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Abstract 

3D point cloud data can be used for visual and quantitative dimensional control of an object of interest but 
requires a robust post-processing algorithm to isolate the object being considered from the clutter in the 
point cloud. Finding an object in a scene is a crucial task that has been investigated extensively in literature. 
Once the object is found it must be isolated using a clutter removal methodology. One such methodology 
used the KNN algorithm. This paper presents a case study on finding the optimal threshold value of the K 
value in the KNN algorithm. Tests have been carried out on a cylindrical pipe spool assembly. Two criteria 
for measuring the success of clutter removal have been defined as: (1) Number of points erroneously 
remaining in the point cloud. (2) Number of points erroneously removed. These two criteria have been 
measured under different scenarios by changing the quality of the assembly, the number of points in the 
scene point cloud, and the number of points in the model point cloud. The contribution of this paper is 
providing a mathematical solution for selecting an optimal threshold value for the K value in the KNN 
algorithm to ensure that only excessive points are removed from the scene point cloud once the object of 
interest is identified.  

1 Introduction 

3D image acquisition tools are becoming more prevalent in the construction industry as they have become 
more affordable and as design information shifts from traditional 2D drawings to 3D BIM (Building 
Information Model) models. 3D scanners enable their users rapid access to accurate information regarding 
the geometric conditions on a job site or in a construction facility.  Traditionally, laser scanners have been 
the most reliable and accurate source of 3D data (Bosche & Haas 2008). Photogrammetry and structured 
light scanners offer lower cost solutions but with compromised accuracy. (Golparvar-Fard et al. 2009). 
Increased competition, demand and innovation is pushing the development of all areas of 3D data 
acquisition and is resulting in higher quality technology being available at increasingly lower prices. 

One area of substantial use of these tools is the development and implementation of scan vs. BIM 
framework for early detection of construction defects. Typically, 15% of construction rework is due to late 
detection of defective components (Burati et al. 1987). Late detection of defects can result in project 
schedule delays, cost overruns and cost propagation in projects with sensitive schedules. Consequently, 
early detection of defects in construction projects has become a prime concern for stakeholders. Geometric 
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non-compliance is a major source of defects in construction. Advancements in 3D image acquisition tools 
have enabled users to  access to geometric data in real-time and made early detection of such deficiencies 
feasible (Brilakis et al. 2012). Comparing the design information to the as-built data provides an assessment 
of the fabrication quality and can be done by superimposing the 2 point clouds (3 by n matrices of geometric 
coordinates) to inspect the geometric compliance of the completed assembly.  

One of the challenges with comparing a scan point cloud with a model point cloud is that the scan contains 
clutter points, which are points from the object’s environment that get captured when acquiring the scan. 
To compare the 2 point clouds the object of interest must be isolated in the scan by removing the clutter 
points. To isolate the object of interest, the object must first be found within the point cloud before the clutter 
can be removed. To find the object, the Random Sample Consensus (RANSAC) algorithm proposed by 
(Papazov, Burschka 2010) was used. Once the scene point cloud has been superimposed onto the design 
point cloud, post-processing algorithms have to be employed to properly isolate the object of interest by 
removing the clutter. Automating the accurate extraction of objects of interest from spatial data is the 
fundamental enabler for further developments in automated spatial analysis. The goal when decluttering a 
point cloud is to isolate the points that correspond to the object of interest from a complete point cloud 
without removing points belonging to the object of interest. Figure 1 shows the process for isolating an 
object of interest from a scene point cloud. 

 

 
Figure 1. Abstract of the process involved from scan acquisition to object isolation. (a) Acquired scan of the scene including 

clutter points. (b) BIM model of the object of interest in point cloud format. (c) Superimposed model on the scene. 

 
 
Classification methods have been investigated in literature and multiple algorithms have been developed 
by researchers. One such application of the algorithms is clutter removal, where classification methods 
facilitate the retrieval of objects from point clouds. These methods include graph-cut based method (Pan & 
Taubin 2016) and structure less nearest-neighbor techniques composed of K-nearest neighbors methods 
(Bhatia & Vandana 2010). Nearest neighbor search algorithms have been found to be the most effective 
(Bajramovic et al. 2006) for removing clutter. A variety of KNN searching algorithms are used in point cloud 
modeling (Zhao & Meng 2009) to calculate surface curvature (Li et al. 2014) in addition to noise and clutter 
removal. 
 
