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Abstract: Bridges and road infrastructure in North America and around the world where deicing salts are 
used is suffering deterioration due to corrosion of steel reinforcement. A lot of research in the past several 
decades has targeted reduction of corrosion rates or replacement of the corrosion-prone steel in bridge 
structures with varying level of success. Bridge guardrails are particularly susceptible to steel reinforcement 
structural steel corrosion and deterioration, however little to no research is dedicated to their behaviour 
under severe impact loading. The research reported in this paper is from a preliminary program designed 
to investigate the effect of impact loading on corroded reinforced concrete elements. Small-scale reinforced 
concrete beams were subjected to accelerated current-impressed corrosion in the laboratory and then 
tested under impact loading in a drop-mass test frame. Two different degrees of corrosion were 
investigated: 2.67% and 5.11%. A control beam with no corrosion was also tested for comparison. The 
impact test results show that, in general, there is not a marked effect of the degree of corrosion on the 
impact resistance of the beams. These preliminary results show that at the level of corrosion investigated, 
impact loading on corroded bridge guardrails might not pose serious safety hazards. 
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1 INTRODUCTION 

Reinforced concrete bridges and parking garages in North America and around the world where deicing 
salts are used are deteriorating due to corrosion of steel reinforcement. A lot of research in the past decades 
has been devoted to corrosion prevention and replacement of the corrosion-prone steel reinforcements 
from the deck slabs and supporting beams/girders. It has been suggested that corrosion costs the Canadian 
economy about 23.6 billion dollars while the indirect costs due to corrosion brings the total to about 46.4 
billion dollars (1). Whereas a lot of research has been targeted at the load bearing elements such as the 
deck slab and supporting beams/girders, little has been done to address reinforcement corrosion in bridge 
guardrails. Guardrails are often subjected to high amplitude and short duration loading from vehicle impact. 
Failure of the guards can lead to serious safety hazards on bridges. 

Corrosion is the process by which a refined metal reverts back to its natural state by an oxidation reaction 
with non-metallic environment (2). Deicing salts, climatic conditions, poor design and construction methods 
are some of the factors that contribute to corrosion of steel reinforcement in concrete (3). Corrosion of steel 
reinforcement can lead to damage such as loss of steel cross-sectional area, cracking and spalling of 
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concrete and reduction of load carrying capacity. The corrosion damage ultimately increases the risk of 
failure of infrastructure. Corrosion damage of bridges can cost billion dollars in rehabilitation and repair (4). 

There are many reports of bridge failures in the literature due to steel reinforcement corrosion. These 
include the failure of the Kansas Avenue Bridge, Silver Bridge, Mianus River Bridge in the USA and De La 
Concorde Overpass in Canada. The guardrails on bridges are not less important when it comes to safety 
of vehicles as they protect vehicles drifting off the bridge. According to Sgambi (5) degradation of a post of 
a guardrail caused failure of the guardrail in an accident and led to the death of the vehicle driver. The 
impact resistance of the guardrail was impaired because of active corrosion at the base of the post. It is 
therefore clear that the effect of corrosion on the impact resistance of reinforced concrete members must 
be investigated. 

2 LITERATURE REVIEW 

The deterioration of reinforced concrete structures due to steel reinforcement corrosion is a major concern 
for infrastructure engineers. The problem is exacerbated in areas where deicing salts are used on roads 
and bridges. Corrosion of reinforcements leads to loss of cross-sectional area, reinforcement-concrete 
bond deterioration, cracking and spalling of reinforced concrete members. These detrimental effects of 
corrosion in reinforced concrete members has been reported to cause loss of capacity. A majority of the 
research on corrosion effects has focused on corrosion damage under sustained load (6). Moreover, most 
of the research carried out on the corroded reinforced concrete beams has been under constant sustained 
loading. The research works sought to investigate the degree of corrosion on the capacity of structural 
members (7). Ballim and Reid (7) investigated the effect of reinforcement corrosion on the deflection of RC 
beams and reported increased deflections with increased degree of corrosion. 

