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Abstract: Streamflow forecasting studies have shown that data-driven models are simpler, faster to 
develop, and provide more accurate and precise results than physical or numerical-based models. In this 
study, three data-driven models were examined for the short-term forecasting of streamflow at Clearwater 
River in Alberta, Canada, for one-day, three-days, and seven-days lead-times. The three models are 
artificial neural network (ANN), two models that are based on de-noising the model predictors using the 
wavelet-transform (W-ANN), and bootstrap-wavelet-ANN (B-W-ANN) model. The total precipitation, air 
temperature, snow water, and relative humidity were used as predictors. The ANN model performed 
significantly better after de-nosing the predictors using wavelet-transforms. Overall, the B-W-ANN model 
performed best for each of the three lead-times. These results highlight the ability of wavelet-transforms to 
decompose non-stationary data into discrete wavelet-components, highlighting cyclic patterns and trends 
in the time-series at varying temporal scales, rendering the data readily usable in forecasting. The good 
performance of the B-W-ANN model highlights the usefulness of ensemble modeling, and ensuring model 
robustness along with improved reliability by reducing variance. 

1 INTRODUCTION 

Accurate and reliable streamflow forecasting is an important element of sustainable water resources 
management (Mohanty et al., 2010; Adamowski and Chan, 2011). Two types of models are commonly used 
for streamflow forecasting, the physically-based numerical models and data-driven models. The main 
deficiency of the physically-based models is that this type of models requires large amounts of detailed 
information that may not be always available and are costly to obtain (Adamowski and Chan, 2011; Yoon 
et al., 2011). However, the main advantage of the physically-based models is that it helps understanding 
the underlying mechanisms of the system being modeled. On the other hand, the data-driven models main 
goal is to establish a direct functional relationship between the target variable (e.g. streamflow) and 
predictors (e.g. precipitation, air temperature) in spite of the detailed physical processes. The main 
advantage of data-driven models is that this type of models provides accurate and precise forecasts even 
under limited available data. Thus, in case of limited available data, and that the main goal of the model is 
the accurate and precise forecasts rather than understanding the underlying mechanisms of the system 
being modeled, data-driven models are preferable (Moosavi et al., 2013). 

Several data-driven models (e.g. autoregressive moving average (ARMA), autoregressive integrated 
moving average (ARIMA), multiple linear regression (MLR), artificial neural networks (ANN), and wavelet 
transform-ANN hybrid models) have been examined for streamflow forecasting. The ARMA, ARIMA and 
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MLR models are representative of linear models, which have limited ability to model non-linear relations. 
The artificial intelligent models in general and ANN in particular have the advantage of modelling non-linear 
relations. The ANN models are often described as “black box” models that can provide relatively accurate 
forecasts even with limited available data. The ANN models can adapt to dynamic and non-linear changes, 
but have serious limitations dealing with non-stationary data (Adamowski and Chan, 2011; Khalil et al., 
2015).  

Recent research studies have focused on hybrid wavelet transforms-ANN models in order to improve the 
ability of the ANN models to deal with non-stationary data (e.g. Adamowski and Chan, 2011; Ramana et 
al., 2013; and Khalil et al., 2015). Wavelet transforms are mathematical functions that help analyzing non-
stationary data. In addition, several recent studies have shown that Bootstrap-ANN (B-ANN) models are 
more robust and enhance the performance of single ANNs (e.g. Zaier et al., 2010; Khalil et al., 2011; 2015). 
The B-ANN models are developed considering different realizations of the training datasets, which allows 
the B-ANN models to perform consistently even if the nature of the data are to change in the future. 
However, to the best of the authors’ knowledge, in spite of the usefulness of the B-W-ANN models, they 
have never been examined for short-term flood forecasting.  

The main goal of this study is to examine B-ANN and B-W-ANN models for short-term flood forecasting 
(one-day, one-week, and one-month ahead) at the Clearwater River at Draper, Alberta, Canada. These 
hybrid models that employed wavelet transforms to de-noise the model predictors were compared to 
conventional ANN models. 