KNN  is acknowledged as a simple, robust and effective method for classification of points as belonging to 
either the object of interest or to the clutter. Nonetheless, KNN still faces two main shortcomings as a post-
processing technique (Jiang et al. 2007): 1) The distance function used to measure the differences and 
similarities between the 2 point clouds is the standard Euclidean distance, and 2) the neighborhood size is 
artificially assigned as an input parameter K, biasing the algorithm by the arbitrary nature of the K value 
chosen. Since the accuracy of the algorithm is highly dependent on the K value, researchers have proposed 
several models for selecting this value. For example, Xie proposed a model named Selective Neighborhood 
Naive Bayes, also known as SNNB (Xie et al. 2002). The basic idea is that multiple K values are tested and 
the one with the highest estimated accuracy to classify the data is selected. As stated in (Guo et al. 2003), 
the simplest approach to selecting the K value in this model is to run the algorithm multiple times with 
different K values and to identify the K associated with the best trial.   
  
To evaluate the success of the exclusion of clutter from the point cloud, the method presented in this paper 
uses two measures: 1) number of points erroneously remaining in the point cloud, 2) number of points 
erroneously removed from the point cloud. The main contribution of this work is the selection of an optimal 
K value depending on the number of points in the as-design point cloud and in the as-built point cloud. The 

Figure 1. Abstract of the process from scan acquisition to object isolation. (a) Acquired scan of the 
scene including clutter points. (b) BIM model of the object of interest in point cloud format. (c) Model 

superimposed on the scan. (d) Resulting point cloud after applying clutter removal algorithm. 
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method was administered on cylindrical objects (pipe spools). The accuracy of the model was tested and 
found to have an R square value equal to 0.75. 
 
The paper is organized as follows. In section 2, a survey of 3D imaging methods in construction and post-
processing techniques for finding the object of interest in a point cloud is provided. In section 3, the 
methodology for the experiment conducted is described. In section 4, includes details of applying the 
proposed methodology. Discussion and future works has been discussed in section 5. 

2 Research Background 

Two main areas have been investigated: 1) the use of 3D-imaging in construction and 2) post-processing 
algorithms for removing clutter in point clouds. A focus was placed on K-Nearest Neighbor post-processing 
algorithms as this study utilized a KNN technique as the primary method for the clutter removal algorithm. 

2.1 3D-imaging in construction 

There are three main 3D image capturing technologies available: laser scanning, photogrammetry and 
structured light. Laser scanners typically use the time of flight of a light ray being sent and received by the 
sensor to capture the distance of a point on an object being investigated (Bosch et al. 2001). 
Photogrammetry uses multiple 2D images of the desired scene and utilizes a variety of available algorithms 
to reconstruct the scene point cloud. For more information on current methods for reconstructing point 
clouds using 2D images please refer to Remondino et al. 2015. Structured light sensors measure the three-
dimensional shape of an object using projected infrared light patterns and a camera system (Furht & Ahson 
2008). Structured light sensors are available in several commercialized 3D scanners. However, as shown 
in (Sharif et al. 2016), these technologies currently struggle to capture an object that  exceeds two meter in 
the principal length. 
 
Currently, ground-based laser scanners are the superior acquisition technology used as they can provide 
the highest accuracy and density point clouds. Bosche and Haas used laser scanners to develop a frame 
work for construction object recognition using the projection of the BIM model onto the relative position of 
the scanner (Bosche & Haas 2008). Turkan presented a framework for automatic project schedule updating 
based on the object recognition method previously developed by Bosche (Turkan et al. 2012).  Nahangi 
developed a method for progress tracking using robotics analogy and forward kinematics with a focus on 
mechanical, electrical and piping components (Nahangi et al. 2015). 
 
