
EMM 594-1 

Leadership in Sustainable Infrastructure 

Leadership en Infrastructures Durables 

 

 Vancouver, Canada 
May 31 – June 3, 2017/ Mai 31 – Juin 3, 2017 

 
AN OPTIMAL NUMERICAL SCHEME FOR MULTI-SPAN COMPOSITE 
LAMINATED FRP DECK BRIDGES  

Naderian, HR.1, 5, Cheung, M. S.2, Dragomirescu, E.3, Mohammadian, M.4 

1, 3, 4 University of Ottawa, Canada 
2 Western China Earthquake and Hazards Mitigation Research Centre, Sichuan University, China  
5 hnade057@uottawa.ca  
 
Abstract: This research suggests a very efficient numerical technique, originated from spline finite strip 
method, for simulating fiber reinforced polymer (FRP) deck bridges. An Integrated Finite Strip Method 
(IFSM) is employed in order to evaluate the bending and vibration performance of continuous multi-span 
composite laminated FRP bridge systems. The anisotropy nature of the FRP laminated deck is 
considered into the analysis by developing so-called laminate spline strip in the environment of integrated 
finite strip solution. So-called column strips model the piers, while the structural interactions between the 
FRP deck and piers are handled into the analysis by introducing transition section elements. The 
accuracy and efficiency of the IFSM in modelling as well as bending, and free vibration analysis of a 
multi-span slab-girder FRP bridge is investigated. The finite strip results will be validated against the finite 
element analysis. Using the proposed integrated finite strip approach, the time required for analysis 
dramatically reduces without affecting the degree of accuracy. This results in developing an optimal 
numerical scheme for composite FRP bridges. The developed IFSM solution provides the opportunity for 
analysis and design FRP deck bridge structures in a very efficient way where the coupling effects of the 
FRP laminated deck and the structural interactions of bridge components are fully handled.  

 
 
1. INTRODUCTION 
The finite strip method (FSM) is an attractive numerical solution for bridge structures. High accuracy and 
efficiency due to its semi-analytical nature as well as rapid convergence owing to the small bandwidth 
elastic matrices, along with the simplicity of the input data and simulation have made FSM outstanding 
among conventional numerical techniques of bridge analysis. In spite of merits of FSM, it is mostly 
applicable for simple shapes of structural elements like plates and shells and folded-plate structures 
(Cheung et al. 1996). When it comes to a more complicated system like a continuous multi-span bridge 
where there are a number of structural elements attached together in different orientations, the FSM is no 
longer a powerful tool for 3D simulation of the structure. Therefore, the FSM was limited to model the 
bridge deck only while other structural components including piers were modeled as special boundary 
conditions of the deck. When external forces are applied to the bridge, the internal forces are transmitted 
between structural elements. Therefore, handling the structural interactions of all segments of the bridge 
system is a necessary step in accurate analysis of bridges. For all these reasons, the application of FSM 
in bridge analysis had almost reached the technical limit for more than a decade. Recently, Moe M. S. 
Cheung and his colleagues (Naderian et al. 2015) created an innovative integrated framework that is 
capable of 3D modelling of an entire bridge system in the environment of spline finite strip method where 
the effects of structural interactions between different segments of the bridge can also be considered.  
Nowadays, the use of advanced composite FRP materials in multi-span bridges is encouraged by the 
bridge engineers. Research shows the stiffness of advanced composite materials including FRP is 
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coupled to the geometry of the structure (Reddy 2004). The latter indicates the importance of the 
accurate simulation of the composite structure geometry although it is a very expensive computational 
process. In contrast with traditional steel and concrete materials which are typically modelled as isotropic 
materials, FRP composites are highly anisotropic depending on the type of fibers, matrix, and the 
orientation of each lamina. Taking into account the above features, the structural performance of FRP 
laminated deck bridges is totally different from the conventional bridges due to the, lighter weight and 
more flexible structural system.  In addition, the highly non-linear material properties coupled with the 
geometrical complexity, cause the structural analysis FRP bridges extremely more complex and 
challenging.  
Integrated finite strip method as a very accurate and user friendly technique has the great potential to be 
extended for modelling the laminated FRP deck bridges. I this regard, so-called laminate spline strip is 
developed to model the anisotropic laminated FRP deck considering the coupling effects between flexural 
and membrane displacements of the FRP deck while the rapid convergence rate of the numerical results 
is still guaranteed. Integrating the laminate strips with the column strips, and transition section elements 
will provide the opportunity to model an FRP bridge in the environment of integrated finite strip method.  
 
