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Abstract: Emergence of low-cost videotaping devices and storage systems, including hardware and cloud-
based, have resulted in rapid increase of the recorded construction videos. In return, several vision-based 
systems were developed to detect and track resources in videos to extract productivity and safety metrics. 
There are, however, limited efforts to semantically annotate and retrieve videos of the interest from the 
construction video archives. This paper introduces a semantic annotation framework which uses object 
recognition to locate objects, and then applies Bayesian Belief networks to annotate the objects and their 
actions. Finally, it employs fuzzy logic to retrieve the indexed videos. The developed system was evaluated 
using videos from various sources, such as a video hosting website, which provided promising performance 
in retrieval of the videos and also highlighted the areas for the future improvements. 

1 Introduction 

Construction jobsites are distinguished for their temporary and dynamic environment, because equipment 
and landscape of the work zones continuously change as the project progresses. Digital imagery and 
videotaping have been widely used in construction industry to address the need for visual documentation 
of the project progress, equipment, and methods used during construction. Progress monitoring, 
productivity measurement, quality control, and claims are some application examples for the construction 
images and videos. These valuable resources, however, are not used to their full potential, because images 
and videos are manually analysed, which is labor-intensive and expensive (Liu and Golparvar-Fard 2015; 
Golparvar-Fard et al. 2013). Thereby, several research projects investigated methods to automate data 
extraction form digital image and videos. These efforts can be classified into three main groups: 1) visual 
monitoring of civil infrastructure or building elements; 2) visual monitoring of construction equipment and 
workers; 3) activity recognition (Yang et al. 2015). Methods in the first group mainly process still images 
and 4D BIM snapshots to detect building elements and monitor project’s progress. But the methods in the 
other two groups depend on the stream of videos captured by site cameras. Object detection, tracking, and 
action recognition algorithms are typically used in these systems to monitor workers and equipment in 
construction sites. Vision-based monitoring is a highly active field in the construction research community 
and a number of research efforts investigated recognition (Yuan et al. 2016; Tajeen and Zhu 2014; 
Memarzadeh et al. 2013; Rezazadeh Azar and McCabe 2012a; Rezazadeh Azar and McCabe 2012b; Chi 
and Caldas 2011) and tracking of equipment (Zhu et al. 2016; Park et al. 2012; Brilakis et al. 2011; Gong 
and Caldas 2011). The extracted spatiotemporal data can be used to estimate productivity (Bügler et al. 
2016; Golparvar-Fard et al. 2013; Rezazadeh Azar et al. 2013; Gong and Caldas 2011) and to assess site 
safety (Kim et al. 2015; Chi and Caldas 2012).  

These methods, however, are only developed to analyze videos for a certain task, such as estimation of 
loading cycles (Bügler et al. 2016; Rezazadeh Azar et al. 2013), and are not able to detect various types of 
actions that might appear in construction videos. This issue limits their ability to provide a comprehensive 

mailto:eazar@lakeheadu.ca


 

   

 CON068-2   

annotation for an efficient video retrieval. Therefore, efforts are needed toward development of methods for 
semantic organization and retrieval of construction videos.  

Conventional video retrieval typically relies on associated metadata, such as manual tags, descriptions, or 
keywords, which are usually subjective and limited. This limitation has encouraged research efforts to 
develop content-based video annotation, in which the algorithms use image and video processing 
techniques to interpret contents of the videos and annotate them. Annotation systems might use low-level 
features such as patterns, color values, and shapes, medium-level data such as material and objects, and 
high-level semantics, including actions and scenes, to analyze and annotate contents. The search engine 
retrieves videos of interest by matching the user queries with the machine-generated annotations. 
Annotation algorithms usually try to follow human cognitive perception of the video content and present 
annotations in a verbal format (Altadmri and Ahmed 2014). These systems typically extract low-level visual 
features or medium-level data, i.e. objects or material, and then employ decision-making methods such as 
Markovian models (Windridge et al. 2015), kernel methods (Jiang et al. 2013), and Bayesian networks 
(Tavassolipour et al. 2014, Kolekar 2011) to interpret extracted data and provide semantic labels. Video 
annotation algorithms have two main classes, generic and domain-specific methods. Algorithms in the first 
group provide simple and nonspecific representation of the video contents and might not be able to address 
professional applications. On the other hand, domain-specific algorithms are designed to annotate actions 
and/or events in a certain category of videos. For example, several research projects developed methods 
to annotate events in soccer videos (Tavassolipour et al. 2014; Saba and Altameem 2013). Efforts to 
address this problem in construction domain, however, are limited and a few studies used contribution of 
members of the public (Liu and Golparvar-Fard 2015) or manual segmentation of initial frames (Kim et al. 
2016) for annotation. 