Coupling 3D design models with the acquisition of high quality 3D spatial data has made it possible to 
directly compare a completed industrial component with its design model. Akinci presented a method for 
comparing as-planned 3D design information (CAD model) with periodic imaging of critical construction 
components (Akinci et al. 2006). A great deal of research has gone into using 3D designs with 3D spatial 
data to evaluate pipe spool assemblies as they are critical for industrial construction projects including 
refineries and power plants. Pipe spool assemblies are typically prefabricated in shop and then sent to the 
site to be assembled which requires accurate fabrication and an incident-free transportation to the site. In 
2003, the Construction Industry Institute reported that 13.3% of all fabricated pipe spools in the industrial 
sector required rework (CII, 2003). This has prompted researchers to investigate methods to better regulate 
the prefabrication to ensure that spools are being fabricated within tolerance. Nahangi developed an 
automated approach for monitoring and assessing fabricated pipe spools and structural systems using 
automated scan-to-BIM registration (Nahangi et al. 2015, Nahangi & Haas 2014). The method reliably 
detects the presence of dimensional non-compliance. Lee introduced a new method to extract critical points 
and centerlines in pipelines to reconstruct the model and compare it with BIM for progress tracking (Lee et 
al. 2012). These methods still leave room for improvement and further development to better assess the 
as-built conditions of pipe spools.  

2.2 Post-processing algorithm: retrieval of object-of-interest 

Manually removing clutter is a tedious task that requires automation to allow it to be part of a practical 3D 
imaging application in construction. Researchers have investigated and developed multiple frameworks 
using nearest neighbor (NN) methods for finding and recognizing objects of interest in point clouds 
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(Czerniawski et al. 2016). NN methods can be classified into two categories: 1) Structure Less NN 
techniques, which overcome the memory limitation issue, where the whole data sets are classified into 
training data and sample data points and distance is then calculated to find the nearest neighbor, and 2) 
Structure Based NN algorithms which reduce the computational complexity by structuring the data into 
different organisations such as Ball Tree (Liu et al. 2006), KD-Tree (Friedman et al. 1977) and NB-Tree 
(Kohavi 1996). In this study, a KD-Tree was used to structure the points of the point cloud in a 3D space. 
An Approximate Nearest Neighbor Search algorithm was then performed on the sorted data to extract the 
desired points from the point cloud. Jiang surveyed improved KNN search algorithms that either improve 
the distance function, the neighborhood size or the class probability estimation (Jiang et al. 2007). The 
attributes are weighted when calculating the distance and then the K value that best fits the data is 
determined.  
 
The main contribution of the present paper is to develop and evaluate an effective process that facilitates 
the retrieval of an object from a point cloud scene. The method was applied to cylindrical objects, pipe 
spools, and presents a mathematical solution to determine the optimal K-value to retrieve an object of 
interest from a cluttered point cloud. 

3 Methodology 

The methodology for optimal object retrieval of cylindrical objects from point clouds and the flow of 
information between various components is illustrated in Figure 2. The objective of proposed method is to 
determine a mathematical solution to find the optimal threshold value in the decluttering process utilizing a 
KNN (K Nearest Neighbour) algorithm. KNN is performed to remove points in the scan point cloud that do 
not correspond to the model point cloud. For each point in the model, K points in the scan point cloud that 
are closest to that point will be selected and stored in a new point cloud or matrix. The goal is to store all 
the points from the scan that correspond to the model and remove all the points that are considered clutter. 
Increasing the threshold value (K) in the algorithm will increase the number of clutter points that are 
accepted as corresponding to the model (False Positive) and decreasing the K value will increase the 
number of points corresponding to model that are incorrectly deemed to be clutter (False Negative) (Figure 
6).  
 
Two criteria have been defined to determine how successfully desired points are extracted from the scan 
for each K value. The criteria are defined as follows:  
 

[1]   Void Rate (VR) = 
Number of  points corresponding to model removed erroneously

Number of points in the point cloud after applying KNN
 

 

[2]   Noise Rate (NR) = 
Number of clutter points accepted erroneously

Number of points in the point cloud after applying KNN
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Figure 2. Research methodology and the flow of information between different components. 



CON091-5 

The optimal K value is one where both VR and NR are minimized. Assuming that minimizing both criteria 
is of equal importance, the optimal value will be determined by intersecting VR (Void Rate) and NR (Noise 
Rate) trend lines (Figure 6). Experiments were carried out on a pipe spool assembly at The Ralph Haas 
Infrastructure and Sensing Analysis laboratory at the University of Waterloo. The assembly measures 
approximately 2m×1.5m consists of 4 individual pipe spools. (Figure 3) 
 

 

Figure 3. The test pipe spool assembly. Angular distortions to the assembly were induced at the flange 
numbers one and two, numbered in red. Branches are numbered in white for further reference in the 

article. 

