameras 

at a rate of 15 frames per second. For very weak fountains (0.2≤Fr≤1.0) a vertical cylindrical container considered 

for axisymmetric fountains whereas for a plane fountain it was a rectangular container. Numerical data of Lin and 

Armfield (2000c) have been carried out for 0.0025≤Fr≤0.2 with Re=200 and Pr=7 to study the effects of Froude 

number. The thickness of the temperature layer ΔT was determined from temperature profile and it normalized with 

the nozzle radius.   

 

Figure1. Visualization of axisymmetric fountain at different flow conditions; a) weak steady axisymmetric fountain 

(Re =21 and Fr =0.71); b) flapping fountain (Re=72 and Fr=1); c) sinuous behaviour (Re =105 and Fr =105); d) 

fountain behaviour (Re =26 and Fr =26). Images were taken from (Williamson et al., 2008). 

a) c)

d)
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2. MODELLING BACKGROUND 

Knowledge Discovery in Data (KDD) or data mining is a computational process to extract meaningful patterns and 

rules from large number of variables and data using Weka software. Weka software written in Java language and it 

has a collection of machine learning algorithms to extract the relationship between different parameters. The 

classifiers in Weka enable to prepare classification, regression algorithms and estimate the accuracy of the proposed 

model. Different classifiers were implemented in Weka for data classification named as Bayesian, Trees, Rules, 

Functions and Lazy classifiers (Witten and Frank, 2005). Attributes in classifiers are categorized into numeric and 

nominal. Numeric attributes are variables such as Froude, Reynolds and Prandtl numbers and nominal attributes can 

be defined to be certain such as different shapes and regimes of negatively buoyant fountains. 

Weka software used the model tree algorithm for flow classification. The main goal of the model tree approach is 

the process of dividing complex problems into smaller problems (Bhattacharya et al., 2007). Model trees are 

accurate, understandable, and easy to train and it can be employed as a robust method for classification, prediction 

and dealing with missing data (Witten and Frank, 2005; Jung et al., 2010). One of the most famous approaches of 

model tree simulation is M5 algorithm which was initially introduced by Quinlan (1992). Two main procedures are 

involved in the algorithm as building the tree and inferring knowledge from it (Jung et al., 2010; Etemad-Shahidi et 

al., 2010). M5P is an improved version of the M5 algorithm which is proposed by Wang and Witten (1997). The 

new version has a similar structure to the M5 algorithm which produces easier trees and effectively deals with 

missing values and enumerated attributes (Jung et al., 2010; Etemad-Shahidi et al., 2010).  

The M5P algorithm generally consists of three main steps as building the tree, pruning the tree and smoothing it. 

One distinct advantage of this mechanism is more transparent than other machine learning algorithms such as 

artificial neural network (ANN), k nearest neighbouring (kNN) and logistic regression. Therefore, it is easy to 

follow a tree structure to understand how a decision has been made (Pedrycz and Sosnowski, 2001). Other 

advantages of model trees are that they are more accurate than ANN, easy to train and robust when dealing with 

missing data (Witten and Frank, 2005). Figure 2 is an example of regime classification of negatively buoyant 

fountain from experimental study of (Williamson et al., 2008) based on variations of Reynolds and Froude numbers. 

 

Figure 2. Regime classification of fountain behaviour with non-dimensional parameters of Re and Fr. Solid lines 

FrRe2/3=C where the constant C is: A=16; B=27; C=35. (From Williamson et al., 2008). 
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3. RESULTS AND DISCUSSION 

3.1 Fountain Classification using Boundary Visualization  

Boundary visualization technique in Weka software was employed for regime classification of negatively buoyant 

fountains. Many classifiers are available in Weka software such as Bayesian, Trees, Rules, Functions and Lazy 

classifiers (Witten and Frank, 2005). It is important to select a proper classifier for boundary visualization. Figure 3 

shows two boundary visualization maps of data points in the study of Williamson et al. (2008). Figure 3a shows the 

boundary visualization using one of Trees classifiers (i.e., J48 classifier). Comparison of the boundary visualization 

with J48 and experimental data (see Figure 2) indicates that the J48 classifier in not able to properly define regime 

boundaries. Many classifiers from different categories in Weka software were tested to find the best match between 

experimental regime map and boundary visualization. Figure 3b shows the boundary visualization results using 

function/logistic classifier. As can be seen, the classifier properly defined the boundaries of each fountain regimes.    

