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Abstract:  

Design standards do not provide provisions to account for the interaction between adjacent spans of 
continuous beams. In the absence of such provisions, the designer may opt for calculating the lateral 
torsional buckling capacity for each span separately by applying the moment gradient factors provided in 
standards and adopting the smallest critical moment as the one governing the design. The Salvadori 
hypothesis of isolating a member from the rest of the structure is assessed in the present study. The elastic 
lateral torsional buckling resistance for continuous beams is investigated based on finite element analysis. 
Comparisons are made between two types of solutions: (1) those neglecting interaction effects between 
adjacent spans, and (2) those considering span interaction. Also examined is the effect of presence of 
lateral/torsional restraints at intermediate supports of continuous beams. The results illustrate the merits of 
adopting the FEA solution in accounting for span interaction when determining the elastic lateral torsional 
buckling capacity of continuous beams. 

Keywords: lateral torsional buckling, finite element analysis, interaction effects, moment gradient factors, 
continuous beams 

1. INTRODUCTION AND LITERATURE REVIEW 

Present provisions in design standards (e.g., CAN/CSA-S16-14 (2014), EN 1993 Designer’s guide 
(Gardner and Nethercot 2011), AS-4100 (1998) and ANSI/AISC-360-16 (2016)) do not account for the 
interaction between various segments of a continuous beam when determining their lateral torsional 
buckling (LTB) resistance. In the absence of such provisions, designers may resort to treating each 
segment as a separate span and calculate the individual LTB capacity for each segment separately by 
adopting moment gradient factors and critical moment equations provided in standards, and then, 
conservatively, adopt the smallest critical moment as the one governing the LTB capacity of the continuous 
beam. The above procedure omits the interaction effect between adjacent members. Procedures that 
account for such interaction effects were proposed in the work of (Nethercot and Trahair 1976), (Trahair 
1977) and (Trahair and Bradford 1988) as reported in SSRC guide (Ziemian 2010). Such procedures are 
iterative and based on an analogy between the LTB buckling of continuous beams and flexural buckling of 
continuous columns. According to (Ziemian 2010), in most cases, these procedures lead to conservative 
estimates for the critical moments while in cases of high moment gradients, they can overestimate the LTB 
buckling strength. The present study documents a LTB Finite Element Analysis (FEA) that captures 
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interaction effects in continuous beams. To establish the validity of the FEA model, the FEA is first adopted 
to determine the critical moments for a number of single span problems under a variety of loads and 
comparisons are made against the critical moment predicted by design standard provisions. The finite 
element is then adopted to investigate the span interaction effect on the lateral torsional buckling of 
continuous beams and identify conditions where interaction effects are significant. The model is then used 
to quantify the effect of lateral and torsional restraints that may be present at intermediate supports. 

2. OVERVIEW OF FINITE ELEMENT FORMULATION 

The formulation is based on the following assumptions: 
 

1. Material is linearly elastic, isotropic and homogenous. 
2. The beam follows the Vlasov beam kinematics (Vlasov 1961), i.e., the section is assumed to move 

in its own plane as a rigid disk and the shear strain in the middle surface of the beam is negligible. 
3. Pre-buckling deformations and local warping effects are neglected. 

 
The beam finite element in (Barsoum and Gallagher 1970) is chosen to conduct the study. The element 
has two nodes, each having three pre-buckling and four buckling degrees of freedom (DOF) as shown in 
Figure 1a. The pre-buckling DOFs are the longitudinal displacement u , the transverse displacement w  

and the strong-axis rotation w  and the buckling displacements are the lateral displacement v , the weak-

axis rotation v , the angle of twist x  and warping deformation x . In Figure 1a, displacements are shown 

with red single arrows, rotations are depicted with blue double-headed arrows while the warping 
displacements are illustrated by green triple-headed arrows. 
 

 

 

                                    (a)                         (b) 
 

Figure 1: (a) Buckling DOFs and adopted right-handed coordinate system, and (b) Internal force 
interpolation bending moment 

 

The strong-axis bending moments 1yM  and 2yM at the ends of each member are obtained from the pre-

buckling analysis. Assuming the beam element length L  is small, the bending moments within the element 

are linearly interpolated (Figure 1b), i.e.,           1 21y y yM x M x L M x L . The total potential energy in 

going from the point of onset of buckling to the buckled configuration is expressed in terms of buckling 
displacements as 
 

[1]            eb b b v sv w m PL qLU V U U U V V V  

 

where the internal strain energy bU  is the sum of three components; vU  due to the lateral displacement v