2 STUDY AREA 

In this study, the streamflow of Clearwater River at Draper in the province of Alberta was forecasted. The 
area served by the Clearwater River drains is about 30,800 km² and Broach Lake in Saskatchewan, at an 
elevation of 460 m, is the headwaters of this River. Around 20% of the total Athabasca basin to Fort 
McMurray covers the drainage area of the Clearwater River (Figure 1). 

 

 

 

 

 

 

 

 

 

 

Figure 1: Clearwater River 
Watershed 

The streamflow data has been collected by Water Survey of Canada (WSC) at station 07CD001 for 54 
years from January 1st, 1960 to December 31st, 2013. The high flows normally happen in spring as a result 
of the combination of melted snow with seasonal rainfalls and the Low flows are almost recorded in winter 
when the precipitation is in the form of snow. In summer, the extreme rainfall has resulted in recorded 
floods, as well as some low flow periods which may be caused by the dry conditions in watershed. The 
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maximum daily flow recorded in this period is 790 m³/s on April 30, 1974, and the minimum recorded value 
is 26.2 m³/s on February 19, 1982 ("Clearwater River Hydrological Profile", 2016). Different climatological 
and hydrometrical data were obtained from station T089R09W4 for the period from 1st January, 1960 to 
31st December 2013. The available variables are precipitation, snow meltwater, relative humidity, minimum 
air temperature, and maximum air temperature.  

3 METHODOLOGY 

In hydrological events, the climatological variables may affect the streamflow with time delay. To find the 
most appropriate predictors with appropriate lag time, the correlation coefficients between each of the 
available variables and the streamflow at different lags were calculated as well as the streamflow 
autocorrelation (Table 1). To identify the optimal set of predictors to forecast the streamflow at 1-day, 3-
days, and 7-days ahead, cross-correlation, auto-correlation and partial-correlation analyses were applied. 
Given that in hydrological processes, the climatological variables may affect the streamflow with time delay, 
cross-correlation was applied considering different lag steps as follows: (i) cross-correlation between the 
streamflow and all available predictors at different delay steps, and auto-correlation were applied; (ii) the 
predictor with the highest correlation coefficient was considered the best predictor and should be included 
in the optimal set of variables; (iii) partial-correlation was then applied between the streamflow and the 
remaining variables considering the best predictor was included in the optimal set of predictors; (iv) based 
on partial-correlation results, the second best predictor can be identified as the variable with the highest 
partial-correlation coefficient; (v) the partial-correlation was again applied with the variables that showed 
significant partial-correlation coefficient given the two most important predictors included and so forth. 

3.1 Artificial Neural Network (ANN) 

One of the commonly used ANN in hydrological studies is the multilayer perceptron (MLPs) ANN originally 
proposed by Rumelhart and McClelland (1986), which was employed in this study. The MLP consists of 
three layers, namely: an input layer, a hidden layer, and an output layer. The size of the neurons in the 
input layer is the size of the predictors considered to forecast the streamflow. The forecasted streamflow is 
provided through the single neuron in the output layer. For the size of the neurons in the hidden layer, Shu 
and Ouarda (2007) recommended that the size of hidden neurons should be less than twice the size of 
predictors (nI); while, Maier and Dandy (2001) recommended using the following formula to identify the 
maximum size of the neurons in the hidden layer (nH): 

[1] nH = min (2 nI + 1;  nTR / nI+1) 

where nTR is the size of training sample. In this study, the optimal size of hidden neurons was determined 
based on a trial-and-error process involving varying the size of hidden neurons from one to the minimum 
of the two criteria proposed by Shu and Ouarda (2007) and Maier and Dandy (2001). In this study, to 
enhance the nonlinear approximation ability of the ANN, the tan-sigmoid transfer function was used in the 
hidden neurons, while the linear transfer function was used in the output neuron. The Levenberg–Marquardt 
(LM) ANN training algorithm (Hagan and Menhaj, 1994) was employed in this study, because it is one of 
the most efficient and fast algorithms for training ANNs (Khalil et al., 2011). 

