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Abstract: The true stress-true strain characterization of a metallic material may be established using a 
constitutive mathematical expression such as the Ramberg-Osgood stress-strain equation, or any of the 
various alternative stress-strain curve models which have been developed for the characterization of 
metallic materials over the full-range of the stress-strain relationship. Some common drawbacks of the 
existing models have however been observed as most of the earlier and simpler models tend to lose their 
predictive accuracy beyond a limited strain range whereas, as the precision of the models is improved, 
significant complexity is usually introduced in the later and more accurate models due to a requirement for 
an increased number of constitutive parameters. This paper therefore presents a relatively simple stress-
strain curve model which is proven to be easily applicable, and capable of accurate predictions over the full 
range of strains. The proposed stress-strain model is defined using only two model parameters and unlike 
many existing stress-strain models, can be easily applied to materials with a well-defined yield plateau. To 
evaluate the applicability of the proposed model, curve-fitting techniques are employed for comparison to 
experimental stress-strain data obtained from cryogenic tensile tests of three different metallic materials; 
300 series austenitic stainless steel (AISI 304L), 5000 (Al–Mg) series aluminum alloy (AA5083), and nickel 
steel alloy (Invar steel-FeNi36). Using the proposed model, excellent approximations of the nonlinear load-
deformation behavior of the tested specimens are observed over the full-range of the true stress-true strain 
relationship.  

1 Introduction 

With the development and application of various microstructure-transformation techniques, attempts have 
been made over the years to improve the ductility, strength properties, and strength-to-weight ratio 
characteristics of metallic materials. The chemical composition and thermo-mechanical processing route, 
which are the most influential factors of the resulting microstructure of metals, are invariably considered in 
the material selection process; which involves the determination of the appropriate combination of desired 
mechanical properties (strength, hardness, toughness, ductility, fatigue resistance, etc.) and non-
mechanical properties (formability, wear resistance, corrosion resistance, machinability, weldability, etc.) 
for each specific civil engineering application (Kurzydłowski 1999).  

Steels and cast irons are the most commonly used materials for the design and construction of civil 
engineering structures and their microstructural constituents (austenite, bainite, cementite, ferrite, 
martensite, and pearlite), as well as the multiphase character of their microstructure can be systematically 
manipulated or altered to yield desired performances for various structural applications (Davis 1998). 
According to Zhao et al. (2014), the Transformation Induced Plasticity (TRIP) concept has been used in 
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automotive applications for many years and has recently begun to receive much attention due to excellent 
improvements obtained in the outstanding combination of ductility and strength of steels. TRIP techniques 
include processes such as intercritical annealing (IA), severe plastic deformation (SPD), quenching and 
partitioning traeatment (Q&P), accumulative roll bonding (ARB), bimodal grain size distribution, etc. (Valiev 
et al. 1993, Jacques 2004, Bouquerel et al. 2006, Terada et al. 2007, Shen et al. 2011, Bagliani et al. 2013). 

A good illustration of the effect of thermo-mechanical processes on the mechanical behavior of metallic 
materials is given by Curtze et al. (2009) in their study on the dependence of the mechanical behavior of 
Dual Phase (DP) steels and TRIP steels on temperature and strain rate: while both DP and TRIP steels 
comprise multiphase microstructures, DP steels are obtained by intercritical annealing followed by 
quenching to room temperature in order to transform the ferrite/austenitic microstructure to martensite, 
while TRIP steels are obtained by inducing an isothermal hold below the bainite start temperature during 
cooling from the intercritical annealing temperature. Consequently, DP steels typically possess a two-phase 
ferritic-martensitic microstructure whereas the microstructure of TRIP steels is characterized by an 
embedment of bainite, martensite, and retained autensite in a continuous ferrite matrix. They explain that 
the soft ferritic phase associated with DP and TRIP steels is the main factor responsible for their 
characteristic low yield strengths whereas the hard martensite and bainite constituents dispersed in the 
ferrite matrix are responsible for high ultimate strength and strain-hardenability. 

Thermo-mechanical loading in the operational phase of a material’s lifecycle also affects the deformability 
of polycrystalline materials such as metals and metallic alloys, and is a direct consequence of 
microstructural gliding dislocation and grain boundary characteristics. Therefore, under subjection to 
loading, the mechanical behavior of metallic materials is significantly affected by temperature and strain 
rate: the effect of thermal energy makes it easier for gliding dislocations to occur thereby decreasing the 
strength with increasing temperature and, on the other hand, development of various interfacial slip-
resisting mechanisms cause an increase of the strength with increasing strain rate (Slavik and Sehitoglu 
1986, Davis 1998). 