When corroded reinforced concrete beams are subjected to repeated loading, the widths and spacing of 
the cracks increase. The longitudinal tensile strains (crack width and spacing) under constant sustained 
loads are influenced, partly by the magnitude of the applied loads but mostly by the degree of corrosion of 
steel reinforcement. Prior to yielding of the steel reinforcement, the mid-span deflection of corroded beams 
was observed to be lower than that of non-corroded beams (8). When a reinforced concrete beam is 
subjected to impact load, however, the behaviour is markedly different due to the transient nature of impact 
loading. The properties of materials under dynamic loading is different from those under static loading due 
to strain rate sensitivity of the materials. Both concrete and steel have been reported to be strain rate 
sensitive (9, 10, 11, 12, 13). 

3 MOTIVATION 

When a corroded structural element is subjected to static loading, loss of reinforcement cross-sectional 
area could lead to failure under the static service load. Under high strain rates of loading such as under 
impact loading, both concrete and steel exhibit increased strengths. The increase in strength is expressed 
by the dynamic increase factor of the material for design. The effect of high strain rate on reinforcement 
undergoing corrosion is poorly understood. Thus the effect of impact loading on bridge guardrails 
undergoing active corrosion is not well established and needs further study. 

Guardrails are designed to resist impact loads from vehicles on bridges and parking garages. Corrosion of 
steel in structural steel and reinforced concrete guardrails such as shown in Figure 1 could compromise 
their strength. There are lots of research works done on uncorroded reinforced concrete structures 
subjected to impulse load. However, as discussed previously, little research exists in the literature on 
corroded reinforced concrete structures subjected to impact load. During dynamic events, a large amount 
of energy is imparted to the structure over a very short time. If the structure fails to absorb this energy, a 
sudden and catastrophic failure may occur (14). In order to prevent the failure of guardrails, the behaviour 
of corroded reinforced concrete structures under impact loading must be investigated and understood. 
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Figure 1: Corrosion of steel reinforcement in bridge guardrails 

4 EXPERIMENTAL INVESTIGATION 

This section presents the experimental program presented in this paper. The primary objective of the 
experimental program is to assess the effect of impact loads on reinforced concrete beams with different 
levels of corrosion of steel reinforcement. Accelerated corrosion of the steel reinforcement was induced by 
an external impressed current. The beams were categorized in accordance with the degree of corrosion 
(DOC) achieved in each beam (Table 1).  

Table 1: Degree of corrosion of test specimens 

Designation of the Beam Duration of corrosion (Days) Degree of corrosion (%) 

Beam 1 (Control) 0 0 
Beam 2 (DOC 2.67%) 4.5 2.67 
Beam 3 (DOC 5.11%) 9 5.11 

4.1 Geometric Design of Beams 

The beam specimens were rectangular in cross-section: 100×150 mm and 910 mm long and reinforced 
with 2-10M bars (12). The steel bars were 1100 mm long, including anchorage on either side. One end of 
the steel bars was protruded 15 mm out of the top of the beam specimen to facilitate the installation of 
induced corrosion wiring. Stirrups were not provided in the beam specimen in order to eliminate the difficulty 
in accurately predicting and controlling the degree of induced corrosion on the main reinforcement as the 
applied current would also corrode the stirrups. All the concrete beams had a cover of 20 mm on all sides. 
Figure 2 shows the cross-sectional and longitudinal view of the test specimens. The beams were originally 
designed and cast by Porcari (15). 

 
   (a)       (b) 

Figure 2: Concrete beam specimen: (a) Longitudinal view (b) Cross sectional view (15) 
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4.2 Accelerated Corrosion Process 

The accelerated corrosion process was used in this study as natural reinforcement corrosion would have 
taken a very long time to achieve. The basic principle of accelerated corrosion process is to introduce an 
electro-chemical potential through the reinforcing steel (anode) and a sacrificial cathode, which forces the 
corrosion process to take place on the steel rebar within the concrete (15). In order to accelerate the actual 
corrosion process, a constant current density was applied to the rebars. The test specimens were placed 
in an electrolytic solution (3.5 % NaCl) in a plastic tank and submerged to a level just above the tensile 
reinforcement in the specimens. Detailed description of the accelerated corrosion process is presented by 
Porcari (15) and is not repeated here. The longer the beams were subjected to the impressed current, the 
higher the DOC. Beams with three DOC of 0%, 2.67%, and 5.11% were tested in the research program. 