, svU due to the conventional Saint-Venant torsion, and wU  due to warping torsion. Also, the destabilizing 

load potential energy term bV  consists of three components; mV  due to the bending moments, PLV due to 

the load height above the shear centre for point loads, and  qLV  is load height effect above the shear centre 

for line loads. By expressing the above six terms in terms of the lateral displacementv  and the angle of 

twist xθ , one obtains 
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[2]            


   
            

   
    

2 2 2 2 2

10 0 0 0 0

1 1 1 1 1

2 2 2 2 2

L L L L Lnp

eb z x w x y x i i xi q x

i

EI v dx GJ dx EC dx M x v dx Pz q x z dx  

 

where G  is the shear modulus, J  is the Saint-Venant torsional constant, 
zI  is weak-axis moment of inertia, 

wC  is the warping constant, 
iz  is the vertical distance between the section shear centre and the point of 

application of transverse load   1,...,iP i np  taken as positive in the positive direction of coordinate z , 

 q x  is the member transverse line load, and 
qz  is the vertical distance between the shear centre and the 

line of application for  q x , taken positive in the positive direction of coordinate z .  The lateral displacement 

 v x  and angle of twist  x x  are related to the nodal displacements using Hermitian polynomials. By 

substituting into Eq. [2] and evoking the stationarity conditions, one obtains the linearized eigenvalue 
problem: 
 

[3]          0GK K U  

 

where  K  is the elastic stiffness matrix,  GK  is the geometric stiffness matrix, the eigenvalue λ  is a load 

multiplier that determines the buckling load(s) at the which the system buckles  and the eigen vector  U  

is the buckling configuration. 

3. VALIDATION STUDY 

Three beam geometries were considered to assess the validity of the FEA. These are: 1) a W410x39 with 
a 4.5m span, 2) a W410x39 with an 8m span, and 3) a W310x52 with a 5.7m span.  All beams were simply 

supported with respect to the lateral displacement and twist (i.e.,            0 0 0x xv v L L , but free 

to undergo weak-axis rotation and warping, i.e.,              0 0, 0, 0 0, 0x xv v L L  as may be the 

case in beams connected to columns through simple shear connections. A variety of loading conditions 

were investigated; end moments  ,M M , where      1,0.75,0.5,0.25,0, 0.25, 0.5, 0.75, 1 (runs #1-9), 

uniformly distributed loads with and without fixed end moments (runs #10, 11), mid-span point load with 
and without fixed end moments (runs #12, 13), and two point loads acting at third spans (run #14). A mesh 
study indicated that eight finite elements are needed to achieve convergence. Thus, eight elements were 

used to mesh all beams. In each case, the critical moments  cr crM M FEA  based on FEA were computed 

and the corresponding moment gradient  C C FEA  was determined from the equation 

 

 [4]  


  
2

cr u y w yM CM C EI GJ E L C I
L

 

 

where      
2

u y w yM L EI GJ E L C I  is the critical moment for the idealized case of a simply supported 

beam             0 0 0x xv v L L  subjected to uniform moments. The corresponding moment 

gradient values are provided in Column 2 of Table 1. The critical moment expression in Equation [4] is 
universal in most standards. For example, the Eurocode guide adopts equation [4] in conjunction with 

moment gradient factors  C C EUR  prescribed for various loading conditions as provided in Column 3 

of Table 1. Also, the Canadian standards CAN/CSA-S16-14 adopt equation [4] with a moment gradient 

factor     2C C CAN  given by 
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[5]        2 2 2 2

max max4 4 7 4 2.5a b cC CAN M M M M M   

 

where , ,a b cM M M  are moments are the quarter, mid-span, and three-quarter span points, and 
maxM  is the 

peak moment within the span. The corresponding values are provided in Column (5) of Table 1. The ratios 

   C EUR C FEA  of the moment gradient factors of the Eurocode guide to those predicted by the FEA are 

provided in Column (4) and show close agreement except for run #11 and to a lesser degree for run #13, 

both involving fixed end moments. A comparison for    C CAN C FEA  is provided in Column (6). The 

mean value of    C CAN C FEA  is 0.936 with a standard deviation 0.0703. In all cases, except run #14, 

the Canadian moment gradient equation tends to under-predict the critical moments compared to the FEA 
results. 