The mechanical behavior of metallic materials is generally characterized by a nonlinear stress-strain 
relationship typically obtained from the results of an axial tension coupon test carried out in a laboratory-
controlled environment. Due to the nonlinearity associated with the load-deformation characteristics of 
metallic materials, an appropriate mathematical expression, comprising a number of defining constituent 
parameters, is usually employed for describing a reasonable approximation of the stress-strain relationship. 
With the modern-day existence of fast and efficient computational capability, simulation of the mechanical 
behavior of materials used in the design and construction of civil engineering structures, and under 
subjection to several loading configurations, is easily achieved using a variety of numerical evaluation tools. 
To ensure the accuracy of computational simulations, it is however imperative that the constitutive equation 
used to describe the mechanical behavior of materials is robust and precise. 

The Ramberg-Osgood equation (ROE), which expresses the strain as a function of the stress and is 
governed by two material constants (the 0.2% proof stress 𝜎0.2 and the initial elastic modulus 𝐸𝑜) and one 
model constant (the strain-hardening exponent, 𝑛), has been widely-adopted for many civil engineering 
applications but has also been observed to be incapable of providing excellent approximations of material 
stress-strain behavior beyond the 0.2% proof stress. In a bid to improve the predictive accuracy of the ROE, 
a number of modified stress-strain expressions have been subsequently put forward by several 
researchers. Most of the modified expressions are however designed to capture the tensile stress-strain 
behavior of metallic materials at room temperature. (Ramberg and Osgood 1943, Skelton et al. 1997, 
Macdonald et al. 2000, Mirambell and Real 2000, Chryssanthopoulos and Low 2001, Gardner and 
Nethercot, 2004). 

After exposure to either cryogenic or elevated temperatures, significant alterations occur to the mechanical 
behavior of metallic materials and past research has indicated that the behavior of structures is usually very 
complex either when using precooled or preheated materials or when using materials in environments with 
temperatures significantly above or below ambient temperature. The load-deformation characteristics of 
structural elements and components have been determined to be highly sensitive to the stress-condition 
relative to the affected mechanical properties. A few researches have been carried out to study the effects 
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of high and low temperatures on the stress-strain behavior of various metallic materials and a number of 
constitutive stress-strain equations have been developed for structural analysis and design purposes 
(Buchanan et al. 2004, Chen and Young 2006, Park et al. 2011, Yoo et al. 2011, Wang et al. 2014). 

It is generally desirable that the mathematical expressions used to describe the stress-strain behavior of 
metallic materials are versatile enough such that the model parameters can be easily adjusted to define the 
changes in the stress-strain curve due to temperature- and strain rate-induced microstructural alterations. 
However, there are some important limitations associated with existing stress-strain models: the simpler 
models lack the desired robustness and accuracy for defining a wide range of stress-strain behaviors, and 
the applicability of more advanced models is hampered by the large number of constituent parameters 
required for improved accuracy. A novel stress-strain curve model that is capable of providing an accurate 
approximation of the stress-strain behavior of metallic materials at different temperatures and strain rates, 
is presented in this paper. The practicality and efficiency of the proposed model is illustrated by comparison 
of model-approximated stress-strain curves (derived using the proposed equation) to experimental stress-
strain curves obtained from previous research by Park et al. (2011) on the cryogenic tensile behavior of 
three different materials over a range of temperatures and strain rates, and excellent correlations are 
observed for all the comparisons. 

2 Background 

A typical stress-strain curve is plotted using the stress and strain values obtained from a standard uniaxial 
tensile test of a material specimen. The nominal stress values are established using the original cross-
section area of the specimen while the nominal strain values are determined as the average strain over the 
originally specified gauge length. The nominal (or so-called “engineering”) stress and strain values obtained 
directly from the coupon test experiments do not portray a realistic representation of the load-deformation 
process, especially at high levels of axial deformation, due to non-consideration of the simultaneous 
changes in geometric dimensions alongside axial deformation and development of non-uniform stress-
strain distributions (Adeeb, 2011). For practical applications, it is therefore preferable to determine the true 
stress-true strain relationship from the tensile test based on instantaneous values of the geometric 
dimensions of the material specimen and gauge length (Mackenzie 1997, Arasaratnam et al. 2011). 