4.3 Impact Load Testing 

The impact load testing was carried out in an instrumented drop-mass frame. The drop-mass frame is 
capable of dropping a 236-kg (519-lbs) mass from height of up to 2 m on to a test specimen (Figure 3). For 
this experimental test the drop-mass was dropped from heights of 175 mm and 200 mm on each beam to 
analyze the effect on the behaviour of reinforced concrete beams. When the drop-mass strikes the beam, 
a sudden transfer of momentum occurs from the drop-mass to the beam. As the energy transfer from the 
drop-mass to the beam occurs suddenly, it results in build-up of strain energy in the beam. Strain gauges 
were mounted on the tup of the drop-mass to measure the contact load between the drop-mass and the 
beam. 

 

Figure 3: Impact load test frame (drop-mass test frame) 

The beams were placed and supported on a fixed span of 820 mm, and then the drop-mass was raised to 
the required height and allowed to drop freely on to the beam at mid-span. As the beams were not reinforced 
for shear, external shear reinforcement was provided by six shear clamps equally spaced at 115 mm to 
prevent shear failure. 

5 RESULTS AND DISCUSSION 

Each of the three specimens was tested under drop-mass impact from two drop heights. The tup load and 
mid-span deflection were measured during each test. The results are discussed and compared in this 
section. 
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5.1 Analysis of Results 

The load-time plot of the Beam 1 (DOC 0%) at the two drop heights is shown in Figure 4 while post-test 
photographs of the beam is shown in Figure 5. The instrumented tup was unable to capture the peak load 
from the 175-mm and 200-mm drop heights. The peak impact load was cut-off at 26.9 kN. Moreover, the 
impact load from the 200-mm drop height is expected to be higher than from the 175-mm height as is 
observed for the second peak. The displacement-time plot of the control beam at the two drop heights is 
also shown in Figure 4. The maximum mid-span displacements for the 175-mm and 200-mm drop tests 
were 11.1 mm and 13.7 mm respectively. The displacement is higher for the 200-mm drop test. The 
increased displacement can be attributed to the higher impact energy and reduced stiffness from cracking 
induced during the 175-mm drop test. The 200-mm drop test was performed on the beam in the permanently 
displaced position while the string potentiometer used to record displacement was zeroed. Thus the total 
permanent mid-span displacement of the beam from the two drop tests was 16.6 mm (Table 2). 

Figure 5 presents the post-test photographs of Beam 1 showing flexural cracking after each drop test. One 
primary crack is observed from the bottom of the beam at mid-span with the root of the crack in the upper 
third of the beam (Figure 5(a)). After the 200-mm drop test, the cracks in the bottom coalesced and 
increased in width and propagated to the load point (Figure 5(b)). 

 

Figure 4: Load and mid-span displacement vs time graph of Beam 1 (Control) 
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(a)     (b) 

Figure 5: Post-test photos of Beam 1 (Control): (a) post 175-mm (b) post 200-mm drop 

Figure 6 presents the load-time plot for Beam 2 (DOC 2.67%). It can be observed that, once again, the 
peak impact load was cut-off at 26.9 kN. Also, due to equipment malfunction no displacement data was 
recorded for the 175-mm drop test. The maximum mid-span displacement for the 200-mm drop test was 
10.9 mm. 

From the post-test photographs presented in Figure 7, however, the level of damage from the 200-mm drop 
test is observed to be substantially more than for the 175-mm drop test. An initial crack at the mid-span 
after the 175-mm drop test opened up after the 200-mm drop test and propagated to the load point on the 
top of the beam (Figure 7(b)). 