3.2 Wavelet-Artificial Neural Network (W-ANN) 

Several studies have shown that data preprocessing using wavelet transforms (WT) improves ANN 
performance for monthly reservoir inflow (Coulibaly et al., 2000), drought forecasting (Kim and Valdés, 
2003), suspended sediment forecasting (Partal and Cigizoglu, 2008), streamflow forecasting (Adamowski 
and Sun, 2010), and groundwater level forecasting (Adamowski and Chan, 2011; Khalil et al., 2015).  

There are two main types of WT: continuous wavelet (CWT) and discrete wavelet transform (DWT). For 
streamflow forecasting, input data are usually discretely sampled, which makes the DWT more appropriate. 
The “Haar a Trous” WT introduced by Zheng et al. (1999) was used in this study as the most appropriate 
DWT for forecasting studies (Mallat, 1999). Consider 0C as the original time series and sC  as the 
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approximation component at scale s, then the WT ( sW ) (details component) is given by the following set of 
equations (Murtagh et al., 2004): 

[2] )()()( 1 kCkCkW sss −= −  

[3] ( ) ( )( )s
sss kCkCkC 2

2
1)( 11 −+= −−

 

where k  is the position (within the time series) at which the wavelet transform is calculated, )(lh  is the 
low pass filter, and { }5.0,5.0=l . The W-ANN model is based on ANN, where the input variables were 
preprocessed using the “Haar a Trous” wavelet analysis. In the W-ANN, the input variables were the 
approximation components of the input variables instead of the original input variables used in the 
conventional ANN model. 

In general, “the DWT requires that the input data have a number of values that is an integer power of two” 
(Khalil et al., 2015). Given that the size of available records is around 19724 (daily records from January 
1st, 1960 to December 31st, 2013), the resolution levels is limited to 14 (214 = 16384). For the first 
decomposition level, the time series under analysis is transformed into two components, an approximation 
component (A1) and a detailed component (D1). The approximation component is considered the de-noised 
component. For the second decomposition level, the A1 is transformed into a detailed component (D2) and 
a second level approximation component (A2). Thus, after the second decomposition level, the original 
input time series is transformed into two detailed components (D1 and D2) and an approximation 
component (A2), and so on for higher decomposition levels (e.g., Third decomposition level provides D1, 
D2, D3; and A3; Fourth decomposition level provides D1, D2, D3, D4, and A4, and so on). In the W-ANN 
models, the A components of the input variables were used instead of the original variables. The best 
decomposition level was identified for the W-ANN using the Pearson correlation coefficient ( r ) between 
the stream flow and different approximation components (A1 to A14).  
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where iy  and iA  are, respectively, the streamflow and approximation component values at time i, and y  

and A  are the mean values of the streamflow and approximation component, respectively; n  is the size 
of records. Among the 14 approximation components that were obtained based on the 14 decomposition 
levels, the approximation component that showed the highest correlation with the streamflow was selected 
as the predictor. 

3.3 Bootstrap- Wavelet-Artificial Neural Network (B-W-ANN) 

The B-W-ANN consists of a group of W-ANN members, where each of these W-ANN members is trained 
for the same problem, and their results are combined to produce the B-W-ANN output. The construction of 
the B-W-ANN consists of two steps (Merz, 1998): the first step is the generation of the W-ANN members 
constructing the ensemble; and the second step is to combine the outputs of the W-ANN members to 
produce the B-W-ANN output. In this study, the bootstrap aggregation technique was selected to generate 
the ensemble members, and simple averaging was used to combine their outputs. 