This research aims at developing an innovative system to semantically annotate videos of heavy 
construction operations. This paper first describes the architecture of the system, and then explains 
methods used to develop the framework. Next, the experimental results section provides performance of 
the system using a number of test videos. Lastly, results, shortcomings, and future research directions for 
this system are discussed.  

2 System Architecture 

A straight-forward approach for annotation of construction videos is to use an object recognition algorithm 
to identify appearing equipment and index videos, but such system will have critical limitations. First, the 
output will be limited to equipment type and can not provide high-level information about the appearing 
operations. In particular, most of the earthwork equipment are multipurpose and could carry out different 
operations. Second, state-of-the-art object detection methods fail to provide consistent and robust precision 
and recall rates in uncontrolled environments (Andreopoulos and Tsotsos 2013), which could negatively 
affect annotation results. Therefore, this system uses object recognition as a part of the framework. 
Detected objects are analyzed by a probabilistic reasoning algorithm to identify the most probable action(s), 
which are then recorded as the annotation. Figure 1 shows a schematic view of this system. 

 

Figure 1: Schematic representation of the framework 
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3 System Modules 

3.1 Object Recognition 

There are several object recognition algorithms and some of them, such as Bayes and neural network (Chi 
and Caldas 2011), Histogram of Oriented Gradients (HOG) (original method developed by Dalal and Triggs 
(2005)) (Memarzadeh et al. 2013; Rezazadeh Azar and McCabe 2012 a and b), and latent SVM (originally 
method developed by Felzenszwalb et al. (2010)) (Tajeen and Zhu 2014) were tested for recognition of 
construction equipment. This research, however, does not aim at evaluation of object recognition algorithms 
and any method could be employed to detect earthmoving equipment in the video frames. The HOG 
algorithm was used in this research. Implementation of the method using parallel computing on graphics 
processing unit for accelerated performance and the availability of training datasets were the main 
motivations to use this algorithm in this system. Details about development of HOG classifiers are discussed 
in Rezazadeh Azar and McCabe (2012a and b). It should be noted that HOG could be replaced with any 
other recognition method in this framework. The HOG detectors were trained for recognition of five main 
types of equipment, including dump trucks, rollers, bulldozers, graders, and excavators, and the precision 
and recall diagrams of the results on test samples are presented in Figure 2. 

 

Figure 2:  Precision vs recall rates for five equipment types 

Bulldozers have two end-effectors, blade and ripper, with different functionalities, thus a secondary detector 
was added to check whether a detected bulldozer is equipped with a shank in the rear area of the machine. 
The HOG method was trained using images of the ripper shanks in both raised and inserted configurations. 
This process indicates if the detected dozer is equipped with a ripper shank system. Then a further HOG 
detector was used to locate the ripper. Successful detection of a ripper is interpreted as the ripper is not 
inserted into the ground (Figure 3). 



 

   

 CON068-4   

 

Figure 3: Detection of the shank and then ripper; the method concludes that the ripper is not in use 

A 4-second interval was used to grab a frame from the video stream for object recognition (Rezazdeh Azar 
et al. 2013; Rojas 2008). Although setting a low threshold in the binary classifier of the HOG will result in 
rather high recall rate, it will also produce excessive false positives. The HOG method uses an sliding box 
to search a frame for target, and the windows with a score greater than the threshold are accepted as a 
positive test. The score of each positive window was mapped to the matching precision in the precision vs 
recall diagram (see Figure 2). This way, the system is able to determine the precision of each detection. In 
this approach, the threshold of the binary classifier for the HOG detector is set to a low-level value to gain 
a high recall rate, with no less than 88% in test dataset (see Figure 2). A greater precision score means 
that there is a higher probability that the detection is a true positive. Then, the module records the metadata 
of each detection, including the frame number and time into video, equipment type, detection score, and 
corresponding precision.  