3 Review of existing stress-strain equations 

The power-law approach provides a feasible option for mathematical representation of the nonlinearity 
associated with the stress-strain behavior of metallic materials hence many of the earliest stress-strain 
curve equations, as well as the subsequent modifications, are essentially based on an expression of the 
stress as a power function of the strain or vice versa (Ludwik 1909, Ramberg and Osgood 1943, Hollomon 
1945). The ROE expresses the strain as a function of the stress based on the following equation: 

[1]   𝜀 =
𝜎

𝐸𝑜
+ 𝜀0.2 (

𝜎

𝜎0.2
)
𝑛𝑅𝑂

  

where 𝜎 represents the true stress and 𝜀 represents the true strain. 𝜎0.2 represents the 0.2% proof stress 
and Eo represents the initial elastic modulus. The strain parameter, 𝜀0.2, is generally determined as the 

value of the plastic strain corresponding to the offset yield strength, 𝜎0.2 (taken as 0.002), and 𝑛𝑅𝑂 
represents the strain-hardening component, given by: 

[2]   𝑛𝑅𝑂 =
𝐼𝑛(20)

𝐼𝑛(𝜎0.2/𝜎0.01)
  

A slightly-modified version of the ROE is expressed by API 579-1/ASME FFS-1 (2007) as follows: 

[3]   𝜀 =
𝜎

𝐸𝑜
+ (

𝜎

𝐻𝑅𝑂
)

1
𝑛𝑅𝑂
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Where multiple data points for a stress-strain curve are provided, the constants (𝐻𝑅𝑂 and 𝑛𝑅𝑂) are derived 

using curve-fitting regression techniques otherwise, where only the yield strength (𝜎𝑦) and ultimate tensile 

strength (𝜎𝑢) are known, the constants are obtained (for the range 0.02 ≤ 𝜎𝑦/𝜎𝑢 ≤ 1.0) as follows: 

[4]   𝑛𝑅𝑂 =

1 + 1.3495 (
𝜎𝑦
𝜎𝑢
) − 5.3117 (

𝜎𝑦
𝜎𝑢
)
2

+2.9643 (
𝜎𝑦
𝜎𝑢
)
3

1.1249 + 11.0097 (
𝜎𝑦
𝜎𝑢
) − 11.7464 (

𝜎𝑦
𝜎𝑢
)
2 

 

[5]   𝐻𝑅𝑂 =
𝜎𝑢 𝑒𝑥𝑝[𝑛𝑅𝑂]

𝑛𝑅𝑂
𝑛𝑅𝑂

  

Mirambell and Real (2000) proposed a modification of the ROE to improve the approximation of the stress-
strain curve beyond the 0.2% proof stress. The modified formula was obtained by applying a linear 
transformation of the stress and strain axes origin to the 0.2% proof stress point of the curve, and then 
using the ROE in the new reference system. Rasmussen (2003) modified the Mirambell-Real expression 
by replacing the ultimate plastic strain (𝜀𝑝,𝑢) by the total ultimate strain (𝜀𝑢) and developed the equations for 

the second-stage strain-hardening exponent, m, the total ultimate strain, 𝜀𝑢, and the ultimate strength, 𝜎𝑢, 
using the three basic ROE parameters. 

The two-stage approach proposed by Mirambell and Real (2000) and Rasmussen (2003) was extended by 
Chen and Young (2006) to the stress-strain characterization of stainless steel types EN 1.4462 (Duplex) 
and EN 1.4301 (AISI 304) at temperatures ranging from 200C to 10000C: 

[6]   𝜀𝑇 =

{
 
 

 
 
𝑓𝑇
𝐸0,𝑇

+ 0.002 (
𝑓𝑇
𝑓𝑦,𝑇

)

𝑛𝑇

                                                    𝑓𝑜𝑟 𝑓𝑇 ≤ 𝑓𝑦,𝑇 

𝑓𝑇 − 𝑓𝑦,𝑇

𝐸𝑦,𝑇
+ 𝜀𝑢,𝑇 (

𝑓𝑇 − 𝑓𝑦,𝑇

𝑓𝑢,𝑇 − 𝑓𝑦,𝑇
)

𝑚𝑇

+ 𝜀𝑦,𝑇                   𝑓𝑜𝑟 𝑓𝑇 > 𝑓𝑦,𝑇 

         

where fT, fu,T, and fy,T  represent the stress, the ultimate stress, and the 0.2% proof stress at the temperature 
T (in 0 C) respectively. εT, εu,T, and εy,T represent the strain, the strain corresponding to ultimate stress, and 
the strain corresponding to proof stress at the temperature T (in 0 C) respectively. E0,T is the initial elastic 
modulus at the respective temperature T (in 0 C) and the tangent modulus of the temperature-altered stress-
strain curve at the 0.2% proof stress, Ey,T is derived as: 