2. DEVELOPMENT OF LAMINATE SPLINE STRIP FOR DECK MODELLING  
To model a composite FRP deck, a laminated FRP plate can be selected which is itself a collection of 
FRP lamina, arranged in a specified order. Adjacent lamina may be of the same or different materials, 
and their fiber orientations with respect to a reference axis may be arbitrary. In Figure 1, a rectangular flat 
multi-layer composite laminated FRP plate is shown. The classical lamination theory is used in the 
present study to derive the stiffness matrix of a composite laminated FRP plate in the environment of 
spline finite strip method. In the lamination theory, it is assumed that each lamina is in a state of plane 
stress while the interlaminar stresses are neglected. In addition, a perfect bonding between different 
laminas is assumed, which means that the laminated FRP plate behaves as a unity, homogenous, 
anisotropic plate.  
 
 

 
Figure 1: Multi-layer composite laminated plate 

 
 
2.1 Displacement functions  
The displacement of a laminate spline strip in the integrated finite strip method can be obtained by 
applying B3-spline functions in the longitudinal direction and the polynomials in the transverse direction of 
the strip. Figure 2 defines the coordinate system where its origin is assumed to be on the middle surface 
of the FRP laminated plate. As a result of assuming plane stress condition in each lamina, transverse 
shear strains are neglected. In addition, in-plane displacements are linear functions of the z coordinate 
and transverse normal strain is negligible. Considering these assumptions, the displacements of the FRP 
laminate at a general point can be expressed in terms of  
 

[1]  𝑢̅(𝑥, 𝑦, 𝑧) = 𝑢(𝑥, 𝑦) + 𝑧𝜓𝑥(𝑥, 𝑦)       
  

[2]  𝑣̅(𝑥, 𝑦, 𝑧) = 𝑣(𝑥, 𝑦) + 𝑧𝜓𝑦(𝑥, 𝑦)        
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[3]  𝑤̅(𝑥, 𝑦, 𝑧) = 𝑤(𝑥, 𝑦) 
      
where  𝜓𝑥  and  𝜓𝑦 are independent rotations while u, v, and w are displacements at the middle surface of 

the laminate along x, y, and z axes respectively.  
 
2.2 Discretization by spline strips  
In the environment of the spline finite strip method, each laminated FRP plate can be discretized into a 
number of strips. The laminate spline strip as shown in Figure 2 is developed for modeling the composite 
laminated FRP deck in which both in-plane and out-of-plane degrees of freedom are considered. The 
parameters in Figure 2 are defined in the following lines. In contrast with isotropic shell strip (Naderian et 
al. 2015), the coupling effects need to be investigated in analyzing the laminate spline strip. 
In the case of flat laminates, one can consider four degrees of freedom on each knot of a nodal line of a 
spline strip, three translational and one rotation. The total potential energy of a flat laminate strip is 
obtained from algebraic summing the membrane (in-plane) and bending (out-of-plane) deformations. The 

displacement parameters vector of a laminate spline strip centered at  is given by  

[4]                                                                      

 
In the formulation of the spline finite strip method it is better to have the locations of the supports and the 
concentrated load coinciding with the knots on the nodal lines, in order to obtain acceptable results. To 
reach this goal, unequally spaced B3-spline functions are used in the present study. Moreover, the 
introduction of unequally spaced interior knots allows one to describe the accurate response in the region 
of high stress gradients, or at the locations of abrupt geometric changes, by spacing knots more closely. 