In the bootstrap, assume that the size of the training dataset TR is nTR, ([X1, y1],.…, [XnTR, ynTR]), where 
X is the predictors matrix and y is the streamflow vector. To generate different bootstrap replicates (W-ANN 
members) (TB), for each member, random sampling with replacement of nTR cases from the original TR 
data was applied, while all of the nTR cases have equal probability (1/nTR) to be selected. Thus, each 
bootstrap replicate (TB) may have many cases that are selected more than once, while other cases are 
never selected. The W-B-ANN members can then be trained using the various TB generated by this 
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process. The B-W-ANN members have the same structure, transfer function, size of hidden neurons, and 
training algorithm as defined for the ANN and W-ANN models.  

For the optimal size of the bootstrap members, several studies have suggested that ten members can attain 
sufficient generalization ability (e.g. Agrafiotis et al., 2002), while, Opitz and Maclin (1999) have shown 
improvement of the generalization ability when the size increases to 15. Zaier et al. (2010) and Khalil et al. 
(2015) used 20 members for the estimation of ice thickness on lakes, and groundwater levels, respectively. 
Khalil et al. (2011) used 15 members for the estimation of water quality characteristics at ungauged sites. 
In this study, the optimal size of the bootstrap members was identified using a trial-and-error approach, by 
evaluating the performance of the B-W-ANN model using sizes ranging from two to 20. 

3.4 Evaluation Procedures and Criteria 

The split-samples validation approach was utilized for the validation of the three models. The split-samples 
approach consists of dividing the available data into two main sets, a set for the model calibration (44 years) 
and the second set for model validation (10 years), and the calibration data set was divided into 80% for 
training and 20% for training testing. Using the validation data set, the streamflow forecasts were evaluated 
against the observed values. The evaluations were conducted using the following three indices: the bias 
(BIAS), root mean squared error (RMSE), and the Nash-Sutcliffe criterion (NASH). These indices were 
computed according to the following equations: 

[5] BIAS =  1
𝑛𝑛
∑ 𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖𝑛𝑛
𝑖𝑖=1  

[6] RMSE =  �1
𝑛𝑛
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1  

[7] NASH = 1 − ∑ (y�i−yi)2
n
i=1
∑ (yi−y�)2n
i=1

 

where iy  and iŷ  are, respectively, the observed and forecasted streamflow values at time i; y  and ŷ  
are, respectively, the mean values of the observed and forecasted streamflow values; n  is the size of 
records.  

4 RESULTS 

Table 1 shows the correlation coefficients between streamflow and different possible predictors at lag-time 
from zero to 10 days. The correlation coefficients shown in Table 1 are all significant at 95% confidence 
level. Results of correlation analysis between the precipitation and streamflow showed an increasing pattern 
from lag-0 (r = 0.0894) to lag-7 (r = 0.1766), which indicates that rainwater from different places within the 
catchment may take around seven days to reach the main stream. Thus, the best precipitation predictor is 
the precipitation at lag-7. Similarly, the minimum air temperature at lag-3 showed the best correlation 
coefficient for the Tmin (Tmint-3). Thus, according to the cross-correlation and auto-correlation analyses, to 
forecast the streamflow for any lead-time (Qt+1; Qt+3; and Qt+7) the best predictor is the stream flow at time 
(t) (Qt). Partial-correlation analysis was then applied between the streamflow and the remaining predictors 
given Qt is considered the best predictors and included in the set of optimal variables. Results of the partial-
correlation analysis are presented in Table 2.  