[7]   𝐸𝑦,𝑇 =
𝐸0,𝑇

1+0.002 𝑛𝑇 
𝐸0,𝑇
𝑓𝑦,𝑇

                                                                                

and the first-stage strain-hardening exponent, nT and the second-stage strain-hardening exponent, mT are 
both derived as: 

[8]   𝑛𝑇 = 6 + 0.2√𝑇                                                                          

[9]   𝑚𝑇 = {
5.6 −

𝑇

200
     (𝑓𝑜𝑟 𝑠𝑡𝑎𝑖𝑛𝑙𝑒𝑠𝑠 𝑠𝑡𝑒𝑒𝑙 𝑡𝑦𝑝𝑒 𝐸𝑁 1.4462)

2.3 −
𝑇

200
    (𝑓𝑜𝑟 𝑠𝑡𝑎𝑖𝑛𝑙𝑒𝑠𝑠 𝑠𝑡𝑒𝑒𝑙 𝑡𝑦𝑝𝑒 𝐸𝑁 1.4462) 

         

Chen and Young determined that the temperature-altered material properties (the 0.2% proof stress, fy,T ; 
the initial elastic modulus, E0,T ; the ultimate stress, fu,T ; and the ultimate strain, εu,T) can be expressed as 
the following function of the temperature: 
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[10]   
𝑃𝑇
𝑃𝑁

= 𝐴𝑇 −
(𝑇 − 𝐵𝑇)

𝐷𝑇

𝐶𝑇
 

where PN and PT represent the value of any of the four above-listed material properties at the normal room 
temperature and the temperature-altered value respectively, and the coefficients AT, BT, CT and DT are 
empirically obtained from the results of the experiment. 

Based on the constitutive model (BP model) developed by Bodner and Partom (1975) for representing time-
dependent phenomena such as viscoplasticity and inelastic creep behavior, Park et al. (2011) studied the 
effect of temperature and strain rate on - and proposed a unified constitutive equation for - the nonlinear 
material behavior of AISI 300 series ASS, aluminium alloy, and nickel steel alloys. To account for the effect 
of microstructural phase transformation on the plastic deformation characteristics of the material, the strain-
hardening rate and the strain-rate sensitivity are directly used as the material parameters. The BP model 
does not explicitly incorporate the yield function but is observed to be capable of expressing the yield 
phenomenon of materials (Yoo et al. 2011). 

The BP model expresses the total strain rate, 𝜀𝑖̇𝑗, as a sum of the elastic strain rate, 𝜀𝑖̇𝑗
𝑒 , and the inelastic 

strain rate, 𝜀𝑖̇𝑗
𝑝

: 

[11]   𝜀𝑖̇𝑗
𝑝
= 𝐷𝑜𝑒𝑥𝑝 {−

1

2
(

𝑍

𝜎𝑒𝑓𝑓
)
2𝑁

}
√3𝑆𝑖𝑗

𝜎𝑒𝑓𝑓
   

where σeff and Sij represent the effective stress and the deviatoric stress respectively. Do, N and Z are the 
internal parameters: Do sets the maximum limit for the strain rate predicted by the model and N controls the 
strain rate sensitivity. The strain-hardening behavior of the material is controlled by Z which is derived, for 
the case of isotropic hardening, as: 

[12]   𝑍 = 𝑍1 + (𝑍0 − 𝑍1). 𝑒𝑥𝑝(−𝑚𝑊𝑝) 

Z0, Z1, and m control the yield stress, saturation of stress, and the slope of the hardening curve respectively. 
The plastic work, Wp is derived as: 

[13]   𝑊𝑝 = ∫𝑑𝑊𝑝 = ∫𝜎𝑖𝑗𝑑𝜀𝑖𝑗
𝑝

 

One of the most recent and versatile stress-strain models, developed by Zhang and Alam (2017), was 
specifically proposed to describe the stress-strain behavior of steel sheet materials that exhibit a relatively 
long yield plateau. The Zhang-Alam model is an expanded Ramberg-Osgood model expressed as: 

[14]   𝜀 =

{
 
 

 
 
𝜎
𝐸⁄                                                                                                     0 ≤ 𝜎 ≤ 𝜎𝑒  

𝜎
𝐸⁄ + 𝑘1(

𝜎
𝐸⁄ )

𝑛1
                                                                        𝜎𝑒  < 𝜎 ≤ 𝑓𝑦 

𝜀𝑦 + 
(𝜎 − 𝑓𝑦)

𝛼𝐸
⁄                                                                        𝑓𝑦 < 𝜎 ≤ 𝜎𝑝

𝜎
𝐸⁄ + 𝑘2(

𝜎
𝐸⁄ )

𝑛2
                                                                                  𝜎 > 𝜎𝑝 

         

where σ, ε and E represent the true stress, true strain, and the Young’s modulus respectively. fy represents 
the lower yield strength and εy represents the strain at fy. σe is the proportional limit; described by the point 
where the relative difference between the R-O stress and the linear stress is larger than 0% but less than 
or equal to 0.5%. α is a coefficient multiplied with E which represents the slope of the yielding platform. εp 
represents the strain at the intersection of a yielding platform and initial strain hardening portion. n1, n2, k1, 
and k2 are the model constants derived by equations described in Zhang and Alam (2017). 