In this case, the spline function centered at  can be expressed as  

 
 

[5]                                             

                                            
 
in which 
 

[6]                          
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Figure 2: Laminate spline finite strip  
 

 
The membrane displacement functions u and v, and the flexural displacement function w at the middle 
surface of the laminate can be expressed as the product of transverse polynomials and longitudinal B3-
splines as following 
 

[7]                                                                             

[8]                                                                              

[9]                            

 
where r is the total number of longitudinal sections on a nodal line and  
 

[10]   , , , , ,  
 

in which
 

, and  to  are the longitudinal shape functions; , ,  and  are 

related to displacements u and v of nodal lines i and j respectively while , ,  and  are 

related to displacement w. The longitudinal shape functions consist of (m+3) local B3-splines. Each 
longitudinal shape function has the following form

 
 

[11]                                      

 
where   is an amended local boundary spline with regard to the end boundary conditions of the strip.  

 
2.3 Constitutive equations  
The following constitutive equations relates the stresses to the strains in an arbitrary lay-up laminate 
spline strip   
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are membrane and shear forces per unit length and 𝑀𝑥 , 𝑀𝑦 , 𝑀𝑥𝑦 are the bending and twisting moments 

per unit length in the middle surface of the laminate spline strip, while . 𝐴𝑖𝑗, 𝐵𝑖𝑗 , and 𝐷𝑖𝑗 are the 

components relating to laminate extensional stiffness, laminate-coupling stiffness, and laminate-bending 
stiffness matrices respectively and are obtained by the following integrations (Gibson 2012) 

[13]  𝐴𝑖𝑗 = ∫ (𝑄̅𝑖𝑗)𝑘
𝑡 2⁄

−𝑡 2⁄
𝑑𝑧 = ∑ (𝑄̅𝑖𝑗)𝑘

(𝑧𝑘
𝑁
𝑘=1 − 𝑧𝑘−1)                                                          
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where the subscripts i, j=1,2, or 6; N is the number of laminas; t is the laminate thickness; 𝑧𝑘  and 𝑧𝑘−1 are 
distances from middle-surface to inner and outer surfaces of the kth lamina respectively as illustrated in 
Figure 3. 
 
 

 
 

 
 

 
 

 
 
 
 

 
Figure 3: Laminated plate cross-sectional geometry and ply numbering system 

 
 

The coupling stiffness matrix couples the in-plane forces with the curvatures and the moments with the 
mid-plane strains. In fact, the coupling at laminate is not related to material anisotropy but is due to 
geometric and/or material property asymmetry with respect to the middle surface. In Eqs. 13 to 15, 

(𝑄̅𝑖𝑗)𝑘
are the components of the transformed  lamina stiffness matrix as below  

 

𝑄̅11 = 𝑄11𝑐
4 + 𝑄22𝑠

4 + 2(𝑄12 + 2𝑄66)𝑠
2𝑐2 

𝑄̅12 = (𝑄11 + 𝑄22 − 4𝑄66)𝑠
2𝑐2 + 𝑄12(𝑐

4 + 𝑠4) 
𝑄̅22 = 𝑄11𝑠

4 + 𝑄22𝑐
4 + 2(𝑄12 + 2𝑄66)𝑠

2𝑐2                                                             
𝑄̅16 = (𝑄11 − 𝑄12 − 2𝑄66)𝑐

3𝑠 − (𝑄22 − 𝑄12 − 2𝑄66)𝑐𝑠
3 

𝑄̅26 = (𝑄11 − 𝑄12 − 2𝑄66)𝑐𝑠
3 − (𝑄22 − 𝑄12 − 2𝑄66)𝑐

3𝑠  

[16]  𝑄̅66 = (𝑄11 + 𝑄22 − 2𝑄12 − 2𝑄66)𝑠
2𝑐2 + 𝑄66(𝑠

4 + 𝑐4)       
 

where c=cos , s=sin , and  is the lamina orientation angle while 𝑄𝑖𝑗 are the components of the lamina 