3.1 Finding the object of interest 

A set of experiments was carried out on an industrial pipe spool to verify the proposed methodology for 
optimal clutter removal using a KNN algorithm on cluttered 3D point clouds. The object-of-interest, the pipe 
spool, is located in a laboratory environment and is surrounded by other unwanted objects that get scanned 
resulting in noisy point clouds. A FARO LS 840-HE laser scanner (with accuracy of ± 3mm at 25m) was 
used to acquire 3D point clouds. 
 
Five different scenarios were generated using the pipe spools. Four scans were taken from different 
locations for each scenario. The four scans were taken to ensure that a complete representation of the 
assembly in each scenario was captured. The first scenario is the case were the assembly complies with 
the design. In second scenario a rotational error has been imposed on flange number 1. The third scenario 
has a rotational error imposed at flange number 1. In the final two scenarios, the assembly was 
disassembled into its component spools (Figure 4) and the component spools were each individually tested 
for optimal extraction. In the fourth scenario all the individual spools comply with their designs and in the 
fifth scenario deviations have been imposed on branches one and four. A total of 12 scene point clouds 
were acquired.   

 
 

Figure 4. Disassembled spools for scenarios four and five. (a) All spools are compliant to the design. (b) 
Branch numbers one and four have been distorted. 

Once scanning is completed the object must be found in the scans.  This study utilized the algorithm 
provided by (Papazov, Burschka 2010) to find the object of interest. This algorithm requires two inputs. The 
first input is the BIM (as-designed) model in Stereo Lithography (STL) format. The second input is the scene 
or the as-built point cloud. Once the two inputs are loaded into the object recognition algorithm, a 
transformation matrix is computed and outputted. The transformation matrix is a 4×4 matrix which consists 
of a 3×3 matrix describing a 3D rotation of the point cloud and 3×1 vector describing the translation. From 
the twelve acquired scenes, ten had the object of interest detected by the object recognition algorithm.  
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3.2 Point Cloud Isolation 

In order to ensure that all the surfaces of the object of interest (pipe spools) were captured, scans were 
taken from four perspectives. These four scans were then merged into a single point cloud. The operation 
of merging point clouds of the same scene, taken from different angles, is referred to as registration. To 
register a point cloud, three corresponding points must be identified and selected in each scan. White 
spheres (shown in Figure 3) were placed in the scene to be used as the corresponding points between 
scans for registration. “Faro Scene,” a commercially available software was used to merge the point clouds 
together. Once the scans were registered, the resulting point cloud was down sampled from its initial two 
million points to approximately two hundred thousand points. The initial point cloud was too dense for the 
purpose of this study and down sampling allowed the computation time to be reduced for the algorithm. 
Down sampling populates a new point cloud by sampling points from the original point cloud and was done 
according to Poisson-disk distribution which resulted in point cloud where the points were equally distributed 
across all surfaces. In other words, an equal number of points would be found for any two arbitrarily chosen 
surfaces of equal area. For more information on the down sampling algorithm please refer to (Corsini, 
Cignoni et al. 2012).  
 
Given the two point clouds and the transformation matrix the extraction of the object of interest was 
calculated (see Algorithm 1). A third point cloud was calculated using stored points from the scene point 
cloud that have been determined to correspond to the model point cloud. The filtering process was 
performed using a KNN algorithm. This study includes an iterative step where the K value changes to 
examine its effect on the success of object extraction. The processes in this section are summarized below 
in Algorithm 1.  

3.3 Calculation of Void Rate and Noise Rate 

After down sampling and performing Algorithm 1, the success of Algorithm 1 was measured by performing 
Algorithm 2, described below. The success of object extraction was measured with two defined criteria. As 
explained in Section 3.1, Void Rate and Noise Rate are the two parameters for measuring the accuracy of 
the extraction. The accuracy was changed by changing the K value.  Figure 5 shows an example of a false 
positive and false negative.  

 
 

Figure 5. Challenges of removing clutter points without removing points on the object of interest. (a) 
Example of remaining clutter points after clutter removal for K equal to 8. (b) Example of removed points 

from the object of interest for the same K value. 