Because construction videos could be long and contain various operations, they were divided into two-
minutes sections and each section was separately annotated. In this approach, the detections in each 
section were consolidated using a k-means algorithm (MacQueen 1967). Processing of the frames in each 
section of a video could produce a set of n detections (x1, x2, …, xn), where each detection is a two-
dimensional real vector (equipment type and precision), of k (≤ n) types of equipment. The k-means 
algorithm aims to cluster the n observations into k sets S = {S1, S2, …, Sk} so to minimize the point-to-
cluster-centroid distances of all observations to each centroid (see MacQueen 1967 for details). If two or 
more consecutive video parts have the same clusters, then those sections will be merged. 

3.2 Probabilistic Reasoning 

This module employs belief network to link the detected objects to higher-level semantics, i.e. earthwork 
operations. Belief network uses a directed acyclic graph to represent the conditional probabilistic 
relationships between a set of random variables and their dependencies. The conditional probabilities are 
based on Bayes’s theorem, which are presented in Equations 1 and 2. The | character represents the 
conditional probability (A is true given that B is true); ˄ characterises and; ¬ represents not. 

[1]   P(B│A) = (P(A|B)×P(B))/(P(A))  

[2]   P(A˄B) = P(B|A)×P(A)  

The belief network technique was used to analyze equipment operations for each series of frames. This 
probabilistic reasoning method models the semantic relationships between the equipment and their actions 
in two main layers. The first step in development of a belief network is to determine the relationship between 
the variables in two layers. The graph of this network was developed through collaboration of three site 
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managers with at least 15 years of experience in heavy civil engineering. Since the aim of this project was 
to develop a research prototype, only a limited type of earthmoving equipment, including excavators, dump 
trucks, bulldozers, rollers, and graders, were selected. Some of these machines can carry out different 
tasks, but the network focuses on the most common operations of these machines. For example, an 
excavator is occasionally used for lifting objects or a bulldozer could be used for pushing a scraper. But this 
research effort aims at proposing an innovative video annotation framework, rather than developing a 
generic software product, thus only a limited number of actions were modeled.  

The next step in development of a belief network is to determine the probabilities of the parent nodes, i.e. 
P(A). Detected objects are the parent nodes in this network and the child nodes are the actions, given the 
object is detected. Therefore, the precision of the detected object is set as the probability of the parent 
node. The third phase is to determine the conditional probability between the parent and child nodes. These 
probabilities are typically estimated based on the expert knowledge or historical data of the domain. The 
application of historical data, however, has a major shortcoming, because the equipment utilization data 
are subjective and could differ considerably based on the nature of the projects. Expert subjective 
probability elicitation is the other promising approach to complete the conditional probabilities of the belief 
network (Tang and McCabe 2007). The conditional probabilities were solicited form nine experts with at 
least five years of experience in heavy construction (six site superintendents and three managers of heavy 
operations). The solicitation was carried out using a survey containing 10 questions, and Table 1 provides 
a sample question for the spreading task. A probability scale was provided (see Tang and McCabe (2007) 
for details) in the questionnaire to facilitate consistent probability determination, which is shown in Table 2. 

Table 1: Question eliciting the probability of spreading observation 

Observation 
Appearance of 

Bulldozer 
Appearance of Grader Probability 

Spreading 

True True  

False True  

True False  

False False  

 

Table 2: The scale used to facilitate consistent probability elicitation 

Impossible Seldom Sometimes 50-50 Often Usually Always 

1% 10% - 20% 30% - 40% 50% 60% - 70% 80% - 90% 99% 

The solicited probabilities were combined to determine the conditional probability values for each child node 
in the Bayesian Network. This consolidation was carried out using a Bayesian updating technique, which 
considers the heterogeneity of expert knowledge and the quality of expert responses (Clemen and Winkler 
1999). This issue is critical in solicitation from small groups, because the overconfidence of the respondents 
could have a substantial impact on the integrated probabilities (Clemen and Winkler 1999). Figure 4 
illustrates the consolidated probabilities of the experts’ responses. In general, there are two types of 
equipment in this figure: single-purpose and multipurpose. For example, roller is a single-purpose machine, 
but there are other machines with a variety of functions. Bulldozer is a special type in the second group, 
because it has two end-effectors: blade and ripper. As described in the object recognition section, a 
secondary detector was developed to check whether a ripper is inserted to ground. This outcome of this 
test could change the outcome of the probabilistic reasoning for bulldozers (see Figure 4). 
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Figure 4: Consolidated conditional probabilities of equipment and their actions based on the experts’ 
judgment 

