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Abstract: Prominent methods for monitoring structures currently rely on analysis of data measured from 
contact sensors that are physically attached to the structures. However, these approaches have a high 
possibility of false alarms due to noise, sensor malfunctions, and complex environmental effects. Thus, 
engineers still have to make on-site visits to confirm that damage has occurred. To address this challenge, 
this paper proposes a new method of concrete crack detection that uses a convolutional neural network 
(CNN) on images taken by cameras. In order to train the CNN, images of intact and cracked concrete 
surfaces structures were taken from the Faculty of Engineering buildings on the campus of the University 
of Manitoba. A CNN classifier—composed of eight components, including convolution, pooling, rectified 
linear unit, and softmax layers—was trained on the collected image dataset comprised of 40,000 images 
of 256×256-pixel resolution. A sliding window technique, which enabled us to scan images of any size larger 
than 256×256-pixel resolution, was implemented. The trained CNN classifier showed 97% accuracy in its 
analysis of 50 images larger than 4000×2500. In terms of computational cost, the trained network needs 
less than three seconds to scan those images. 

1 INTRODUCTION 

Vibration-based approaches using contact sensors have frequently been implemented for identifying 
damage and monitoring infrastructures. Lee et al. (2000) simulated a concrete beam member in a numerical 
model using the finite element method; they localized and quantified the crack through the observation of 
natural frequency shifts. The research was successful, but further research on multiple cracks is essential 
for a wider range of practical cases. A study that partly resolved the multiple-crack issue was carried out by 
Ruotolo and Surace (1997). They built numerical models of steel cantilever beams containing several 
cracks to localize and quantify existing damage through genetic-algorithm-based inverse problem solving. 
However, it was noted that the installation of multiple sensors is still required to deal with a structure with 
multiple members. Kurata et al. (2012) studied a large-scale remote monitoring system using wireless data 
transfer. They built a wireless system with various sensors attached to a suspension bridge to identify mode 
shapes. However, this type of sensor-implemented application is capable of monitoring only global 
behaviors. In addition, the complex requirements, such as installing multiple sensors and integrating their 
results effectively, are challenging. Resolving noisy sensor data also remains one of the toughest issues in 
monitoring with sensors. Several articles have pointed out the obstacles of environmental changes, such 
as changes in temperature and humidity (Xia et al. 2012; Cornwell et al. 1999). They imply that a monitoring 
system with sensors may need further calibrations to compensate for environmental effects, which leads to 
extra efforts to integrate even more sources. Even if one can solve all the aforementioned issues, a structure 
cannot be said to be damaged unless on-site inspections are conducted to confirm that the collected signals 
from sensors actually indicate the presence of damages. 

mailto:young.cha@umanitoba.ca


 

   

EMM648-2 

These limitations have motivated researchers to propose many vision-based methods (Cha et al. 2016; 
Cha et al. 2017a; Chen et al. 2015), because visual data provide intuitively understandable information. A 
previous author (Abdel-Qader 2003) conducted a comparative study on finding concrete crack features 
using four different image-processing techniques, such as fast Haar transform (FHT), fast Fourier transform, 
Sobel edge detection, and Canny edge detection. Although the study found that FHT performs better than 
the others, the author pointed out that gradient-based algorithms are vulnerable to noisy inputs. In addition, 
finding edges is a fundamentally ill-posed problem (Ziou and Tabbone 1998) and cannot effectively 
generalize features existing in the real world. Even though machine learning algorithms has been integrated  
to several vision-based applications (Jahanshahi et al. 2013; Ramana et al. 2017), this type of methods 
always inherits the drawbacks of image-processing techniques and struggles to work well under real-world 
circumstances. 

In this context, this paper aims to develop a robust method using a convolutional neural network (CNN) to 
overcome the current limitations of conventional vision-based methods, particularly for detecting concrete 
cracks. CNNs stand out in image classification among neural network applications (LeCun et al. 2015; Cha 
et al. 2017b). While standard neural networks (NNs) completely ignore the grid-like topology (e.g., images 
and time-dependent signals) of a dataset, CNNs are capable of effectively capturing grid-like topology. In 
addition, the sparsely connected neurons reduce computational burden, compared to the standard NNs.   