The Mirambell-Real and Rasmussen models adopted by Chen and Young for material characterization at 
elevated temperatures and the modifications applied to the BP model by Park et al. exhibit advanced 
capabilities for stress-strain curve approximation over the full range of strains for a wide range of 
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applications. Zhang and Alam’s expanded R-O model was also observed to perform well in approximating 
the stress-strain curve of steel sheet materials with well-defined yield plateau; with errors beyond the 
proportional limit < 5%. However, as is observable from the above-presented expressions, the applicability 
of the proposed models is limited by the associated complexity and numerous constituent parameters. The 
proposed stress-strain curve model presented in this study provides a simpler and equally accurate 
alternative to existing models and is shown to be capable of providing a reasonable approximation of the 
yield plateau in materials that exhibit a well-defined yield point. The motivation for the proposed model in 
this study is the development of a stress-strain curve model which is capable of providing a reasonable 
approximation of both continuous hardening-type stress-strain curves and yield plateau-type stress-strain 
curves. 

4 Description of the proposed stress-strain curve model 

The novel stress-strain curve model presented in this paper is herein referred to as the ‘Ndubuaku model’. 
The proposed equation is initially derived by expressing the stress as a function of the strain using a power-
law function and subsequently, an explicit inverted expression of the strain as a function of the stress is 
derived based on the product log (omega) function: 

[14]   𝜎𝑅 = 𝜀𝑅
𝜀𝑅
−(

1
𝐻𝑁𝑀

)

𝐾𝑁𝑀  

 

𝜎𝑅 is the stress ratio, derived as the ratio of the true stress 𝜎 to the full stress range (i.e., the difference 

between the ultimate stress, 𝜎𝑢, and the proportionality limit stress, 𝜎𝑝𝑙), and is expressed as: 

[15]   𝜎𝑅 =
𝜎

(𝜎𝑢 − 𝜎𝑝𝑙)
  

𝜀𝑅 is the strain ratio, derived as the ratio of the true strain 𝜀 to the full strain range (i.e., the difference 

between the ultimate strain, 𝜀𝑢, and the corresponding total strain at the proportionality limit stress, 𝜀𝑝𝑙), 

and is expressed as: 

[16]   𝜀𝑅 =
𝜀

(𝜀𝑢 − 𝜀𝑝𝑙)
  

𝐾𝑁𝑀 and 𝐻𝑁𝑀 are the model parameters, empirically derived from the material test, and are herein referred 
to as the ‘knee’ parameter and the ‘heel’ parameter respectively. The model parameters both control the 
strain-hardening behavior of the stress-strain curve. However, the ‘knee’ parameter, KNM has a more 
noticeable effect on the convexity of the upper portion of the stress-strain curve whereas the effect of the 
‘heel’ parameter, HNM is more significant on the concavity of the lower portion of the curve. 

The Product log function is expressed in the following form: 

𝑦 = 𝑥𝑒𝑥⇔𝑊(𝑦) = 𝑥 

Hence, the inverted closed-form expression of the strain as a function of the stress is expressed as: 

[17]   𝜀𝑅 = 𝑒
−𝐻𝑁𝑀  .  W[−

𝐾𝑁𝑀
𝐻𝑁𝑀

  .  𝐼𝑛(𝜎𝑅)]
 

 

5 Evaluation of model applicability 

Park et al. (2011) explained that the 300 series of austenitic stainless steel (ASS), aluminum alloys, and 
nickel steel provide high strength and excellent ductility over a wide range of low temperatures hence, they 
are generally preferred over other metallic materials for cryogenic applications in many industrial fields. In 
an effort to introduce a robust design scheme for structures used for storing and shipping liquefied natural 
gas (LNG), they conducted a series of cryogenic tensile tests under various temperatures (110 - 293 K) 
and strain rates (0.00016 - 0.01 s-1). The material specimens for the tests were obtained from the three 
representative types of low-temperature application materials; AISI 304L, AA5083, and Invar steel. 
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To properly portray the robustness and versatility of the proposed model, the results of the cryogenic tensile 
tests conducted by Park et al. have been selected for model evaluation. The test matrix for the experiments 
was designed such that five graduations of temperature (293K, 223K, 153K, 133K, and 110K) were 
selected, and three strain rates (0.00016s-1, 0.001s-1, 0.01s-1) were determined as the test variables at each 
temperature; however, only two arrays of results from the test matrix was utilized for the model evaluation. 