Given the P(action | detected equipment in the video section) and P(detected equipment in the video 
section), which is the corresponding precision of the clustered detections, the probability of the possible 
actions was calculated (see Equation 2), and the resulting annotations (including equipment, actions, and 
their probability) and the time of the observations were recorded. The system retrieves the candidates by 
matching the user’s keyword(s) and annotations. Moreover, this system uses three fuzzy membership 
functions to address the differences in the probability of annotated actions, in which the user can set the 
level of confidence for the video retrieval. These functions include high, medium, and low levels of 
confidence. High confidence level would only retrieve videos with high-probability annotations, and medium 
and low cut-off levels would theoretically result in larger numbers of retrieved videos, including more false 
positives. These fuzzy membership functions are presented in Figure 5. 
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Figure 5: Fuzzy membership functions used for retrieval 

4 Experimental Results 

This system was implemented in Visual Studio express 2012 environment and OpenCV 2.4.12 library 
(OpenCV 2015) was used for computer vision processes. Performance of the developed framework was 
tested using 49 videos, including 38 from a publicly available video-sharing website (YouTube), and 11 
from author’s archive. The test videos contained various viewpoints and lighting conditions (excluding 
nighttime videos). A laptop with a 3.5 GHz Intel Core i7 CPU, an NVIDIA GTX 960M GPU, and 8 GB RAM 
was used to process test videos. The precision and recall curves of the retrievals for the actions of each 
type of equipment, using high, medium, and low confidence levels, are presented in Figure 6. Moreover, 
Figure 7 shows some sample video frames with true positive annotations. 

 

Figure 6: Precision vs recall rates of the annotations of the actions on three confidence levels 
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Figure 7: Sample video frames and corresponding annotations 

5 Discussion 

Findings of the experiments show a lower precision and recall rates in annotation of the bulldozer and 
excavator operations compared to dump trucks, rollers and graders. These two types of equipment can 
carry out multiple operations, which could contribute to this imprecision. In particular, manual review of the 
results revealed that the object detector successfully identified the machine type in some instances, but the 
annotations of the corresponding actions were not correct. Because the conditional probability, P(action | 
identified equipment), of the incorrect operation was greater than probability of the correct one. For 
example, a single excavator was located (no other equipment was present) while it was trenching, but the 
system recognized excavation, because the conditional probability of the excavation was greater than 
trenching (0.78 vs 0.62). 

The performance of the systems also depends on the content of the test videos. For examples, evaluation 
of systems using a diverse set of videos, similar to the test dataset used in this research, could negatively 
affect the results. Because the probabilistic reasoning module of the system uses expert judgment, thus it 
might fail to successfully index occasional actions. For example, conditional probability of ditch cutting given 
the detection of a grader was determined lower than levelling. Thereby, the system might not perform 
satisfactory on the videos captured during a road maintenance and ditch cleaning operations. A paratactical 
solution is to adjust the conditional probabilities for the specialty projects.  

Figure 8 provides more detailed results in processing of the frames with static and dynamic backgrounds. 
It is evident that the system had a better performance on the videos captured by stationary cameras, 
because they had stable views and provided longer chances to detect earthmoving plants and to reason 
concurrences of different types of equipment in a certain work zone.  

This annotation approach, however, has a main shortcoming, because it does not consider the visual 
elements other than equipment on the jobsite environment. Application of material and texture recognition 
methods can enhance understanding of construction sites, which could improve the annotation results. In 
addition, metadata of the videos, including geotagging and time, could be analyzed together with the 
annotations to improve the video retrieval results. 
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Figure 8:Precision and recall rates in static and dynamic viewpoints 

6 Conclusion 

An innovative video annotation system is introduced in this paper, which employs object detection and 
probabilistic reasoning to annotate heavy construction videos. This domain-specific video annotation 
system uses expert knowledge to develop a Bayesian network to represent possible events in the videos 
of equipment-intensive operations. This probabilistic reasoning module links the detected equipment to the 
most probable action(s) and calculates their probability. A prototype system was developed for annotation 
of actions of five types of earthmoving equipment, including bulldozers, dump trucks, graders, excavators, 
and rollers. A fuzzy-based function was used to enable users set the level of confidence to search for 
semantic concepts in the videos. The results showed promising performance on annotation of test videos, 
but efforts are needed to improve precision and recall rates. The future work will aim at analysing other 
visual information, such as the scene and material, and metadata of the videos (e.g. geotagging) to include 
other information in reasoning, which will result in improved annotations. 
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