2 ARCHITECTURE OF THE PROPOSED CNN 

Figure 1 depicts the architecture of the proposed CNN, showing how input data are generalized by passing 
through the designed architecture. The proposed CNN consists of input, convolution, pooling, rectified linear 
unit (ReLU), softmax, and several other layers. The first layer is an input layer with 256×256×3-pixel 
resolution, where the dimensions indicate height, width, and channel, respectively. Input data pass through 
the architecture and are generalized with size reduction to 1×1×96 at L5. Then, the 96 data points are fed 
into a ReLU layer. Finally, a softmax layer predicts if the input is intact or cracked, after the last convolution 
layer (C4) in the diagram. In order to boost training speed, batch normalization is used after all the 
convolution layers except for the last one. A dropout layer is placed after L5, in which the components are 
irrelevant to size reduction but significantly helpful in terms of training speed. 

 

Figure 1: CNN architecture 

3 CNN LAYERS 

CNNs can be formed with single or multiple layers, but stacking multiple layers is common in most cases. 
If many layers exist within the architecture, the network can be defined as a deep CNN. Generally, the 
structure of CNNs includes input, convolution, pooling, activation, and output layers, where the layers 
between input and output layers are often defined by hidden layers. Other auxiliary layers, such as dropout 
and batch normalization layers, can be inserted between hidden layers as necessary. The operations of 
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each layer are briefly explained in this section, but a more detailed explanation can be found in the manual 
for MatConvNet (Vedaldi and Lenc 2015), which is an open CNN toolbox with useful MATLAB wrappers, 
and MatConvNet is used to perform this study. 

3.1 Convolution layer 

Convolution is a key operation of CNNs; it first performs dot product calculation between an input array and 
a receptive field, and then the convolved values are summed to the output array. A receptive field conducts 
the convolution operation explained above across the input array. Figure 2 shows an example of 
convolution between a 5×5 input and a 3×3 receptive field. The size of the receptive field can be bigger or 
smaller than the given example, but it should be smaller than that of the input. The values of a receptive 
field are usually given by random numbers, which are later modified by a backpropagation algorithm using 
a gradient descent algorithm. It is notable that the size of the output in the example is reduced compared 
to the input array, which reduces computational costs. An optional hyperparameter of the operation is stride, 
describing how many shifts skip at each step, where higher stride values enable much faster calculation 
but also result in loss of input data. 

 

Figure 2: Example of convolution 

3.2 Pooling layer 

Pooling, also a key operation of CNNs, reduces the size of an input array. This process is frequently referred 
to as “down-sampling” or “sub-sampling”. There are different pooling operations, but mean and max pooling 
methods are widely used. Max pooling takes the maximum values, and mean (i.e., average) pooling takes 
mean values from a pooling region. A pooling layer performs the described operations across the input 
array. Figure 3 shows the examples of max and mean pooling methods, where the pooling size is 3×3. A 
comparative study revealed that max pooling does better than mean pooling in an image dataset (Scherer 
et al. 2010). We confirmed that max pooling outperforms mean pooling in our dataset.  

 

Figure 3: Examples of max and mean pooling methods 

3.3 Rectified linear unit layer 

Many activation functions, including y = tanh(x) and y = 1/(1+exp(-x)), have been proposed to adopt 
nonlinearity into neural network applications, but the ReLU has proven to be the best activation function for 
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CNN applications (Krizhevsky 2012; Nair and Hinton 2010); we also used ReLU in this study. Figure 4 
shows the comparison of two activations functions and ReLU. Briefly, while the other activation functions 
have bounded output values of one, zero, or negative one, ReLU has no bounded outputs except in the 
case of inputs with negative values. Intuitively, the gradients of ReLU are always zero and one. These 
properties enable computations to be performed much faster and also result in better accuracy (Nair and 
Hinton 2010).  