stiffness matrix which are related to the engineering constants as follows  
 

[17]   𝑄11 =
𝐸1

1−𝜈12𝜈21
,   𝑄12 =

𝜈12𝐸2

1−𝜈12𝜈21
,  𝑄22 =

𝐸2

1−𝜈12𝜈21
  , 𝑄66 = 𝐺12                                

 
in which 𝐸1 and 𝐸2 are modulus of elasticity of the lamina in longitudinal and transverse directions 
respectively, while 𝜈12 and  𝜈21 are the corresponding Poison’s ratios respectively and 𝐺12 is the shear 
modulus of the lamina.  
3. INTEGRAED FINITE STRIP SOLUTION  

k th
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In IFSM, the so-called Column Strip is used for modeling the cantilever-behaved piers. The Column Strip 
is exactly similar to the flat shell spline finite strip. However, Column Strip is a vertical strip fixed at one 
end, for providing the support boundary conditions, and free at the other end, as shown in Figure 4. 

 
Figure 4: Three dimensional column strip in local coordinate system (Naderian et al. 2015) 

 
 
The concept “element” in the longitudinal direction is not defined neither in the ordinary finite strip method, 
nor in spline the finite strip method. In order to solve this problem, a special transition section has been 
developed within the IFSM, which is applied to connect the FRP deck and piers together. The transition 
section is developed by using unequal spaced B3-spline functions. The bearings can be modeled as 
special boundary conditions for the transition section. A typical transition section connecting the deck with 
the pier is shown in Figure 5. Not losing generalization, it is assumed that the width of the normal and the 
transition sections are H and h respectively. One can call the vertical line as a nodal line on the pier strip 
and the horizontal line as a nodal line on the laminated FRP deck strip. The vertical and horizontal lines 
overlap at knots 3 and 8 of the deck and the pier strips, respectively. To model a fixed bearing, which 
allows rotations but restricts translations, for example, the knot 3 and knot 8 should have the same 
displacement value to achieve compatibility. In order to have identical displacement at knots 3 and 8, it is 

obvious that the ratio of h H should be infinitely small. Using the developed transition section in the spline 

finite strip procedure, the compatibility for the displacements of different components of the structure is 
satisfied.  

 
Figure 5: Transition section  

 
 
The material properties of each layer of the FRP laminated deck including engineering constants as well 
as the FRP ply angle are modelled by laminate spline strips. A three dimensional column strip model the 
piers of the FRP bridge. The principle of the minimum potential energy following the standard finite 
element procedure can be used to derive the stiffness and mass properties of the laminate strips and 
column strips. In the IFSM, the strip properties are converted to knots along the nodal lines during the 
simulating process. However, the number of required knots is significantly reduced comparing to FEM 
due to the semi-analytical nature of the IFSM. The stiffness and mass matrices as well as the force 
vectors of all the strips are assembled using conventional assembling procedure. Then, the entire 3D 
model of the FRP bridge is built using IFSM. When assembling the whole FRP Bridge, the connectivity 

 

 

Fig. 2.4  Column Strip Type-1 

 

 

(2) Fy only 

(3) Fz only 

(4) Fx and Fz 

(5) Fy and Fz 

(1) Fx only 

Load Cases: 

 

Fig. 2.5  Column Strip Type-1: Configuration for Parametric Study  

 

21 
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between the FRP deck and pier is provided by transition section elements which have already been 
defined in the formulation of each individual strip.  
 