 

Figure 6: Load and mid-span displacement vs time graph of Beam 2 (DOC 2.67%) 
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(a)     (b) 

Figure 7: Post-test photos of Beam 2 (DOC 2.67%): (a) post 175-mm (b) post 200-mm 

Load-time plot for the Beam 3 (DOC 5.11%) is presented in Figure 8 and shows similar peak impact load 
cut-offs. The mid-span displacement-time plot however shows maximum displacements of 11.1 mm and 
13.4 mm for 175-mm and 200-mm drop tests, respectively. This represents a marginal increase in total 
mid-span displacement of the beam in comparison with the control Beam 1. 

Figure 9 presents the post-test photographs of Beam 3 (DOC 5.11%). The beam shows an advanced state 
of corrosion of the steel reinforcement. A horizontal crack due to rust products can be observed on the side 
of the beam prior to impact testing. Cracking under the 175-mm drop test appeared at the bottom of the 
beam at about mid-span and coalesced with the horizontal corrosion crack. The cracks appear wider and 
the root of the crack propagated to the load point under the 200-mm drop test. 

 

Figure 8: Load and mid-span displacement vs time graph of Beam 3 (DOC 5.11%) 



 

   

GEN187-8 

  
(a)     (b) 

Figure 9: Post-test photos of Beam 3 (DOC 5.117%): (a) post 175-mm (b) post 200-mm 

Table 2 presents the results from the experimental test program and shows marginal change in the mid-
span displacements and total displacements with an increase in the DOC of steel reinforcement. Figure 10 
present a comparison of the mid-span displacements of the beams from the 175-mm drop tests and shows 
marginal increase in the peak mid-span displacement of Beam 3 (DOC 5.11%) over Beam 1 (DOC 0.0%). 
The mid-span displacement and residual displacement of Beam 1 and Beam 3 are almost identical even 
though Beam 3 showed higher corrosion damage. 

Figure 11 presents a comparison of mid-span displacement of the beams under the 200-mm drop tests. 
The mid-span displacement and residual displacement of Beam 1 and Beam 3 are, again, almost identical, 
however Beam 2 exhibited slightly lower mid-span displacement and residual displacement under the 200-
mm drop test in comparison with the other beams. 

Table 2: Result comparison of beams at 175 mm drop height 

Beam Designation 

175-mm Drop Test 200-mm Drop Test 
Mid-span 

Displacement 
(mm) 

Residual 
Displacement 

(mm) 

Mid-span 
Displacement 

(mm) 

Residual 
Displacement 

(mm)* 

Beam 1 (DOC 0.00%) 11.1 6.79 13.7 9.76 (16.6) 
Beam 2 (DOC 2.67%) -  10.9 5.30 
Beam 3 (DOC 5.11%) 11.1 7.12 13.4 10.6 (17.7) 

* - the number in parenthesis is the total permanent displacement after drop tests 

In general, the limited drop-mass test results does not show conclusive effect of DOC on the beam 
behaviour. In fact the beam with the highest degree of corrosion (5.11%) exhibited the same peak mid-
span and residual displacements after both impact tests. It is likely that the level of corrosion measured 
was distributed over the entire length of the steel reinforcement and thus had negligible effect on the cross-
sectional area. Also, earlier test programs on behaviour of reinforced concrete beams undergoing corrosion 
indicated an increase in reinforcement-concrete bond (8). The increase in bond could lead to reduction in 
displacement prior to reinforcement yielding. There is however the need to test more samples to determine 
material strength variability and also to investigate the effect of higher degrees of corrosion on the response 
of reinforced concrete beams. 
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Figure 10: Comparison of displacement vs time responses for 175-mm drop tests 

 

Figure 11: Comparison of displacement vs time responses for 200-mm drop tests 

6 CONCLUSIONS 

The effect of DOC on the behaviour of reinforced concrete beams under impact loading was investigated 
in this preliminary experimental program. The major conclusion drawn from the preliminary experimental 
investigation is that the level of corrosion of steel reinforcement in structures does not seem to have a 
marked effect on the beams at the level of corrosion tested. 
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