Table 1: Comparison of MFG of FEA, CAN/CSA-S16-14 and EN 1993 

Run 
# 

(1) 

Bending  
Moment  
Pattern 

 C FEA

Average 
value of 

FEA 
(2) 

 C EUR  

 (3) 

 C EUR

/ 

 C FEA  

(4) 

 C CAN  

(5) 

 C CAN

/ 

 C FEA  

(6) 

(1) 
  

1.000 1.000 1.000 1.000 1.000 

(2) 
  

1.140 1.141 1.001 1.131 0.992 

(3) 
  

1.320 1.323 1.002 1.293 0.980 

(4) 
  

1.548 1.563 1.010 1.497 0.967 

(5) 
  

1.854 1.879 1.013 1.746 0.942 

(6) 
  

2.186 2.281 1.043 2.028 0.928 

(7) 
  

2.556 2.704 1.058 2.286 0.894 

(8) 
 

2.821 2.927 1.038 2.405 0.853 

(9) 
 

2.720 2.752 1.012 2.309 0.849 

(10)  1.144 1.132 0.990 1.130 0.988 

(11)  2.694 1.285 0.477 2.359 0.876 

(12)  1.362 1.365 1.002 1.265 0.929 

(13)  1.723 1.565 0.908 1.414 0.821 

(14) 
 

1.040 1.046 1.006 1.131 1.088 

--- Mean N/A N/A 0.969 N/A 0.936 
--- Standard Deviation N/A N/A 0.140 N/A 0.0703 

 
 

4. CASE STUDY 1: DEVELOPING DESIGN AIDS FOR CONTINUOUS BEAMS 

Consider four continuous beams with equal spans where the spans L  vary in the range   4,5,6,7,8L m .  

Beam cross-section in all cases are W250x58 with the properties

        5 4 7 4 7 61.88 10 , 4.09 10 , 2.68 10yy wI m J m C m . All supports provide lateral and torsional 
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restraints (as marked by the red X) in addition to a transverse restraint. Case (a) involves two spans and is 

subjected to mid-span point loads P  (Figure 2a). Case (b) involves two spans and is subjected to a 
uniformly distributed load (UDL) (Figure 2b). Case (c) involves three spans and is subjected to mid-span 

point loads P (Figure 2c) and Case (d) involves three spans and is subjected to UDL (Figure 2d). The 
pertinent bending moment diagrams (BMD) are shown below each Case. All loads are applied at the shear 
centre. It is required to determine the critical moment in each case, and use the results to develop design 
aids by developing moment gradient factors or effective length factors.  In a manner similar to the validation 

study, the moment gradient factor  C FEA  is obtained from the FEA predicted critical moment  crM FEA  

through the relation           
  

2

cr y w yC FEA M FEA L EI GJ E L C I . Alternatively, one can obtain the 

effective length factor by solving the equation        
2

cr y w yM FEA kL EI GJ E kL C I  for k . Figure 3a 

depicts the relationship between the moment gradient factor  C FEA  and the torsion parameter  

  wL GJ EC  and Figure 3b depicts the relationship of the effective length factor k  versus the torsion 

parameter  . The results show that the moment gradient factors are nearly constant, suggesting the 

independence of moment gradient of the torsion parameter. In contrast, the effective length factors show a 
mild dependence on the section torsional parameter. This observation suggests that the moment gradient 
factor provides a simpler approach to estimate the critical moments than effective length approach. The 
values provided in Table 2 show that the moment gradient factors is constant for Case (a). Thus a value of 
C=1.82 is recommended for Case (a). In a similar manner, the recommended moment gradient factor is 
2.29 for Case (b). Cases (c) and (d) show a rather weak dependence on the torsion parameter, and the 
smallest values of 1.65 are recommended for Case (c) and 1.75 for Case (d). For run #11 involving three 
spans with L=4m, the critical moment based on the Canadian Standard equation is 515.3 kNm for the 
exterior span and 736.3 kNm for the intermediate span. Since there is no direct means of accounting for 
span interaction in the standards, the critical moment is conservatively taken as the smaller value of 515.3 
kNm. This value compares to 891.4 kNm based on FEA. As expected, the FEA solution predicts a higher 
critical moment since (a) it accounts for interaction effects whereby the stronger span delays the buckling 
of the weaker span, and (b) the moment gradient equation in the standard is only approximate. For Run #1 
involving two- spans with L=4m, the critical moment for both spans predicted by the Canadian Standard 
equation is 515.2 kNm. An identical value is obtained by modeling a single span, suggesting no interaction 
effects between identical spans under identical loads. This value compares to 704.9 kNm as predicted by 
the present FEA solution, suggesting that for the present loads, the CAN-CSA-S16-14 moment gradient 
equation provides an overly conservative critical moment prediction.  
 