4.  INTEGRATED FINITE STRIP MODELING OF MULTI-SPAN FRP SLAB-GIRDER BRIDGE  
To verify the accuracy and efficiency of the proposed integrated finite strip solution for both bending and 
free vibration analysis, a short span hybrid FRP slab-girder bridge, as shown in Figure 6(a), is presented. 
The layout of the FRP laminated deck consists of 10 layers of 2 cm thickness CFRP lamina, with the 
orientation configuration of [0, 90, 0, 90, 0, 0, 90, 0, 90, 0] degrees. The FRP is made by CFRP 

(IM6G/3501-6) with the following properties: mass density 𝜌 = 1600 (𝑘𝑔/𝑚3), 𝐸1 = 147 𝐺𝑃𝑎, 𝐸2 = 10 𝐺𝑃𝑎, 
𝐺12 = 7 𝐺𝑃𝑎, and 𝜈12=0.25. The pier is made from concrete with the modulus of elasticity

4
3.0 10 MPaE   , 

the Poisson’s ratio of 0.2, and the material density is 2,500 kg/m3. Both IFSM and FEM are adopted to 
model the bending and free vibration behavior of the structure, and the results are compared.  
A full bridge model is constructed using the laminate strip for the FRP deck, 3D column strip (CS) for the 
pier and the transition section elements for the bearings. The deck is divided into four equal strips, and 
the pier is divided into two CSs. Each deck strip is composed of 32 sections as well as two additional 
transition sections. Each pier strip is composed of 4 sections, as well as one transition section. For FEM, 
the mass and stiffness of the bridges is constructed with five degrees-of-freedom shell elements 
throughout the structure. The deck is meshed with 32 by 4 elements, and the pier is meshed with 4 by 2 
elements.  
 

                        

 
          

(a) 
 

                              

 
(b) 

 
Figure 6: An FRP slab girder bridge: (a) structural Layout; (b) loading patterns 

4.1 Bending performance  
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For the bending analysis, the ability of the transition element to transfer loading between the laminate 
deck strip and the column strip is assessed. Three load cases, with constant 1,000 KN point forces acting 
on different components and in different directions, are assigned to the model as shown in Figure 6(b). 
The vertical and horizontal drifts along different nodal lines, determined from both numerical methods, are 
summarized in Tables 1 to 3. It was noticed that the displacement calculated from the integrated 
approach agrees well with the FEM results for all loading conditions, which indicates that the proposed 
approach can successfully model a FRP deck bridge structure in the FS environment, taking the pier-
bearing-deck interaction as well as coupling effects of composite deck into consideration.  
 

Table 1:  Displacements under load case (a) 

 
Case a 

Deck-nodal line 3 Pier-nodal line 7 

Y (m) 0 (left) 8 16 24 32 (right) z (m) 0 (top) 2 

v (mm) 
IFSM 0.072 0.105 0.156 0.275 0.145 IFSM 0.149 0.048 

FEM 0.073 0.110 0.166 0.302 0.149 FEM 0.166 0.052 

w (mm) 
IFSM -1.696 -150.121 0.060 470.458 6.705 IFSM 0.071 0.046 

FEM -1.580 -174.372 0.068 450.783 6.856 FEM 0.068 0.046 

 
Table 2:  Displacements under load case (b) 

 
Case b 

Deck-nodal line 3 Pier-nodal line 7 

Y (m) 0 8 16 24 32 z (m) 0 2 

u (mm) 
IFSM 0.001 0.832 1.813 0.983 0.004 IFSM 1.486 0.598 

FEM 0.003 0.832 1.605 0.832 0.003 FEM 1.605 0.527 

 
Table 3: Displacements under load case (d) 

Case d 
Deck-nodal line 2 Pier-nodal line 6 

Y (m) 0 8 16 24 32 z (m) 0 2 

v (mm) 
IFSM 0.034 0.055 0.089 0.048 0.030 IFSM 0.139 1.836 

FEM 0.031 0.053 0.115 0.062 0.010 FEM 0.115 1.733 

 
4.2 Free vibration analysis  
Table 4 compares the first 7 natural bending frequencies of the models. The very small deviation of the 
modal frequencies between the two methods demonstrates that the integrated approach is capable of 
capturing the free vibration characteristics of a bridge, whereas the minor deviation is likely to be caused 
by the slight differences in mass distribution within different elements. The deformed shape of the FRP 
slab girder bridge for the first seven natural modes are illustareted in Figure 7. 
 