3.4 Best Fit and Optimization 

After performing Algorithm 2, a set of VR and NR values was calculated where each member of the set 
was calculated based on a distinct K value. To find the optimal K value for each scan, NR and VR values 
were graphed with respect to their corresponding K value as shown in Figure 6. Once tabulated, trend lines 
were fitted to each data set. The optimal K value for each scan was then calculated based on the 
intersection of the trend lines. The intersection point was found by solving the system of equations created 
by the two trend lines. This process was repeated for all of the scans acquired. MATLAB’s curve fitting tool 
was used to fit the data set of optimal K values and the size of the corresponding model and scan point 
clouds to a mathematical model. The results of this section are discussed in Section 4. Algorithm 3, used 
to fit the mathematical model, is described below. 
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4 Results  

Applying Algorithms 1 and 2, as defined in Section 3, will generate VR and NR values for each K value 
used for each scene considered.  
 
Table 1 provides a summary of the results obtained by applying the algorithms on scene one (compliant 
spool assembly).  
 
The headings used in the table are defined as follows:  
 
M: number of points in model point cloud, S: number of points in scan point cloud, K: threshold value used 
in KNN search algorithm, N: number of points in isolated point cloud, m: number of points after manually 
removing noise in initial scan point cloud, n: number of points in the isolated point cloud that correspond to 
the object of interest, q: number of points in the isolated point cloud. 
 

Table 1. VR and NR values computed using different K values for scene 1 

M S K N m-q n-q q VR NR 

12061 
12061 

81272 
81272 

1 
7 

3546 
5447 

33 
437 

2648 
1151 

6161 
6161 

0.42 
0.18 

0.005 
0.07 

12061 
12061 

81272 
81272 

10 
50 

5668 
6882 

481 
776 

974 
55 

6161 
6161 

0.158 
0.009 

0.078 
0.125 

12061 
12061 

81272 
81272 

110 
285 

7464 
7935 

1307 
1798 

4 
24 

6161 
6161 

0.006 
0.003 

0.2121 
0.29 

 
 
Figure 6 shows the curves that were fit to the data summarized in  
 
Table 1.  VR and NR must be minimized to find the optimal K value for each scan. To do so, a trend line 
was fitted to both the VR and NR data sets. The optimal K value was calculated as the solution to the 
system of equations created by the VR and NR trend lines. Figure 6 graphically depicts the calculation of 
the optimal K value for scan number one.  

 

Figure 6. Calculation of optimal K at the intersection of VR and NR trend lines 

For each scan, a logarithmic equation was used to fit a line to the void rate (VR) data points while a power 
equation was used to fit a line to the noise rate (NR) data points. Equations [4] and [5] below illustrate the 
general formats of equations that were used to calculate the trend lines that best fit the data points.  
 
[4] Y = a ln(x) + b and R1

2
 

 
[5] Y = á xb

 and R2
2 

 

´ 
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In equation [4], 𝑅1
2 denotes the root mean square values between the observed data points and the 

corresponding VR values predicted by the trend line. Similarly, 𝑅2
2 denotes the root mean square values 

between the observed data points and the corresponding NR values predicted by the trend lines. Solving 
the system of equations defined by equations 4 and 5 provides the optimal K value for each scan.  

Table 2. Parameter values for fitted lines and subsequent optimal K calculation. 

Scene No. a b 𝑎́ 𝑏́ 𝑅1
2 𝑅2

2 𝐾𝑜𝑝𝑡𝑖𝑚𝑎𝑙 

1 
2 

0.0487 
0.036 

-0.0195 
-0.035 

0.832 
0.2478 

-1.12 
-0.495 

0.92 
0.87 

0.81 
0.83 

11 
17 

3 
4 

0.052 
0.196 

-0.0417 
-0.2294 

0.0458 
0.0965 

-0.273 
-0.122 

0.96 
0.66 

0.46 
0.45 

6 
7 

5 
6 
7 

0.2938 
0.1371 
0.0982 

-0.2586 
-0.1559 
-0.0573 

-0.021 
0.4918 
1.0744 

0.13 
-0.68 
-0.65 

0.81 
0.73 
0.88 

0.47 
0.80 
0.66 

5 
8 
9 

 
 
A 3D plot was generated with the size of the scan on the scan point cloud on the x axis, the size of the 
model point cloud on the y axis and the optimal K value computed on the z axis. A best fit plane was then 
fitted to this plot. The equation of this best fit plane provides a mathematical solution to find the optimal K 
value based on the size of both the scan and model point clouds. Equation 6 shows the parametric form of 
the equation used to fit the plane. Table 4 shows the inputs and predictions that the model used to generate 
the variables.  
 