 

Figure 3. Boundary visualization map of fountain behaviour with Re and Fr numbers by Weka software, a) Tree-J48 

classifier, b) Function-Logistic classifier.  

 

 

3.2 Model Tree and Fountain Characteristics 

 

The M5P model was used for correlating the fountain’s characteristics with the mentioned non-dimensional 

parameters. Fountain height ym, fountain width xw and the thickness of temperature layer ΔT were correlated with 

Re, Pr, and Fr. The number of branches in model tree indicate the complexity of correlation between measured 

parameters and non-dimensional numbers. Figure 4 shows the model tress of ym, xw and ΔT based on non-

dimensional parameters. As can be seen in Figure 4, linear modeling of the fountain height is more complex than 

fountain width since M5P defined five linear models for ym whereas for xw and ΔT, two linear equations were 

defined. As can be seen in Figure 4a, three linear models (LM1, LM4, and LM5) were classified based on Fr. For 

Fr≤0.078, the proposed linear models were classified based of the value of Re. As can be seen in Figure 4a, Prandtl 

number had no impact on regime classification and Reynolds number effect became important for very low values 

of Froude number. Coefficients of linear models (i.e., η1, η2, η3 and C) for prediction of ym, xw, and ΔT for both 

axisymmetric and plane fountains are listed in Tables 1, 2, and 3.  

As can be seen in Table 1, ym is correlated with Fr and Re in all five linear equations whereas for xw, linear equations 

are a function of Froude number (see Table 2). Correlation of the thickness of temperature layer ΔT with non-

dimensional numbers indicates that for Re≤150, the thickness of temperature layer is only a function of Re whereas 

for Re>150, ΔT correlates with Re, Fr, and Pr.  
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Figure 4. Structure of model trees constructed by M5P and linear models based on numerical data of Lin and 

Armfield (2000c); a) Model tree for ym, b) Model tree for xw, c) Model tree for ΔT.  

Table 1. Performance of M5P classification model in form of series of linear models to predict ym.  

 

Parameter Linear model η1 η2 C 

ym (axisymmetric) LM1 -0.0001 2.1335 0.085 

 LM2 -0.0002 1.3624 0.1334 

 LM3 -0.0001 1.3624 0.1277 

 LM4 -0.0001 1.703 0.1107 

 LM5 -0.0001 1.227 0.1695 

ym (plane) LM1 -0.0001 3.0256 0.1242 

 LM2 -0.0002 2.0304 0.1893 

 LM3 -0.0001 2.0304 0.1817 

 LM4 -0.0001 2.5476 0.1538 

 LM5 -0.0001 1.9695 0.2225 

         * LM=(η1Re)+(η2Fr)+C 

Table 2. Performance of M5P classification model in form of series of linear models to predict xw.  

 

Parameter Linear model η1 C 

xw (axisymmetric) LM1 1.1913 1.087 

 LM2 0.8869 1.1001 

xw (plane) LM1 2.4042 1.1203 

 LM2 1.7612 1.1499 

         * LM=(η1Fr)+C 
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Table 3. Performance of M5P classification model in form of series of linear models to predict ΔT.  