 

  
  

  

                              (a) 
 

                                             (c) 
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                              (b)                                             (d) 

 
Figure 2: Continuous beams of Example 1: (a) Two-span beams under mid-span point loads, (b) Two-
span beams under UDL, (c)  three-span beam under mid-span point loads, and (d) three-span beam 

under UDL 

 

  

(a) (b) 
 

Figure 3: (a) Moment gradient factor vs  , and (b) Effective length factor vs    

 
Run #5 is chosen to illustrate the remaining steps of the design. Given that the W250x58 cross-section 

meets class 2 requirements for a yield strength  350yF MPa , the plastic moment is calculated as 

  270p x yM Z F kNm . For run #5, the critical moment is  275.6uM kNm  (Table 2). Given that 

 0.67u pM M , the design is governed by inelastic lateral torsional buckling and the resistance is given by

     1 0.28 174.8r p p u pM M M M kNm M . If one assumes the service dead load DP  is equal to the 

service live load LP , one has   1.25 1.5 2.75D L LP P P P  or  0.364LP P . The peak factored moment 

corresponding to P  as provided in Figure 2a is  0.188fM PL . Equating the resisting moment 

 174.8rM kNm  to the factored moment  0.188fM PL  yields a factored load 116P kN  which 

corresponds to a service live load  0.364 42.2LP P kN . The corresponding peak displacement within the 

span is found as  11.3mm  which corresponds to  / 708L  which is lower than the threshold value of 

 / 360L  given in appendix D of CAN-CSA-S16-14, i.e., the live load deflection meets the requirement 

of Appendix D. 
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Table 2: Summarized results of Example 1 
 

Case Run # Span (m)   
Critical 

moment 
(kNm) 

 C FEA   k   

(a) 1 4 3.07 704.9 1.82 0.688 
 2 5 3.83 508.9 1.82 0.670 
 3 6 4.60 396.8 1.82 0.655 
 4 7 5.37 325.1 1.82 0.643 
 5 8 6.13 275.6 1.82 0.631 

(c) 6 4 3.07 655.4 1.69 0.718 
 7 5 3.83 469.8 1.68 0.706 
 8 6 4.60 364.0 1.67 0.695 
 9 7 5.37 296.4 1.66 0.686 
 10 8 6.13 249.9 1.65 0.678 

(b) 11 4 3.07 891.4 2.30 0.600 
 12 5 3.83 643.2 2.30 0.582 
 13 6 4.60 501.3 2.30 0.565 
 14 7 5.37 410.6 2.29 0.550 
 15 8 6.13 347.9 2.29 0.538 

(d) 16 4 3.07 699.9 1.81 0.690 
 17 5 3.83 500.4 1.79 0.678 
 18 6 4.60 386.8 1.77 0.667 
 19 7 5.37 314.5 1.76 0.657 
 20 8 6.13 264.9 1.75 0.650 

 

5. CASE STUDY 2: INTERACTION EFFECTS IN CONTINUOUS BEAMS WITH UNEQUAL SPANS 

Consider a continuous beam with a W250x58 cross-section subjected to loads  1 2 3, ,P P P  as shown in 

Figure 4a. The beam is laterally and torsionally restrained at the three support locations. It is required to 
determine the elastic LTB capacity of the beam. Two types of solutions are sought: (1) Neglecting 
interaction effects between both spans and (2) Considering interaction effects. 
 

 
(a) 

 
(b) 

Figure 4: (a) Continuous beam restrained laterally and torsionally at all three supports, and (b) BMD 
under applied loads 

 
Solution (1) - Omitting interaction: Since CAN/CSA-S16-14 does not account for the interaction between 
both spans, the designer may opt to calculate the LTB capacity of each span separately by applying the 
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moment gradient factors based on the quarter-point formula (Eq. 5). The procedure involves the following 
steps: Step 1: Determine the bending moment distribution (Figure 4Figure 4b), Step 2: Determine the critical 

moment for each span using the critical moment crM  expressions in Equation 4, where L  is the distance 

between lateral torsional supports (i.e., the left span has  4L m  and the right span has  8L m ). Step 3: 

Determine the critical moments for both spans by applying the quarter-point moment gradient equation (Eq. 
5) and conservatively taking the smaller value (i.e., neglecting the interaction between both spans). Table 
3 provides a summary of the results. For comparison, FEA predictions are provided for the case where the 
interaction between both spans is omitted, by modelling each span alone in a separate buckling FEA model 
while using 8 elements for each span. 
 