Table 2 showed that the St and Tmaxt are not significantly correlated, while Tmint, Pt-7, and RHt are 
significantly correlated, where Pt-7 showed the highest partial correlation coefficient (0.266). Results of the 
partial-correlation analysis between streamflow and each of the Tmint and RHt giving that Qt and Pt-7 were 
included are given in Table 2, which showed that both the Tmint and RHt can be excluded. Thus for the 
stream flow forecasting at 1-day ahead the optimal set of predictors are Qt and Pt-6. Similarly, for the 
forecasting of streamflow three-days ahead (Qt+3), Qt and Pt-4 were selected as the optimal set of predictors, 
and for the forecasting the streamflow seven-days ahead (Qt+7), Qt and Pt were the best predictors. 
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Table 1: Cross-Correlation and auto-correlation results 

 

 

 

 

 

 

 

 

 

 
*Significant correlation coefficient at 95% confidence level 

Table 2: Partial-Correlation Results 

Included St Tmaxt Tmint-3 Pt-7 RHt 
Qt -0.002 0.009 0.038* 0.266* 0.080* 

Qt & Pt-7   -0.004  -0.008 

*Significant correlation coefficient at 95% confidence level 

4.1 Artificial Neural Network (ANN) 

Based on cross-correlation, auto-correlation and partial-correlation analyses the optimal set of predictors 
for 1-day streamflow forecasting (Qt+1) consists of Qt and Pt-7, while for Qt+3 the predictors are Qt and Pt-4, 

and for Qt+7 the best predictors are Qt and Pt. The size of the neurons in the hidden layer was identified 
using a trial-and-error approach from one hidden neuron to nH, which was equal to ten neurons based on 
equation 1. The selection of the optimal size of neurons in the hidden layer was based on the performance 
of the ANN model (Table 3). Results of the performance measures (Table 3) indicated that using three 
hidden neurons provided the best performance for Qt+1 forecasting with the lowest RMSE values and 
highest NASH. Similarly, for Qt+3 and Qt+7, the optimal size of hidden neurons was five and six hidden 
neurons, respectively. Table 4 shows the performance measures for the three ANN models. 

Table 4 shows that the performance of the 1-day ANN model is more accurate and precise than the 3-days 
ANN model, and the 3-days ANN model is more accurate and precise than the 7-days ANN model. As a 
measure of precision, the RMSE values deteriorated from 9.598 m3/sec for the 1-day ANN model, to 25.75 
m3/sec for the 3-days ANN model, and 48.23 m3/sec for the 7-days ANN model. Similarly, as a measure of 
accuracy, the BIAS values were -0.04 m3/sec for 1-day ANN model, -0.08 m3/sec for 3-days ANN model, 
and -0.24 m3/sec for the 7-days ANN model, which indicate that the accuracy deteriorate slightly as the 
lead-time increase, but the three models showed minor underestimation (Figure 2). This deterioration in the 
model performance is directly related to the reduction in the auto-correlation coefficients between the target 
variables Qt+1, Qt+3, and Qt+7 and the predictor Qt, which were 0.9941, 0.9627, and 0.8702, respectively 
(Table 1). 

Lag-day Q Snow 
Meltwater 

Temp 
Max 

Temp 
Min Precipitation Relative 

Humidity 
Lag-0 1.0000* -0.4598* 0.4866* 0.4948* 0.0904* -0.1940* 
Lag-1 0.9941* -0.4573* 0.4846* 0.4954* 0.1185* -0.1843* 
Lag-2 0.9806* -0.4539* 0.4826* 0.4958* 0.1425* -0.1760* 
Lag-3 0.9627* -0.4495* 0.4812* 0.4959* 0.1589* -0.1706* 
Lag-4 0.9418* -0.4441* 0.4800* 0.4955* 0.1683* -0.1677* 
Lag-5 0.9189* -0.4376* 0.4786* 0.4943* 0.1730* -0.1669* 
Lag-6 0.8948* -0.4301* 0.4770* 0.4927* 0.1751* -0.1678* 
Lag-7 0.8702* -0.4217* 0.4752* 0.4910* 0.1765* -0.1694* 
Lag-8 0.8455* -0.4124* 0.4734* 0.4889* 0.1761* -0.1717* 
Lag-9 0.8210* -0.4024* 0.4715* 0.4864* 0.1749* -0.1742* 