 

Parameter Linear model η1 η2 η3 C 

ΔT (axisymmetric) LM1 -0.0011 0 0 0.2411 

 LM2 -0.0002 -0.0102 0.2668 0.1874 

ΔT (plane) LM1 -0.0015 0 0 0.3069 

 LM2 -0.0002 -0.0137 0.357 0.2397 

         * LM=(η1Re)+(η2Pr)+(η3Fr)+C 

 

Performance of M5P model tree to simulate fountain height of both axisymmetric and plane fountains is shown in 

Figure 5. Comparison of the M5P predictions with numerical data of Lin and Armfield (2000c) indicated that the 

M5P model is able to accurately predict the fountain height with ±0.5%. The M5P model over-predicts ym for 

fountains with very small Fr values (i.e., LM1). Figure 6 shows the performance of M5P model for fountain width 

for both negatively buoyant axisymmetric and plane fountains. As can be seen, the M5P model over-predicts the 

experimental data by 2%.     

 

Figure 5. Performance of M5P model tree to simulate fountain height; a) axisymmetric fountain, b) plane fountain.  

 

 
Figure 6. Performance of M5P model tree to simulate fountain width; a) axisymmetric fountain, b) plane fountain.  

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.5 1.0 1.5 2.0 2.5

y m
(p

re
d

ic
te

d
)

ym (measured)

LM1 LM2 LM3

LM4 LM5

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.5 1.0 1.5 2.0 2.5

y m
(p

re
d

ic
te

d
)

ym (measured)

LM1 LM2 LM3

LM4 LM5

b)a)

1.0

1.1

1.2

1.3

1.4

1.5

1.0 1.1 1.2 1.3 1.4 1.5

x w
(p

re
d

ic
te

d
)

xw (measured)

LM1 LM2

1.0

1.1

1.2

1.3

1.4

1.5

1.0 1.1 1.2 1.3 1.4 1.5

x w
(p

re
d

ic
te

d
)

xw (measured)

LM1 LM2

b)a)



HYD706-7 

More data scatter were found on correlation between model predictions and experimental data for ΔT since the 

thickness of the temperature layer is a function of all non-dimensional parameters (i.e., Re, Fr, Pr) in this study. Lin 

and Armfield (2000c) shows that the thickness of the temperature layer is a function of Re, Fr, and Pr as 

[4] 
3/2

3/2

Pr)(Re

Fr
T  

Figure 7 shows the performance of M5P model on prediction of ΔT for both negatively buoyant axisymmetric and 

plane fountains. The average prediction uncertainty for LM2 was 12%±15%. 

 

Figure 7. Performance of M5P model tree to simulate the thickness of the temperature layer, ΔT. 

 

4. SUMMARY AND CONCLUSION 

Data mining methodology was employed for regime classification and modeling the main characteristics of 

negatively buoyant fountains. For model validation, data points for both axisymmetric and plane fountains were 

used from experimental studies of Williamson et al. (2008) and numerical modeling of Lin and Armfield (2000c). 

Non-dimensional parameters such as Reynolds, Froude, and Prandtl numbers were defined as the numeric data entry 

for data mining using Weka software. Regime classes such as steady, flapping, bobbing, laminar bobbing, 

transitional, onset of jet instability, and sinuous oscillation were selected as nominal data entry. Boundary 

visualization technique in Weka software was shown that the accuracy of the regime map is directly related to the 

type of classifier. It was found that the function/logistic classifier can accurately determine the regime map.  

Three fountain parameters named as fountain height ym, fountain width xw and the thickness of the temperature layer 

ΔT were selected to study the performance of a data mining model (i.e., Weka) to simulate fountain characteristics. 

A robust model tree (i.e., M5P) was selected amongst other model tree algorithms in Weka software to predict 

fountain characteristics. Each model tree provided different numbers of linear equation to cover the entire range of 

data. It was found that the M5P model can accurately simulate ym and xw with 0.5% variations. Higher uncertainty 

level of prediction to model the thickness of the temperature layer ΔT was found due to complexity of the linear 

model. It was found that the M5P model can predict the thickness of the temperature layer with12%±15% accuracy.      
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