[6] Koptimal = a1M + a2S + a0 

 
M and S denote to the number of points in the scene and model point clouds, respectively. 𝑎1, 𝑎2 and 𝑎3 are 
the coefficients that were determined. MATLAB’s curve fitting tool was used to best fit the plane. Table 3 
summarizes the parameters calculated within their 95% confidence interval. Table 4 shows both the 

observed and predicted optimal K values, along with the 𝑅2 for plane that was fit.  
 

Table 3. Coefficients calculated for the best fit plane. 

 𝑎0 𝑎1 𝑎2 

Most Probable Value 
Lower Bound Value Within %95 Level of Confidence 

9.14 
5.26 

2.706 
-1.52 

2.05 
-2.18 

Upper Bound Value Within %95 Level of Confidence 13.02 
 

6.93 
 

6.27 

To calculate the coefficients the input data had to be normalized. The mean and standard deviation for the 
number of points in the scan were calculated to be 9.3+e4 and 3.67+e4 respectively. The number of points 
in the model point clouds was also standardized with a mean value of 1.05+e4 and a standard deviation of 
1.533+e3. Figure 7 show a graphical representation of the plane fitted to the data and the residual values 
between the data sets and the predictive model. 
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Figure 7. Graphical representation of the fitted plane to predict optimal K value. (a) 3D representation of 
the predictive model. (b) Residual values from the predictive plane. 

To determine the goodness of fit, 𝑅2 was calculated. 𝑅2 was calculated by dividing the sum of squares due 
to regression (SSR) over total some of squares (SST).  

Table 4.  Comparison of the calculated K values and the predicted values using the fitted plane along with 
a measure of the goodness of fit. 

 Observation  Predicted SSE SST SSR 𝑅2 

Scene Size Model Size Optimal K Optimal K    0.75 

81272 12061 11 10 1 3.45 0.73  

145265 
28009 
108007 
108007 
108007 
74569 

12061 
12061 
8864 

10841 
9327 
8864 

14 
6 
7 
5 
8 
9 

11 
9 
14 
12 
13 
15 

49 
9 

49 
49 
25 
36 

78.45 
9.87 
4.5 

17.16 
1.306 
0.02 

3.45 
0.02 

23.59 
8.16 

14.87 
34.30 

 

 Mean 8.6 Sum 218 114.85 1 880  

 

5 Conclusions and Future Work 

 
This paper presented a case study in which clutter points were optimally removed from a scan point cloud. 
A mathematical closed form solution was provided for calculating the optimal K value for removing clutter 
points in a point cloud based on number of points in scan and model point clouds using a KNN algorithm. 
Experimental data was gathered by scanning a pipe spool assembly under different configurations with 
respect to the compliance of the assembly. The individual spools from the assembly were also 
experimented on individually to provide additional data points to develop a more accurate model. A plane 
was ultimately fitted to the data providing an R square value of 0.75. 
To develop a more widely adaptable model, objects with different geometric shapes have to be tested using 
the developed algorithm.  
 
While KNN is a simple, robust and effective method for classification of points as being either part of the 
object of interest or as clutter, it is ineffective when it is assessing a scan of an object that has a gross 
misalignment compared to its model. With respect to pipe spools, two examples of gross misalignment that 
make KNN ineffective are: when a pipe that is substantially longer than the design is used and when an 
elbow is installed with a 90o rotation from the design. In both of these instances, KNN will not recognize the 
points in the scan that do not correspond to the model are part of the erroneous assembly and will remove 
these points as if they are clutter. 
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The authors will pursue more accurate prediction models such as, neural networks, Bayesian network and 
other machine learning algorithms to develop a more robust solution for clutter removal. However, 
depending on the application, mathematical closed form models may not be accurate enough and are 
vulnerable to errors.  
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