Lag-10 0.7971* -0.3917* 0.4694* 0.4839* 0.1726* -0.1770* 
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Table 3: Performance measures for 1-day ANN forecasting model using different sizes of hidden neurons  

Neurons 1 2 3 4 5 6 7 8 9 10 

RMSE 9.612 9.593 9.598 9.615 9.620 9.623 9.649 9.665 9.606 9.656 
BIAS -0.037 0.001 -0.040 -0.062 -0.070 -0.030 -0.085 0.264 -0.092 -0.072 
NASH 0.9898 0.9899 0.9899 0.9898 0.9898 0.9898 0.9898 0.9897 0.9898 0.9897 

Table 4: Performance measures for 1-day, 3-days, and 7-days streamflow ANN forecasting models 

Model ANN W-ANN B-W-ANN 
L- time 1-day 3-days 7-days 1-day 3-days 7-days 1-day 3-days 7-days 
RMSE 9.5981 25.7541 48.2235 8.733 21.955 40.0355 8.635 11.823 13.727 
BIAS -0.0405 -0.0803 -0.3408 -0.008 -0.046 -0.1682 0.002 0.003 0.007 
NASH 0.9899 0.9270 0.7445 0.9957 0.9808 0.8427 0.9980 0.9896 0.9793 

 

 

 

 

 

 

 

Figure 2: Observed and 
forecasted 7-days ANN model 

4.2 Wavelet-Artificial Neural Network (W-ANN) 

For the W-ANN models, the best decomposition level and best size of hidden neurons were identified based 
on the indices of model performance using the trial-and-error approach. The performance measures were 
computed for all possible combinations of the size of hidden neurons (1 to 10 neurons) and decomposition 
levels (1 to 14 levels). Based on the performance measures, for the 1-day W-ANN forecasting model, Table 
5 shows 140 RMSE values that represent all possible combinations of 1 to 10 hidden neurons and 1 to 14 
decomposition levels. From Table 5, the minimum RMSE value was 8.73 m3/sec corresponds to the first 
decomposition level and four neurons in the hidden layer.  

Similarly, for the 3-days and 7-days (Qt+3 and Qt+7) W-ANN forecasting models, the first decomposition level 
was enough to de-noise the predictors, while the size of neurons in the hidden layers were 3 and 5, 
respectively. Table 4 shows the performance measures for the three W-ANN models, which indicate that 
similar to the ANN models, the performance of the 1-day W-ANN model was more accurate and precise 
than the 3-days W-ANN model, and the 3-days W-ANN model was more accurate and precise than the 7-
days W-ANN model. Based on the BIAS, RMSE and NASH values, comparing the performance of the ANN 
models with that of the W-ANN models indicated the better performance of the W-ANN models at any of 
the three lead-times considered. Figure 3 showed the observed and forecasted 7-days W-ANN model. 

The significant improvement in the performance of the three W-ANN models over the ANN models was due 
to the use of the approximation components (de-noised components) of the predictors rather than the 
original values, which confirmed the usefulness of using the wavelet transform to de-noise the predictors. 
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Figure 3: Observed and 
forecasted 7-days W-ANN model 

 

 

 

 

 

 

 

Figure 4: Observed and forecasted 7-days B-W-ANN model 

4.3 Bootstrap-Wavelet-Artificial Neural Network (B-W-ANN) 

For each of the three B-W-ANN models, the size of the bootstrap was identified using a trial-and-error 
approach, by evaluating the performance of the B-W-ANN models using bootstrap sizes ranging from two 
to 20. For instance, Figure 5 showed the RMSE values corresponding to the 1-day B-W-ANN forecasting 
models, using two to 20 bagging replicates, where a size of 16 showed the lowest RMSE value. 