The stress-strain data obtained from the results of the experimental studies conducted by Park et al. were 
converted to the respective true stress and true strain values. However, the portion of the stress-strain 
curve beyond the ultimate stress (after the onset of necking) was excluded from the model evaluation as it 
is considered to be practically irrelevant to the applicability of the proposed model. The ultimate stresses 
(𝜎𝑢) used for the model evaluation were taken as the highest values of true stress reported from the 

experiments, while the ultimate strains (𝜀𝑢) were taken as the corresponding values of true strain at the 
respective ultimate stresses. 

The proposed model is applied to the stress-strain curve in two segments: the linear elastic portion of the 
curve is defined by the initial modulus of elasticity of the material, Eo, up to the proportionality limit stress 
and from the proportionality limit, the nonlinear stress-strain relationship is defined using the proposed 
expression up to the ultimate limit. Least-squares curve fitting was used to obtain the best fit between the 
experimental data points and the model-predicted stress-strain curve by minimizing the sum of the squares 
of the errors between the model-predicted values and the experimentally-obtained values for each data 
point. The plots of the model-to-experiment curve-fit evaluations are presented in Figures 2 to 7. 

  
Figure 2: Model-to-experiment stress-strain plots for 

AA5083 at 110K (strain rate - varied) 
Figure 3: Model-to-experiment stress-strain plots for 

AA5083 at 0.00016/s (temperature - varied) 

  
Figure 4: Model-to-experiment stress-strain plots for 

AISI 304L at 110K (strain rate - varied) 
Figure 5: Model-to-experiment stress-strain plots for 

AISI 304L at 0.00016/s (temperature - varied) 
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Figure 6: Model-to-experiment stress-strain plots for 

Invar Steel at 110K (strain rate - varied) 
Figure 7: Model-to-experiment stress-strain plots for 

Invar Steel at 0.00016/s (temperature - varied) 

The R-squared values and values of the model parameters are presented for the strain rate-effect tensile 
tests and the temperature-effect tensile tests in Table 1. 

Table 1: Model parameters and R2 values for model-to-experiment curve-fit evaluations 

Material 
Model 

parameters 

Strain rate 

(sec-1) 

Temperature 

(K) 

0.01 0.001 0.00016 293 223 153 133 110 

AA 

5083 

KNM 2.17 2.31 2.79 2.71 2.89 3.25 2.78 2.71 
HNM 4.92 4.49 3.55 4.26 4.09 4.91 4.24 3.64 
R2 0.9986 0.9988 0.9981 0.9976 0.9984 0.9986 0.9987 0.9989 

AISI 
304L 

KNM 1.32 1.56 1.74 1.12 1.52 1.53 1.66 1.71 
HNM 0.68 0.71 0.73 13.53 0.98 0.67 0.62 0.59 
R2 0.9924 0.9962 0.9939 0.9989 0.9961 0.9973 0.9989 0.9985 

Invar 

Steel 

KNM 1.46 1.38 1.25 2.03 1.68 1.58 1.46 1.34 

HNM 5.12 8.69 12.52 4.02 6.73 7.06 7.17 8.95 

R2 0.9981 0.9993 0.9994 0.9982 0.9998 0.9979 0.9988 0.9996 

The high R-squared values presented in Table 1, as obtained from the curve-fit evaluations in Figures 2 to 
7, indicate that the proposed model provides a highly accurate approximation of the stress-strain curves for 
all the experimental results considered. 

From the observed consistency in the variation of the obtained results, it is evident that the range of the 
values of the model parameters are reflective of the shape of the stress-strain curve. An explanation is 
given of the mean value and standard deviation of the model parameters, for a combination of the 
temperature- and strain rate-effect tensile tests of the three studied materials, as follows: 

AA5083- The mean value and standard deviation of KNM are 2.701 and 0.335 respectively, while the mean 
value and standard deviation of HNM are 4.263 and 0.511 respectively. The mean value of HNM is higher 
than the mean value of KNM, indicating that the convexity of the ‘knee’ of the curve is favoured relative to 
the concavity of the ‘heel’. 