Solution (2) - Incorporating interaction effects: The FEA solution provides a natural means of incorporating 
the interaction between the two spans. This is done by modelling both spans in a single model. For the 
present problem, this interaction is beneficial for the weaker right span (which governs the design in Solution 
1). The stronger left span provides some restraint to left span and delays its buckling. By incorporating 
interaction effects and using 8 elements for each span, the critical moment of the system is found to 
increase by 28.6% from the Canadian standards predictions (Table 3). As expected, the artificial isolation 
of each member leads to overly conservative predictions of the critical moments.  

Table 3: Comparison of critical moment predictions for a continuous beam 

 Left Span Right Span 

Estimated 
critical 

moment for 
the 

structure 

Bending Moment 
Diagrams 

  

 

Span  L m   4m 8m  

 .4uM Eq  386.9 kNm 151.8 kNm  

 AM kNm  +5 +5  

 BM kNm  +10 +10  

 CM kNm  -5 +15  

 maxM kNm  -20 -20  

  .5C CAN Eq  2.219 1.746  

   

 

cr uM CAN C CAN M

kNm
 858.5 265.0 265.0 

 
1crM FEA kNm  - 

neglecting interaction 
(treating each span in a 

separate model) 
 

1134 295.1 295.1 

 
2

M FEA kNm  - 

accounting for interaction 
(treating both spans in a 

single model) 

340.7 kNm 
340.7 
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6. CASE STUDY 3: EFFECT OF LATERAL AND TORSIONAL RESTRAINTS AT INTERMEDIATE 
SUPPORTS 

In the previous case study, the middle support was assumed to be laterally and torsionally restrained. In 
the present example, it is required to investigate the case where intermediate support provides vertical 
displacement restraint but no lateral nor torsional restraints (Figure 5) as may be the case for a beam 
supported by a column that is pinned at the base with no lateral members framing into the beam at the 
beam to column junction. All other loading and end boundary conditions remain unchanged. Since the 
boundary conditions regarding the transverse displacements are identical to the past case study, the BMD 
remains identical (Figure 4b). However, in the absence of lateral and torsional restraints at the middle 
support, the unsupported span of the beam becomes 12m and quarter point moments become 

     5 , 5 , 12.5A B CM kNm M kNm M kNm  and  max 20M kNm . The critical moment calculations based 

on the Canadian standard equation is found to be 211. 2kNm and the steps of the calculation are provided 
in Table 4. Also, provided for comparison are the critical moments predicted by the FEA which is 191.0 
kNm. The Canadian moment gradient equation is found to overestimate the critical moment by 10.5% in 
this case. A comparison with the previous case study indicates that, although the bending moment 

distribution remains identical in the two problems, the critical moment is found to drop from  340.7crM kNm  

for the case where lateral and torsional supports are provided at mid-span to 191.0crM kNm  for the case 

where such restraints are removed. 
 
 

 
 

Figure 5: Lateral torsional restraints removed at middle support (Example 3) 

Table 4: Critical moment comparisons for Example 3 

 Results 

Span  L m   12m 

  
   

 

2

u y w y

E
M EI GJ C I

L L
 95.20 

 AM kNm   -5.0 

 BM kNm  +5.0 

 CM kNm  +12.5 

 maxM kNm  -20 

  .5C CAN Eq  2.219 

     cr uM CAN C CAN M kNm  211.2 

Finite Element solution  M FEA   191.0 
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7. CONCLUSIONS 

The following conclusions have been drawn from the current study: 
 

1. The present study implemented and established the validity of the beam finite element of Barsoum 
and Gallagher (1970) as part of a larger project to integrate the element within the commercial S-
FRAME analysis software and the S-STEEL steel design software. 

2. The formulation was successfully used to derive moment gradient factors in agreement with the 
Eurocode Guide recommendations and CAN-CSA-S16-14 moment gradient factors. The element 
was then used to capture interaction effects between adjacent spans when calculating the LTB 
capacity of continuous beams.  

3. Moment gradient factors were proposed for the design of two-span and three-span beams under 
either mid-span point loads or UDL. The moment gradient factors account for span interaction. 

4. The study has quantified the effect of span interaction when determining the elastic LTB resistance. 
Span interaction was shown to play an important role for three-span beams and two-span beams 
with unequal spans. In the majority of the cases considered, neglect of interaction effect by adopting 
the moment gradient factor in the CAN-CSA-S16-14 was shown to lead to conservative predictions 
of the critical moments. 

5. The study quantified the effect of lateral and torsional restraints at intermediate supports. For Case 
studies 2 and 3, removal of such restraints were shown to result in a significant drop in the critical 
moments. 
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