Table 4: Natural Frequency of the FRP slab Bridge 

Mode 
Number 

Frequency (Hz) 
Mode Shape 

Integrated FSM FEM 

1 2.08 2.00 Heave (deck) antisymmetrical 

2 3.38 3.11 Heave (deck) symmetrical 

3 8.08 7.90 Heave (deck) antisymmetrical 

4 10.78 9.90 Heave (deck) symmetrical 

5 17.59 17.33 Torsional  (deck) antisymmetrical 

6 19.60 19.96 Torsional (deck) symmetrical 

7 29.47 29.38 Heave (deck) antisymmetrical 

 
                       (a) First mode (2.08 Hz)                                    (b) Second mode (3.38 Hz) 
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(c) Third mode (8.08 Hz)                                     (d) Fourth mode (10.78 Hz) 

                                                                                                                                                                                                                 
 

                          (e) Fifth mode (17.59 Hz)                                     (f) Sixth mode (19.60 Hz) 
 

 
 

 
(g) Seventh mode (29.47 Hz) 

 
 
 

Figure 7:  Mode shapes of the FRP slab-girder bridge  
 
 
As further studies, and in order to compare the free vibration performance of an FRP deck bridge with a 
concrete deck bridge, the natural frequencies of both systems are compared in Table 5. The material 
properties of the deck are the same as for the pier, while the thickness of the concrete deck is 25 cm. The 
integrated finite strip results show that the natural frequencies of the FRP bridge are higher than those of 
the concrete bridge because the total weight of the FRP deck is reduced due to the use of the FRP 
material instead of concrete. In other words, the stiffness to mass ratio has increased in FRP bridge 
comparted to the concrete bridge. Comparing the mode shapes of the two bridges, it can be concluded 
that the torsional mode is more likely to occur in the FRP bridge model. Therefore, special attention 
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needs to be paid to investigating the torsional instability of FRP bridges. The latter proves that the 
dynamic behaviour of the FRP bridge is totally different from the concrete bridge one. 
 
 

Table 5: Comparison of natural frequencies of FRP and concrete bridges   

Mode 
Frequency (Hz) Mode Shape 

FRP bridge Concrete bridge  FRP bridge Concrete bridge  

1 2.08 1.53 
Heave (deck) 

antisymmetrical 
Heave (deck) 

antisymmetrical 

2 3.38 2.40 
Heave (deck) 
symmetrical 

Heave (deck) 
symmetrical 

3 8.08 6.11 
Heave (deck) 

antisymmetrical 
Heave (deck) 

antisymmetrical 

4 10.78 7.73 
Heave (deck) 
symmetrical 

Heave (deck) 
symmetrical 

5 17.59 13.57 
Torsional  (deck) 
antisymmetrical 

Heave (deck) 
antisymmetrical 

6 19.60 15.77 
Torsional (deck) 

symmetrical 
Heave (deck) 
symmetrical 

7 29.47 22.45 
Heave (deck) 

antisymmetrical 
Heave (deck) 

antisymmetrical 

 
 
5. CONCLUDING REMARKS 
An efficient integrated finite strip framework is deployed for continuous multi-span FRP bridges in the 
environment of spline finite strip method. The so-called laminate strip can model the FRP deck 
considering the coupling effects between the in-plane and out-of-plane degrees of freedom as well as the 
anisotropic material properties of the laminated FRP deck. The other components of the bridge can also 
be modelled by spline based finite strips. 3D column strips model the piers, while the transition section 
elements combine the strips of different orientations. The application of the laminate strip along with the 
integrated finite strip method resulted in a very precise and efficient numerical technique for modelling the 
FRP based bridge structures. The application of the proposed finite scheme was extended for bending, 
and free vibration. The finite strip results of bending analysis and natural frequencies and mode shapes of 
an FRP slab-girder bridge were compared with those obtained by finite element method and a very good 
agreement was witnessed. Among the advantages of the proposed solution are the high efficiency and 
accuracy as well as minimal computational time and the simplicity of input data.  
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