 

 

 

 

 

 

Figure 5: RMSE values for different 
bootstrap replicates for 1-day B-W-ANN forecasting model 

Table 4 showed that all the performance measures corresponding to the B-W-ANN models were better 
than those corresponding to any of the ANN and W-ANN models at any of the three lead-times considered 
in this study. It should be emphasized that the ensemble technique was originally designed for cases of 
limited data. Although the size of data used (19000 records) cannot be considered limited, the use of the 
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ensemble technique improves the W-ANN performance and provides more robust models as indicated by 
Figure 4. This can also be seen with the RMSE, BIAS and NASH values (Table 4). 

Table 4: RMSE values for 1-day W-ANN forecasting model for all possible combinations of the size of 
hidden neurons and decomposition levels 

Size of neurons in the hidden layer 

D
ec

om
po

si
tio

n 
le

ve
l 

 1 2 3 4 5 6 7 8 9 10 
1 8.80 8.80 8.76 8.73 8.81 8.77 8.80 8.81 8.77 8.77 
2 13.78 13.78 13.74 13.73 13.80 13.74 13.77 13.82 13.75 13.74 
3 21.09 21.05 20.99 21.10 20.97 20.99 21.01 20.96 21.09 21.01 
4 32.67 32.77 32.69 32.84 32.84 32.62 32.93 32.72 32.72 32.81 
5 46.44 45.23 45.17 45.26 45.79 46.11 45.79 46.61 46.20 46.06 
6 59.71 59.15 58.71 59.71 61.83 60.43 61.21 60.50 61.31 61.63 
7 74.66 75.02 74.68 74.74 75.08 75.52 75.85 219.56 80.22 77.46 
8 89.04 88.40 88.42 88.61 88.57 88.33 88.77 90.14 89.98 91.09 
9 93.44 98.99 98.45 99.87 96.94 99.53 97.07 98.35 95.70 99.10 
10 95.42 94.10 94.72 94.09 94.28 94.26 94.30 94.64 95.06 94.74 
11 97.02 95.53 94.21 93.82 95.69 96.89 97.89 97.59 98.14 102.29 
12 97.55 96.24 96.58 98.55 98.17 98.82 97.97 98.24 99.76 98.37 
13 98.10 98.70 97.14 99.48 98.18 98.32 100.53 101.43 103.48 100.55 
14 97.22 97.49 98.91 99.37 101.24 98.85 99.77 98.53 110.03 99.90 

5 Conclusions 

Three data-driven models were examined in this study for short-term streamflow forecasting. The three 
models are the artificial neural network (ANN), wavelet-ANN (W-ANN), and bootstrap-W-ANN (B-W-ANN) 
model. The ANN model main goal was to establish a functional relationship between streamflow and 
selected predictors, historical streamflow records and precipitation. Selection of the ideal predictors was 
based on cross-correlation, auto-correlation, and partial-correlation. For the wavelet-based models (W-ANN 
and B-W-ANN), wavelet analysis was employed to de-noise the selected predictors and ANN was then 
used to approximate the functional relationship between the streamflow and the de-noised predictors. The 
three models were developed and applied using data from the Clearwater River at Draper, Alberta. The 
split-samples validation approach was applied to evaluate the performance of the three models using three 
performance indices, the root mean square error (RMSE), bias (BIAS), relative RMSE, relative BIAS, and 
NASH. 

The results showed that the B-W-ANN models outperformed the ANN and W-ANN models for the 
forecasting of the streamflow at the three lead times considered in this study. Results also showed that the 
performance of the ANN models was significantly improved by de-nosing the predictors using wavelet 
analysis. More generally, it was demonstrated that data-driven models such as the W-ANN and B-W-ANN 
models are an interesting alternative to numerical-based models where streamflow forecasting and 
consequent management activities need to be evaluated on a short-term basis. 

The three models developed in this study were designed for short-term streamflow forecasting; exploring 
these types of models for long-term forecasting is recommended. It is also recommended to examine other 
artificial intelligence modeling methods such as support vector regression (SVR) and W-SVR.  
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