AISI304L- Considering the values obtained at 0.00016/s and 293K as outliers, the mean value and standard 
deviation of KNM are 1.577 and 0.143 respectively, while the mean value and standard deviation of HNM are 
0.711 and 0.128 respectively. The mean value of HNM is lower than the mean value of KNM, indicating that 
the concavity of the ‘heel’ of the curve is favoured relative to the convexity of the ‘knee’. 
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Invar Steel- The mean value and standard deviation of KNM are 1.523 and 0.245 respectively, while the 
mean value and standard deviation of HNM are 7.533 and 2.602 respectively. The mean value of HNM is 
higher than the mean value of KNM, indicating that the convexity of the ‘knee’ of the curve is favoured 
compared to the concavity of the ‘heel’. 

A comparison between the obtained results for AA5083 and Invar Steel indicates that when the value of 
KNM is significantly reduced (approximately below a value of 2), the positive effect of a higher value of HNM 
on the convexity of the knee begins to diminish infinitely. Also, a low value of HNM (approximately below a 
value of 3) typically indicates the presence of a yield plateau in the stress-strain curve. However, the yield 
plateau diminishes as the ratio of KNM to HNM exceeds a value of 6. The knee-to-heel parameter ratio that 
causes the yield plateau to vanish reduces as the value of HNM increases. 

6 Conclusions 

Complex nonlinearities and plasticization problems are frequently encountered in the design and analysis 
of civil engineering structures and structural elements. Past research studies indicate that the phase 
transformations that occur within the microstructure are the most important factors that cause significant 
changes in the mechanical behaviour of metallic materials; especially at varying temperatures and strain 
rates. Proper characterisation of the stress-strain behaviour of materials is therefore important for practical 
considerations, especially where parametric numerical simulations are required for structural design and 
analysis. A novel stress-strain curve model has been developed and presented in this paper to provide a 
simple and accurate tool for parameterization of the strength and strain-hardening characteristics of 
different structural materials, over a wide range of processing and operational conditions. The proposed 
model is established based on the true stress-true strain relationship and only requires empirical derivation 
of two model parameters for the approximation of the stress-strain curve over the full range of strains; even 
for materials with a well-defined yield plateau. The most important characteristic of the proposed model is 
the ability to describe a continuous transition from yield plateau-type stress-strain curves to continuous 
hardening-type stress-strain curves; even so that curves that may be regarded as bilinear (as in Figure 6) 
can also be approximated. The robustness and precision provided by the proposed model are illustrated 
by the model-to-experiment curve-fit evaluations presented in this paper. 

References 

Adeeb, S.M., 2011. Introduction to solid mechanics and finite element analysis using Mathematica. 
Dubuque, IA: Kendall Hunt Publishing Company. 

Arasaratnam, P., Sivakumaran, K.S. and Tait, M.J., 2011. True stress-true strain models for structural steel 
elements. ISRN Civil Engineering, 2011. 

Bagliani, E.P., Santofimia, M.J., Zhao, L., Sietsma, J. and Anelli, E., 2013. Microstructure, tensile and 
toughness properties after quenching and partitioning treatments of a medium-carbon steel. Materials 
Science and Engineering: A, 559: 486-495. 

Bodner, S. and Partom, Y., 1975. Constitutive equations for elastic-viscoplastic strain-hardening 
materials. Journal of Applied Mechanics, 42(2): 385-389. 

Bouquerel, J., Verbeken, K. and De Cooman, B.C., 2006. Microstructure-based model for the static 
mechanical behaviour of multiphase steels. Acta Materialia, 54(6): 1443-1456. 

Buchanan, A., Moss, P., Seputro, J. and Welsh, R., 2004. The effect of stress–strain relationships on the 
fire performance of steel beams. Engineering Structures, 26(11): 1505-1515. 

Chen, J. and Young, B., 2006. Stress–strain curves for stainless steel at elevated 
temperatures. Engineering Structures, 28(2): 229-239. 

Chryssanthopoulos, M.K. and Low, Y.M., 2001. A method for predicting the flexural response of tubular 
members with non-linear stress–strain characteristics. Journal of Constructional Steel Research, 57(11): 
1197-1216. 

Curtze, S., Kuokkala, V.T., Hokka, M. and Peura, P., 2009. Deformation behavior of TRIP and DP steels in 
tension at different temperatures over a wide range of strain rates. Materials Science and Engineering: 
A, 507(1): 124-131. 

Davis, J.R., 1998. Metals Handbook: Desk Edition 2nd edn. Materials Park, OH: ASM International. 



 

   

EMM529-10 

Gardner, L., and Nethercot, D. A. (2004a). Experiments on stainless steel hollow sections. Part 1: Material 
and cross-sectional behavior. Journal of Constructional Steel Research, 60: 1291–1318. 