 

Figure 4: Activation functions 

3.4 Batch normalization and dropout layer 

One of the challenges of training CNNs is overfitting, a phenomenon in which a network can classify only 
the training dataset effectively. To overcome this challenge, dropout (Srivastava et al. 2014) and batch 
normalization (Ioffe and Szegedy 2015) layers are implemented. A dropout layer randomly disconnects 
neurons to reduce co-adaptations. Consequently, the network can generalize training examples more 
efficiently. A batch normalization layer reduces covariate shifts of the input. It enables use of significantly 
higher learning rates compared to a network without batch normalization, which shortens training time. 

3.5 Softmax layer 

In order to classify input data, a layer that predicts classes is necessary. In this study, the softmax function, 
given by Equation [1], was used with i examples, n classes, and W weights (i.e., receptive fields and filters). 
This function returns probabilities for each class by accepting input data, where the size of the input data is 
typically reduced by passing through a designed CNN architecture. When input data are fed into a softmax 
layer, the probabilities of each class are predicted by the function; the one with the highest probability is 
predicted to be in class n. 

[1] 

 

4 COST FUNCTION AND BACKPROPAGATION USING SGD 

In the beginning stage of training, the values of the receptive fields are given by random numbers; this 
results in a large number of errors, due to the deviations from the true answers of the training examples. 
The deviations were measured by Equation [2], where log likelihood was adopted for mathematical 
convenience.  
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[2] 

 

The term 1{y(i) = j} is a logical expression that returns ones if the ith class is true for the jth class; otherwise, 
zeros. The last term of the hyperparameter 𝜆  in the equation is a regularization (i.e., weight decay) 
parameter that penalizes large weights; this is a well-known trick for preventing overfitting (Bengio 2012). 
The measured deviations can be narrowed by updating the values of the receptive fields, and stochastic 
gradient descent was used to do so in this study. The updating rule can be summarized by Equations [3] – 
[5], and the network repeats this process until the cost function converges to the global minimum. 

[3] 
 

[4] 
 

[5] 
 

5 TRAINING AND TESTING RESULTS 

The designed network (Figure 1) was trained on 40,000 images of 256×256-pixel images showing intact 
and cracked concrete surfaces. The images were taken under extensively varied conditions (e.g., strong 
spotlight, shadow cast, etc.) to train a robust classifier. The ratio of the training sets to the validation sets 
was 4:1, and the validation existed in order to observe the training process over the epochs. Figure 5 shows 
the summarized training results. The validation error fluctuated until the 48th epoch, suggesting that the 
network needed more iterations. The trained network at the 51st epoch was considered to be the trained 
classifier for detecting cracks.  

 

Figure 5: Summary of training 
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(a) Image (4352×2816 pixels) with thin cracks and a strong spotlight 

 

(b) Shadowed image (4352×2816 pixels) 

Figure 6: Scanned results of large images 

The trained network was designed to accept 256×256-pixel images, which implies that the trained model 
cannot evaluate images that are larger or smaller than the designed pixel resolutions. Therefore, a sliding 
window technique was implemented as a post-processing tool. As a result, the proposed method can scan 
images of any size and localize cracks. To evaluate how the trained model generalizes crack features, 50 
large images (greater than 4000×2500 pixels) were tested; the proposed methods achieved an average 
accuracy of 97% (Cha et al. 2017b) and recorded less than three seconds to scan those images. Two of 
the images are shown in Figure 6; (a) is an image with thin cracks and a strong spotlight, and (b) is a 
shadowed image.  

6 CONCLUSION 

A vision-based method for detecting concrete cracks from photographic images was developed. This 
method employed a CNN, which is the most robust image-classifying application known to date. To train 
the classifier, 40,000 images of 256×256-pixel resolution, captured under highly varied conditions, were fed 
into the designed CNN. The results of tests with large images demonstrated that this approach is much 
better for solving real-world problems than the conventional vision-based approaches that implement 
gradient-based image processing techniques. In the future, an advanced system capable of detecting at 
least five types of superficial damage—including voids, delamination, spalling, and corrosion of concrete 
and steel structures—will be proposed. This system will also be mounted on a drone and used for remote 
field inspections, as a partial substitute for traditional means of inspection. 
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