Hollomon, J. H., 1945. Tensile Deformation. Transactions of the Metallurgical Society of AIME. 162: 268-
290. 

Jacques, P.J., 2004. Transformation-induced plasticity for high strength formable steels. Current Opinion 
in Solid State and Materials Science, 8(3): 259-265. 

Kurzydłowski, K.J., 1999. Structure and properties of metals. Acta Physica Polonica A, 96(1): 69-79. 
Ludwik, P., 1909. Elemente der Technologischen Mechanik. Berlin: Verl. v. Julius Springer. 
Macdonald, M., Rhodes, J., and Taylor, G. T., 2000. Mechanical properties of stainless steel lipped 

channels. Proc., 15th Int. Specialty Conference on Cold-Formed Steel Structures, University of Missouri-
Rolla, Mo., 673–686. 

Mackenzie, A.C., Hancock, J.W. and Brown, D.K., 1977. On the influence of state of stress on ductile failure 
initiation in high strength steels. Engineering fracture mechanics, 9(1): 167IN13169-168IN14188. 

Mirambell, E. and Real, E., 2000. On the calculation of deflections in structural stainless steel beams: an 
experimental and numerical investigation. Journal of Constructional Steel Research, 54: 109-133. 

Mohammad, Z.H., Nouri, E., Khedmati, M.R., and Roshanali, M.M., 2010. Degradation of the compressive 
strength of unstiffened/stiffened steel plates due to both-sides randomly distributed corrosion 
wastage. Latin American Journal of Solids and Structures, 7(3): 335-367. 

Park, W.S., Chun, M.S., Han, M.S., Kim, M.H. and Lee, J.M., 2011. Comparative study on mechanical 
behavior of low temperature application materials for ships and offshore structures: Part I—Experimental 
investigations. Materials Science and Engineering: A, 528(18): 5790-5803. 

Park, W.S., Lee, C.S., Chun, M.S., Kim, M.H. and Lee, J.M., 2011. Comparative study on mechanical 
behavior of low temperature application materials for ships and offshore structures: Part II–Constitutive 
model. Materials Science and Engineering: A, 528(25): 7560-7569. 

Ramberg, W. and Osgood, W. R., 1943. Description of stress-strain curves by three parameters. Technical 
Note No. 902. Washington, DC, USA: National Advisory Committee for Aeronautics. 

Rasmussen, K. J. R. 2003. Full-range stress-strain curves for stainless steel alloys. Journal of 
Constructional Steel Research, 59: 47–61. 

Shen, Y.F., Wang, C.M. and Sun, X., 2011. A micro-alloyed ferritic steel strengthened by nanoscale 
precipitates. Materials Science and Engineering: A, 528(28): 8150-8156. 

Skelton, R.P., Maier, H.J. and Christ, H.J., 1997. The Bauschinger effect, Masing model and the Ramberg–
Osgood relation for cyclic deformation in metals. Materials Science and Engineering: A, 238(2): 377-390. 

Slavik, D. and Sehitoglu, H., 1986. Constitutive models suitable for thermal loading. Journal of Engineering 
Materials and Technology, 108: 303-312. 

Terada, D., Inoue, S. and Tsuji, N., 2007. Microstructure and mechanical properties of commercial purity 
titanium severely deformed by ARB process. Journal of Materials Science, 42(5): 1673-1681. 

Valiev, R.Z., Korznikov, A.V. and Mulyukov, R.R., 1993. Structure and properties of ultrafine-grained 
materials produced by severe plastic deformation. Materials Science and Engineering: A, 168(2): 141-
148. 

Wang, X.Q., Tao, Z., Song, T.Y. and Han, L.H., 2014. Stress–strain model of austenitic stainless steel after 
exposure to elevated temperatures. Journal of Constructional Steel Research, 99: 129-139. 

Yoo, S.W., Lee, C.S., Park, W.S., Kim, M.H. and Lee, J.M., 2011. Temperature and strain rate dependent 
constitutive model of TRIP steels for low-temperature applications. Computational Materials 
Science, 50(7): 2014-2027 

Zhang, P., and Alam, M. S., 2017. Experimental investigation and numerical simulation of pallet-rack stub 
columns under compression load. Journal of Constructional Steel Research, 133: 282-299. 

Zhao, X., Shen, Y., Qiu, L., Liu, Y., Sun, X. and Zuo, L., 2014. Effects of Intercritical Annealing Temperature 
on Mechanical Properties of Fe-7.9 Mn-0.14 Si-0.05 Al-0.07 C Steel. Materials, 7(12): 7891-7906. 


